
GAC for a Linear Inequality and an Atleast Constraint

with an Application to Learning Simple Polynomials

N. Razakarison

ENS Cachan, France
N. Beldiceanu

TASC team (CNRS/INRIA)
Mines de Nantes, France

M. Carlsson

SICS, Sweden
H. Simonis

∗

4C, University College Cork
Ireland

Abstract

We provide a filtering algorithm achieving GAC for the con-
junction of constraints atleast(b, �x0, x1, . . . , xn−1�,V)
and

�n−1
i=0 ai · xi ≤ c, where the atleast constraint en-

forces b variables out of x0, x1, . . . , xn−1 to be assigned to a
value in the set V . This work was motivated by learning sim-
ple polynomials, i.e. finding the coefficients of polynomials
in several variables from example parameter and function val-
ues. We additionally require that coefficients be integers, and
that most coefficients be assigned to zero or integers close to
0. These problems occur in the context of learning constraint
models from sample solutions of different sizes. Experiments
with this more global filtering show an improvement by sev-
eral orders of magnitude compared to handling the constraints
in isolation or with cost gcc, while also out-performing a
0/1 MIP model of the problem.

1 Introduction

Considering conjunction of constraints is a way of getting
better propagation, and the last years have witnessed sig-
nificant research on how to come up with efficient filter-
ing algorithms that handle a conjunction of two well known
constraints. This was for instance the case for combining
the alldifferent constraint with precedences (Bessière
et al. 2011) or with the sum constraint (Beldiceanu et al.
2012). This was also the case for combining the sum
constraint with difference constraints (Régin and Rueher
2000), or with a chain of precedences (Petit, Régin, and
Beldiceanu 2011), or with a covering set of clique con-
straints in the context of 0/1 variables (Puget 2004). Ini-
tially motivated by learning simple polynomials in the con-
text of learning generic constraint models (Beldiceanu and
Simonis 2012), i.e. polynomials that have a large num-
ber of small coefficients (in absolute value) and param-
eters in N, this paper addresses the question of finding
an efficient generalized arc-consistency (GAC) filtering al-
gorithm for the conjunction of a linear inequality and an
atleast constraint. More precisely, given the constraints
atleast(b, �x0, x1, . . . , xn−1�,V) and

�n−1
i=0 ai · xi ≤ c

(b, n ∈ N, ai, c,∈ Z,V ∈ P(Z), n �= 0), where xi (0 ≤ i <

∗Supported by EU FET grant ICON (project number 284715).
Copyright c� 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

n) are domain variables (see Section 3), and atleast en-
forces at least b variables from x0, x1, . . . , xn−1 be assigned
to a value in set V ,1 this paper provides a GAC filtering algo-
rithm. Note that only enforcing bounds consistency on a sin-
gle linear inequality already yields GAC as noted in (Zhang
and Yap 2000). A filtering algorithm achieves GAC for a
given constraint ctr if and only if for every variable var of
ctr there exists at least one solution for ctr such that var
can be assigned to any value in its domain, and every other
variable var � of ctr to a value in its domain (Bessière 2006).

Note that, by complementing the set of values V , we can
replace an atmost constraint by the atleast constraint and
still use the same filtering algorithm. Also, by inverting the
signs of the coefficients ai, the same algorithm can propa-
gate ≥ instead of ≤.

Section 2 gives an intuition of the methodology used for
systematically deriving the GAC filtering algorithm from a
feasible lower bound of the sum of the variables of the linear
inequality subject to the atleast constraint. Section 3 pro-
vides a necessary and sufficient condition for the conjunc-
tion of a linear inequality and an atleast constraint, which
is based on a sharp lower bound of the sum

�n−1
i=0 ai · xi

subject to the atleast constraint. We call this conjunc-
tion linear atleast. Section 4 shows how to compute
the increase of this sharp lower bound when a variable xi

is assigned to a value u. Section 5 derives a GAC filter-
ing algorithm from the results presented in the preceding
sections. Section 6 describes related work and Section 7
presents the problem of learning simple polynomials in the
context of learning generic constraint models. Before we
conclude, Section 8 evaluates our algorithm on randomized
instances of our application problem and compare it with a
reformulation as well as with cost gcc (Régin 2002).

2 Intuition

In order to get a GAC filtering algorithm we first focus on
getting a necessary and sufficient condition for the feasibility
of the conjunction of a linear inequality and an atleast

1In the context of learning simple polynomials
x0, x1, . . . , xn−1 represent the coefficients of the polynomial
to learn; the set V of the atleast constraint is set to a small
interval around 0 since we want to control the minimum number
of coefficients set to a value around 0.

Proceedings of the Sixth International Symposium on Combinatorial Search

149

constraint. This condition is based on a sharp lower bound
of the sum of the linear term that also considers the atleast
constraint.

In a second step we concentrate on defining for every
variable-value pair (var , val) the increase, i.e. the regret, of
the previous lower bound when var is assigned to val (i.e.,
the reduced cost introduced by (Focacci, Lodi, and Milano
1999)). We come up with a number of mutually disjoint
cases on the pair (var , val).

In a third step, since it is obviously too expensive to enu-
merate all possible variable-value pairs for filtering, we in-
stead group together consecutive values of a given variable
that correspond to the same regret case. We find out all
possible sequences of regret cases in order to identify max-
imum size intervals of values corresponding to the same re-
gret case.

In a fourth step, given a variable and its maximum inter-
vals, we have for each such interval one linear function that,
given a value val in the interval, returns the increase of the
lower bound, i.e. see functions f and g in Example 1 and
see Lemