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Abstract

In this paper we advance the line of research launched
by Knuth which was later improved by Chen for pre-
dicting the size of the search tree expanded by heuristic
search algorithms such as IDA*. Chen’s Stratified Sam-
pling (SS) uses a partition of the nodes in the search
tree called type system to guide its sampling. Recent
work has shown that SS using type systems based on
integer-valued heuristic functions can be quite effective.
However, type systems based on real-valued heuristic
functions are often too large to be practical. We use
the k-means clustering algorithm for creating effective
type systems for domains with real-valued heuristics.
Orthogonal to the type systems, another contribution of
this paper is the introduction of an algorithm called Ac-
tive SS. SS allocates the same number of samples for
each type. Active SS is the application of the idea of ac-
tive sampling to search trees. Active SS allocates more
samples to the types with higher uncertainty. Our empir-
ical results show that (i) SS using clustering-based type
systems tends to produce better predictions than com-
peting schemes that do not use a type system, and that
(ii) Active SS can produce better predictions than the
regular version of SS.

Introduction
Often one does not know a priori the time required by heuris-
tic search algorithms to solve a particular state-space prob-
lem. The inability to predict the search runtime may prevent
the application of such algorithms in practical scenarios.

One approach for predicting the runtime of search algo-
rithms is to estimate the size of the algorithm’s Expanded
Search Tree (EST ) (Knuth 1975). In addition to the merit
of estimating the search runtime, fast and accurate predic-
tions of the EST size could also be used to fairly divide
the search workload among different processors in a paral-
lel computing setting. Such predictions could also be used to
select the most suitable heuristic function to guide the search
algorithm: Is it better to use a slow and accurate heuristic, or
a fast and inaccurate one?

Related work. Knuth (1975) launched a line of research
which was later improved by Chen (1992) for predicting the
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EST size of search algorithms such as IDA* (Korf 1985).
Chen’s Stratified Sampling (SS) samples the EST guided
by a partitioning of the nodes in theEST called type system.
Chen assumed that nodes of the same type root subtrees of
the same size. Thus, SS only expands one node of each type
for estimating the EST size. Recent work has shown that
SS guided by a type system based on the heuristic function
used to guide the search algorithm produces good predic-
tions of the IDA* EST size in domains with integer-valued
heuristics (Lelis, Zilles, and Holte 2013). However, in do-
mains with real-valued heuristics, such type systems are of-
ten too large to be practical.

Contributions. In this paper we study a method that uses
the k-means clustering algorithm (McQueen 1967) for de-
riving effective clustering-based type systems for domains
with real-valued heuristics. Orthogonal to the clustering-
based type systems, we also introduce Active SS, an algo-
rithm that uses the idea of active sampling (Etore and Jour-
dain 2010) in search trees. With the aim of producing better
predictions of the EST size, Active SS allocates more sam-
ples to the types with higher variance. In contrast with other
active sampling methods, it is not immediately clear that Ac-
tive SS will perform better than SS. This is because Active
SS deals with search trees and it requires a relatively expen-
sive procedure to keep track of the variance of the types.

We run experiments on optimization problems over
graphical models such as finding the most likely explana-
tion in Bayesian networks (Pearl 1988). Specifically, we are
interested in predicting the EST size of Depth-First Branch
and Bound (DFBnB) with mini-bucket heuristic (Kask and
Dechter 2001) while proving a given solution to be optimal.
Because we provide the optimal solution cost to DFBnB our
experimental setup is the same as the one used by others for
predicting theEST size of IDA* (Korf, Reid, and Edelkamp
2001). In our empirical results (i) SS using clustering-based
type systems tends to produce better predictions than predic-
tion methods that do not use a type system, and (ii) Active
SS produces better predictions than regular SS.

Problem Formulation
Given a directed, full search tree representing a state-space
problem (Nilsson 1980), we want to estimate the size of the
subtree expanded by a search algorithm exploring the search
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tree while proving a given solution cost cb to be optimal.
We call the nodes expanded by the search algorithm the Ex-
panded Search Tree (EST ).

Let S = (N,E) be a tree representing an EST where
N is its set of nodes and for each n ∈ N child(n) =
{n′|(n, n′) ∈ E} is its set of child nodes. Our task is to
estimate the size of N without fully generating S.
Definition 1 (The prediction task). Given any numerical
function z overN , the general task is to approximate a func-
tion over the EST S = (N,E) of the form

ϕ(S) =
∑
s∈N

z(s) ,

If z(s) = 1 for all s ∈ N , then ϕ(S) is the size of S.

Stratified Sampling
Knuth (1975) showed a method to estimate the EST size by
repeatedly performing a random walk from the start state.
Under the assumption that all branches have a structure
equal to that of the path visited by the random walk, one
branch is enough to predict the structure of the entire tree.
Knuth observed that his method was not effective when the
EST is unbalanced. Chen (1992) addressed this problem
with a stratification of the EST through a type system to
reduce the variance of the sampling process. We call Chen’s
method Stratified Sampling (SS).
Definition 2 (Type System). Let S = (N,E) be an EST.
T = {t1, . . . , tn} is a type system for S if it is a disjoint
partitioning of N . Namely, if s ∈ N and t ∈ T with s ∈ t,
we also write T (s) = t.

Chen assumed that nodes of the same type root subtrees
of the same size. Thus, SS expands only one node of each
type to predict the EST size.
Definition 3 (perfect type system). A type system T is per-
fect for a tree S iff for any two nodes n1 and n2 in S, if
T (n1) = T (n2), then the two subtrees of S rooted at n1 and
n2 have the same value of ϕ.

Chen required the type systems to be monotonic.
Definition 4 (monotonic type system). (Chen 1992) A type
system is monotonic for S if it is partially ordered such that
a node’s type must be strictly greater than its parent’s type.
SS’s prediction scheme for ϕ(S) generates samples from

S, called probes. Each probe p is described by a set Ap of
representative/weight pairs 〈s, w〉 , where s is a representa-
tive for the type T (s) and w captures the estimated number
of nodes of that type in S. For each probe p and its associated
set Ap a prediction can be computed as:

ϕ̂(p)(S) =
∑

〈s,w〉∈Ap

w · z(s) .

Algorithm 1 describes SS for a single probe. The set A
is organized into “layers”, where A[i] is the subset of
node/weight pairs at level i of the search tree – processing
level i fully before i+ 1 forces the type system to be mono-
tonic. A[0] is initialized to contain only the root node with
weight 1 (line 1).

Algorithm 1 Stratified Sampling, a single probe
Input: root s∗ of a tree, type system T , and upper bound cb.
Output: array of setsA, whereA[i] is the set of pairs 〈s, w〉

for the nodes s expanded at level i.
1: A[0]← {〈s∗, 1〉}
2: i← 0
3: while i is less then search depth do
4: for each element 〈s, w〉 in A[i] do
5: for each child s′′ of s do
6: if h(s′′) + g(s′′) < cb then
7: if A[i + 1] contains an element 〈s′, w′〉 with

T (s′) = T (s′′) then
8: w′ ← w′ + w
9: with probability w/w′, replace 〈s′, w′〉 in

A[i+ 1] by 〈s′′, w′〉
10: else
11: insert new element 〈s′′, w〉 in A[i+ 1]
12: i← i+ 1

In each iteration (lines 4 through 7), all nodes in A[i] are
expanded. The children of each node in A[i] are considered
for inclusion in A[i + 1] if they are not to be pruned by
the search algorithm based on upper bound cb (line 7). If
a child s′′ of node s has a type t that is already represented
in A[i + 1] by node s′, then a merge action on s′′ and s′
is performed. In a merge action we increase the weight in
the corresponding representative-weight pair of type t by the
weight w of s′′. s′′ will replace s′ according to the probabil-
ity shown in line 9. Chen (1992) proved that this scheme
reduces the variance of the estimation scheme. The nodes in
A form a sampled subtree of the EST .

Clearly, SS using a perfect type system would produce an
exact prediction in a single probe. In the absence of that we
treat ϕ̂(S) as a random variable; then, if E[ϕ̂(S)] = ϕ(S) ,
we can approximate ϕ(S) by averaging ϕ̂(p) over multiple
sampled probes. And indeed, Chen (1992) proved the fol-
lowing theorem.

Theorem 1. (Chen 1992) Given a set of independent sam-
ples (probes), p1, ...pm from a search tree S, and given a
monotonic type system T , the average 1

m

∑m
j=1 ϕ̂

(pj)(S)

converges to ϕ(S).

Type Systems
A type system could be defined based on any feature of
the nodes in the search tree. Lelis, Zilles and Holte (2013)
showed that SS produces accurate predictions of the IDA*
EST size when using type systems based on the heuris-
tic function h(·) used to guide IDA*. The function h(n)
provides an estimate of the cost-to-go of a solution going
through node n in the EST . They used a type system de-
fined as Th(n) = (h(n)).1 According to Th, if nodes n and
m have the same h-value, then they have the same type.

The optimization problems that arise in Probabilistic
Graphical Models present a problem that prevents the di-
rect use of heuristic-based type systems in practice. Namely,

1A variation of Th was first introduced by Zahavi et al. (2010).

124



Algorithm 2 k-means clustering for nodes in the search tree
Input: set of nodes X and number of clusters k > 0.
Output: partitions X into k disjoint groups Xk.

1: create k different centroids.
2: while centroid assignment has not converged do
3: assign each node n ∈ X to the closest centroid.
4: adjust each centroid to be the mean of the value of

their assigned nodes.

both the cost and the heuristic functions are real-valued and
a type system based on the comparison of floating-point
heuristics might be too large to be practical. Lelis, Otten
and Dechter (2013) deal with this issue by multiplying the
h-values by a constant C and using the integer part of the
resulting number to define the type system. Different values
of C result in type systems of different sizes. Although such
approach might work well in some cases, it has a high ex-
perimental cost as it can be hard to find suitable values of C.
Moreover, such approach usually requires different values of
C for different domains (Lelis, Otten, and Dechter 2013).

We study a domain-independent method based on the k-
means clustering algorithm (McQueen 1967) for creating
type systems. In contrast with the constant C approach,
clustering-based type systems allow one to control exactly
the number of nodes SS expands at every level of search,
independently of the domain. Although the constant C ap-
proach might be useful in some real-world scenarios, in this
paper we are interested in an automated solution and we only
use clustering-based type systems in our experiments.

Clustering-Based Type Systems
We treat the problem of creating type systems as a cluster-
ing problem. A clustering algorithm groups together objects
that are more alike according to a measure of similarity. In
a clustering-based type system, nodes n and m are of the
same type if they are in the same cluster. We use the words
cluster and type interchangeably hereafter.

Algorithm 2 shows the k-means clustering algorithm for
nodes in the search tree. It receives as input a set of nodes
X encountered at a given level of a SS probe and a number
of clusters k > 0. Algorithm 2 partitions X into k disjoint
clusters Xk. The k-means algorithm requires a measure of
similarity to compute the distance between the nodes in X
and the k centroids (line 3). We use the absolute difference
between the nodes’s f -values as the measure of similarity.
The f -value of node n is computed as f(n) = g(n) + h(n),
where g(n) is the cost of the path from the start state to node
n in the search tree. For nodesm,n, v ∈ X , according to our
measure of similarity, m is closer to n than to v if |f(m) −
f(n)| < |f(m) − f(v)|. By using a clustering-based type
system one is able to control the number of node expansions
at every level of the search tree. Specifically, SS expands at
most k nodes at every level of search.

Our clustering-based type systems are not the first to
account for the f -value of the nodes. Lelis, Zilles and
Holte (2013) implicitly considered the node’s f -value in
their type system, although only the h-value appeared in

their definition. This is because they ran experiments on do-
mains with unit-edge costs and by considering the level of
the search tree as part of the type systems they were implic-
itly considering the node’s f -value.

Sampling with Multiple Representatives
In this paper we use a variation of SS introduced by
Chen (1989) that explores multiple nodes of the same type
in a single probe. In order to expand multiple nodes of the
same type Chen suggested to augment the types in a given
type system T with a random number. For instance, in the
multiple-representative setting, the Th type system is aug-
mented with a random integer ∇ drawn from the interval
[1,M ], for some integer M . SS using Th in the multiple-
representative setting expands at most M nodes of each Th
type. We define Tr(s) = (T (s),∇) as the multiple represen-
tative version of a base type system T .

Purdom’s Algorithm
The idea of sampling multiple representatives was first in-
troduced by Purdom (1978) as an improvement to Knuth’s
algorithm. Random walks are unlikely to sample deep
branches of tall and skinny search trees as a probe is likely
to quickly encounter a leaf node. As a result, one has to
perform a large number of probes with Knuth’s algorithm
to produce accurate predictions. Instead of expanding one
node at random at every level of search, Purdom’s algo-
rithm expands at most M > 1 nodes at random at every
level of search. Purdom explained that by sampling mul-
tiple nodes one would increase the probability of reach-
ing deeper branches of the search tree. Note that Purdom’s
strategy is different than performing M independent probes
with Knuth’s algorithm. This is because one could sample
the same branch multiple times across different probes. By
sampling multiple branches at once, one does not sample
the same branch more than once within a probe, which in-
creases the chances of a probe reaching deeper branches of
the EST . The same argument applies to SS.

Note that the strategy of expanding multiple representa-
tive nodes does not preclude SS nor Purdom’s algorithm
from performing multiple probes.

Unified Framework
Algorithm 3 describes a single probe of SS using a multiple-
representative clustering-based type system. The differences
between Algorithm 1 and Algorithm 3 are the following. In
the latter we do not insert one node of each type directly into
A, but we first insert all nodes into set X with the weight of
their parents (lines 5–8). We then use Algorithm ?? to cluster
the nodes in X into k different types (line 9). In line 10 we
select the maximum number of representative nodes mt of
each type t that will be expanded; for now we define mt =
q/k for all t. Here, q is an input parameter representing the
total number of extra nodes SS is allowed to expand at every
level in addition to one node of each type. The type of a node
s is defined by the cluster Xt s belongs to, and also by the
random number between 1 and mt (line 12).
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Algorithm 3 Stratified Sampling with Clustering-Based
Types and Multiple Representatives, a single probe
Input: start state s∗, number of types k, number of samples

q, cost bound cb, and a type system T .
Output: array of setsA, whereA[i] is the set of pairs 〈s, w〉

for the nodes s expanded at level i. A sampled subtree
A of the EST .

1: A[0]← {〈s∗, 1〉}
2: X ← ∅
3: i← 0
4: while i is less then search depth do
5: for each element 〈s, w〉 in A[i] do
6: for each child s′′ of s do
7: if h(s′′) + g(s′′) ≤ cb then
8: insert 〈s′′, w〉 in X
9: partition nodes in X into k types Xt (Algorithm 2)

10: mt ← number of representative nodes for each type t
11: for each element 〈s, w〉 in X do
12: T (s)←

(
t, random (1, mt)

)
, for s ∈ Xt

13: if A[i + 1] contains an element 〈s′, w′〉 with
T (s′) = T (s) then

14: w′ ← w′ + w
15: with probability w/w′, replace 〈s′, w′〉 in A[i+

1] by 〈s, w′〉
16: else
17: insert new element 〈s, w〉 in A[i+ 1]
18: i← i+ 1
19: clear X

This version of SS generalizes all three algorithms:
Knuth’s, Purdom’s and Chen’s. If k = 1 and q = 0, then
Algorithm 3 behaves like Knuth’s algorithm as it expands a
single node at every level of search. If k = 1 and q > 0,
then Algorithm 3 behaves like Purdom’s algorithm as it ex-
pands at most q + 1 nodes at every level of search. If k > 1
and q > 0, then Algorithm 3 behaves like SS with multiple
representatives employing a clustering-based type system.

Active Stratified Sampling for Search Trees
Active SS is also described by Algorithm 3. The differences
between regular SS, which we call Passive SS hereafter, and
Active SS are the following. First, instead of sampling q/k
extra nodes per type, Active SS uses the Adaptive Allocation
of Samples algorithm (AA) (Etore and Jourdain 2010) for al-
locating the q extra samples among different types, with the
aim of reducing the variance of the estimates. Second, Ac-
tive SS calls a bookkeeping procedure after each probe to
collect the statistics required by AA about the types in the
EST . We now describe the AA and the bookkeeping proce-
dures.

Preliminaries
Let Ŷ it be the estimated size of the subtree rooted at a node
of type t at level i of the EST . SS approximates the value
of Ŷ it for all i and t encountered in the EST as a byproduct
of its estimation of the EST ’s size, ϕ̂(S). The value of Ŷ it
estimated by SS depends on the representative node n of

Algorithm 4 Adaptive Allocation of Samples
Input: number of samples q, a type system T , and a collec-

tion of types U ⊆ T found at level i of the EST
Output: number of samples mt for each t ∈ U

1: for each t in U do
2: compute the empirical standard deviation σ̂t:

σ̂t ←

√√√√ 1

Bit,p

Bi
t,p∑

a=1

(Ŷ it,a)
2 −

(
1

Bit,p

Bi
t,p∑

a=1

Ŷ it,a

)2

3: compute the approximated probability mass prt:

prt ←
wt∑
u∈U wu

4: for each t in U do
5: compute the number of samples mt:

mt ←

{
q/|U | if

∑
u∈U pruσ̂u = 0 ,

prtσ̂t∑
u∈U pruσ̂u

· q otherwise

type t it expands at level i. Thus, we treat Ŷ it as a random
variable. Clearly, E[ϕ̂(S)] = E[Ŷ 1

ts∗
], where ts∗ is the type

of the start state s∗ at the first level of the EST .
Intuitively, due to the tree structure, the variance of the

estimated value of E[Ŷ 1
ts∗

] produced by SS correlates with
the variance of the estimated values of E[Ŷ it ] for all i and t
encountered in theEST . Thus, we are interested in reducing
the variance of the estimates of E[Ŷ it ] for all i and t.

Adaptive Allocation of Samples
Given a collection of nodes X at level i of the EST and a
k-disjoint partition of X , we are interested in allocating the
q samples among the k types in X in a way that reduces the
variance of the estimates of E[Ŷ it ].
AA, described in Algorithm 4, allocates the number of

samples for each type t proportionally to Ŷ it ’s variance (we
describe how to get the samples on which Ŷ it is based in
our bookkeeping procedure below). Intuitively, types with
higher variance should be sampled more often to reduce the
variance of the predictions.
AA takes as input a collection of types U and a number of

extra samples q to be allocated among each type in U . AA
returns the number of samples mt that will be allocated for
each type t in U . First, AA computes the empirical standard
deviation σ̂t for each type t ∈ U (line 2). The value of σ̂t
is computed based on different samples of Ŷ it . Here, Ŷ it,a is
the a-th sample and Bit,p is the total number of samples of
type t at level i observed until probe p.
AA assumes that the probability mass of each type t ∈ U ,

prt, is known. Although we do not know the prt-values ex-
actly, we have estimates of their values given by the weight
associated with each type (line 3). Recall that the weight as-
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Algorithm 5 Active SS Bookkeeping
Input: sampled treeA, upper bound cb, and type systems T

and Tr, where Tr is T augmented with a random integer.
Output: a collection Ziu for each u ∈ T of Ŷ it -values with

t ∈ Tr encountered in A.
1: for i← tree depth to 1 do
2: for each node s in A[i] do
3: Ŷ iTr(s)

← 1

4: for each child s′′ of s do
5: if h(s′′) + g(s′′) < cb then
6: Ŷ iTr(s)

← Ŷ iTr(s)
+ Ŷ i+1

Tr(s′′)

7: insert Ŷ iTr(s)
in ZiT (s)

8: i← i+ 1

sociated with each type t is the estimated number of nodes
of type t (see Algorithm 1). Once the values of σ̂t and prt
are computed, AA determines the number of samples mt ac-
cording to the equation shown in line 5.

The mt-values in Algorithm 4 are not defined as integers.
Etore and Jourdain (2010) show a complex scheme to com-
pute integer values of mt that sum up to q. Grover (2008)
conjectured that rounding down the mt-values and allocat-
ing the remaining samples to the options with the largest
allocation ratios would perform as well as the original AA.
We round up themt-values to the lowest integer greater than
mt because our samples are relatively cheap to obtain.

Bookkeeping
We now show how to compute the values of Ŷ it,a used in
Algorithm 4. SS estimates the size of the EST by summing
up the w-values in A. We are able to compute the values of
Ŷ it for all i and t with some bookkeeping. This is done with
dynamic programming as shown in Algorithm 5.

Algorithm 5 receives as input the sampled subtree A pro-
duced in a single probe of SS, the upper bound cb and two
type systems: T and Tr. Algorithm 5 returns one collection
Ziu for each u ∈ T of Ŷ it -values with t ∈ Tr encountered in
A. We iterate over the different levels of A in reverse order,
i.e., we go from the deepest level of the sampled subtree to
the root (line 1). Then, we compute the values of Ŷ it based
on the values of Ŷ i+1

t already computed (line 6).
Note that the Ŷ it -values produced by Algorithm 5 are for

types t ∈ Tr, but in Algorithm 4 we are interested in the Ŷ iu-
values for types u ∈ T . That is why Ziu is indexed by types
u ∈ T and not by types t ∈ Tr.

Overall Active Stratified Sampling
In summary, Active SS is described by Algorithms 3, 4 and
5. Active SS uses Algorithm 4 to define the values of mt

(line 10 of Algorithm 3). Note that like Passive SS, Active
SS also uses the value of q/k to set the values of mt dur-
ing its first probe. Once the first probe is finished and the
first Ŷ it -values are stored in memory, Active SS calls Algo-
rithm 4 to define themt-values. Active SS calls Algorithm 5

after each probe to store the new Ŷ it -values in memory.

Runtime Behavior of Active SS
Passive SS expands one node of each type at every level of
the EST . In addition to that, in our implementation, Active
SS iterates once again over the nodes in the sampled tree A
in Algorithms 4 and 5. Thus, an Active SS probe takes about
twice as long as a Passive SS probe. In the next section we
verify empirically that Active SS’s computational overhead
can result in better predictions.

Experimental Results
In our experiments we predict the size of the search tree
expanded by Depth-First Branch and Bound (DFBnB) with
mini-bucket heuristic (Kask and Dechter 2001) while prov-
ing a given solution to be optimal. Because we provide the
optimal solution cost and DFBnB does not detect transpo-
sitions, our experimental setup is the same as the one used
by others when predicting the size of the IDA* search tree
for a given cost bound (Korf, Reid, and Edelkamp 2001;
Zahavi et al. 2010; Lelis, Zilles, and Holte 2013). All ex-
periments are run on 2.6 GHz Intel CPUs.

Our experiments are run on three domains: protein side-
chain prediction (pdb), randomly generated grid networks
(grids), and computing haplotypes in genetic analysis (pedi-
gree). In total, we have 164, 56 and 13 problems, for pdb,
grids and pedigree, respectively.

In our experiments we measure the error and the runtime
of different prediction schemes. The prediction error is mea-
sured with the relative unsigned error, which is computed
as |predicted−actual|actual . We show the percentage of the relative
unsigned error, which is the relative unsigned error multi-
plied by 100. We repeat each prediction task 10 times and,
in our plots, we show the average relative unsigned predic-
tion error on the y-axis and runtime in seconds on the x-axis
for different numbers of probes. In addition to the average
error, assuming the error follows a normal distribution, we
also show the 95% confidence interval with error bars. Note
that in some cases the error bars can hardly be noticed.

We compare three algorithms: Active SS, Passive SS, and
Purdom’s algorithm. In preliminary results Purdom’s algo-
rithm produced much better predictions than Knuth’s al-
gorithm. Thus, we compare Active and Passive SS using
clustering-based type systems to Purdom’s algorithm, the
best prediction algorithm, to the best of our knowledge, that
does not use a type system.

We use the following set of input values: k =
{2, 3, 4, 5, 15, 25} and q = {10, 100, 150}. Note that for
Purdom’s algorithm k always equals to 1. The number of
probes p used in our experiments depends on the algorithm
as the runtime of each probe differs from algorithm to algo-
rithm. We choose the number of probes so that we can com-
pare the accuracy and the runtime of the different prediction
methods. First, we show average results for the different val-
ues of q and k (Figure 1). Then, we show results for different
values of k and number of probes p, for q = 100 (Figure 2).
Finally, we show results for different values of q and p, for
k = 25 (Figure 3). The results for q = 100 and k = 25 are
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Figure 1: Average results for Active SS, Passive SS and Purdom’s algorithm.

representative in the sense that they are qualitatively similar
to the prediction results when q and k assume other values.

We are interested in predictions that can be produced
much quicker than the time required to run the actual search.
Thus, we choose the input parameters p, q and k in a way
that the algorithms can quickly produce predictions. The av-
erage search times (the search runtime to prove a solution
to be optimal) for the pdb, grids and pedigree domains is
11,008, 25,591, and 5,710,850 seconds, respectively. The
predictions are produced within 8 seconds—a small fraction
of the actual search runtime.

Averaged Results
Figure 1 presents the average results. Each point in the plots
in Figure 1 represents the prediction error and runtime aver-
aged over all the different values of q and k for each value
of p (number of probes). Active SS performs best on aver-
age in all three domains: It produces more accurate predic-
tions in less time than Passive SS and Purdom’s algorithm.
In the pdb domain the difference between Active SS and
other schemes is larger. Passive SS using clustering-based
type systems performs better than Purdom’s algorithm in
two out of three domains. In the pedigree domain Passive
SS and Purdom’s algorithm produce predictions of similar
quality.

Empirical Study of the Parameter q
Figure 2 shows the prediction results for q in {10, 100, 150}
and k = 25. As we increase q, the predictions tend to be-
come more accurate at the cost of increasing their runtime.
Active SS outperforms Passive SS and Purdom’s algorithm
except in the pedigree domain with q-values of 100 and 150,
where the predictions produced by Active SS and Purdom’s
algorithm are of similar quality.

The results in Figure 2 suggest that Passive SS is com-
petitive with Purdom’s algorithm for lower values of q, but
is outperformed for larger values of q. As an illustrative ex-
ample, consider the following case. For very large values of
q, all three algorithms will expand a number of nodes close
to the actual EST size, and Purdom’s algorithm should be
preferred in such cases as it does not have the computational
overhead the SS algorithms have for computing the types.
However, in practice, in order to obtain fast predictions, one
should use manageable values of q. Our results suggest that
Active SS is the algorithm of choice for lower values of q.

Empirical Study of the Parameter k
Figure 3 shows the empirical results for the k in {2, 5, 15}
and q = 100. Since k always equals 1 in Purdom’s algo-
rithm, we repeat the curve for Purdom’s algorithm in plots
of the same domain.

The results in Figure 3 suggest that Active SS is more ro-
bust than Passive SS to variations in the value of k. Although
Active SS presents some improvement when increasing the
value of k, the gain is not substantial (e.g., in the pdb domain
the prediction error goes from 27% to 22% when increas-
ing k from 2 to 15 in predictions produced in approximately
2 seconds). Note that for larger values of k the runtime of
the k-means algorithm used for defining the type system in-
creases. We conjecture that, despite the increase in runtime
for computing the types, Active SS is able to use the extra
knowledge provided by the larger number of clusters to al-
locate more samples in important parts of the search tree,
i.e., the parts in which uncertainty is higher. The same phe-
nomenon is not observed with Passive SS. For instance, in
the case of the grids domain, Passive SS tends to produce
worse predictions as we increase the value of k.

Discussion
Although Purdom’s algorithm tended to perform worse than
the SS algorithms, it produced reasonable predictions and
one could consider using it in practice due to its simplicity.

The clustering-based type system is an alternative to the
approach in which one uses the integer part of the result-
ing multiplication of the heuristic values by a constant C
as the type system. The clustering-based type systems are
domain-independent in the sense that one knows exactly the
number of nodes expanded at every level of search, indepen-
dently of the problem. This is not true for the C multiplier
approach as one does not know a priori the number of nodes
expanded at every level of search for a given value ofC. The
C-multiplier approach might have a high experimental cost
as it can be hard to find a suitable value of C.

We compared SS using clustering-based type systems to
Purdom’s algorithm, the best method, to the best of our
knowledge, that does not use a type system. Our results
showed that Passive SS using clustering-based type systems
produced better predictions than Purdom’s algorithm in two
out of three domains in the average case (see Figure 1).

We applied the idea of active sampling (Etore and Jour-
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Figure 2: Active SS, Passive SS and Purdom’s algorithm for different values of q.

dain 2010) in the context of search trees. The bookkeeping
required by the AA algorithm is not expensive for the general
case of stratified sampling because one has immediate ac-
cess to the value of a sample (Antos, Grover, and Szepesvári
2008). By contrast, the bookkeeping required by AA in the
context of search trees is relatively expensive as one has to
re-expand the nodes expanded by SS to compute the value
of the samples. Thus, one probe of Active SS is about twice
as slow as a probe of Passive SS. Our experimental results
showed that although the bookkeeping of Active SS is some-
what expensive, because it carefully chooses the parts of the
search tree that should be sampled more often, it produced
better predictions than Passive SS.

Passive SS is expected to produce better predictions than
Active SS when “very good” type systems are available. As
an illustrative example, Passive SS certainly performs better
than Active SS when the type system employed is perfect,
i.e., nodes of the same type root subtrees of the same size.
Clearly, with a perfect type system a single probe of Ac-
tive or Passive SS suffices to produce a perfect prediction.
Therefore, one will be better off with the fastest algorithm.
As a practical example, Passive SS is able to produce very
accurate predictions on puzzle domains with integer-valued
heuristic (Lelis, Zilles, and Holte 2013). We do not expect

Active SS to present gains over Passive SS in those domains.
Active SS is general and could be applied to other

problems. For instance, Bresina, Drummond and Swan-
son (1995) used Knuth’s algorithm to measure the expected
solution quality of scheduling problems. One could also use
Active SS to reduce the variance of Bresina et al.’s algo-
rithm. Assuming a type system is available, instead of mea-
suring the variance of the size of the subtree rooted at nodes
of the same type, one would measure the variance of the
quality of the solution found in the subtrees rooted at nodes
of the same type.

Related Work
Independently of Knuth’s line of research, Korf, Reid and
Edelkamp (2001) developed a method for predicting the size
of the IDA* search tree for a given cost bound. Their method
works for the special case of consistent heuristics. Later, Za-
havi et al. (2010) presented CDP, a prediction method based
on Korf et al.’s ideas that works with both consistent and in-
consistent heuristics. Burns and Ruml (2012) presented IM,
a prediction method that generalizes CDP for domains with
real-valued edge costs. Burns and Ruml’s goal was to avoid
the poor performance of IDA* in domains with real-valued
edge costs by setting a cost bound d that would expand an
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Figure 3: Active SS, Passive SS and Purdom’s algorithm for different values of k.

exponentially larger number of nodes in each iteration.
Lelis, Zilles and Holte (2013) connected and compared

the methods developed in Knuth’s and Korf et al.’s lines of
research: SS and CDP. They concluded that CDP is the algo-
rithm of choice if preprocessing is allowed and one is inter-
ested in very fast predictions. This is because CDP samples
the state-space as a preprocessing step and stores the predic-
tion results in a lookup table. SS, on the other hand, is the
algorithm of choice if one is interested in accurate predic-
tions, which is the case we studied in this paper.

A different prediction approach is taken by Kilby et
al. (2006) and Thayer, Stern and Lelis (2012). In contrast
with SS that samples the EST independently of the search
algorithm, their methods use the information observed by
the search algorithm to infer the number of nodes yet to be
expanded. The advantage of such approach is that the predic-
tion method has access to the bound updates in branch and
bound methods (Kilby et al. 2006) and to the transposition
detection in best-first search algorithms (Thayer, Stern, and
Lelis 2012). The disadvantage of using the information ob-
served by the search algorithm is that the prediction method
has access to a biased sample of the EST , which could lead
to poor estimates. In fact, Lelis, Otten and Dechter (2013)
presented TSS, a variation of SS equipped with a method

for approximating the bound updates of branch and bound
methods. They showed that TSS is able to produce better
predictions than Kilby et al.’s algorithm of the EST size of
the Depth-First Branch and Bound. They conjectured that
TSS produces better predictions because it does not “fol-
low” the search algorithm and is able to collect a better sam-
ple of the EST . Applying our type systems and active sam-
pling to TSS are interesting directions of future work.

Conclusions
In this paper we used the k-means clustering algorithm for
creating type systems for domains with real-valued heuris-
tic functions. Our empirical results showed that SS using a
clustering-based type system tends to produce better predic-
tions than Purdom’s algorithm, which is, to the best of our
knowledge, the best prediction method that does not use a
type system.

We also presented Active SS, a prediction algorithm that
uses the ideas of active sampling in the context of search
trees. In contrast with other active sampling approaches, it
is not immediately clear that Active SS can perform better
than Passive SS due to its relatively expensive bookkeeping
procedure. Our empirical results showed that Active SS can
perform better than Passive SS.
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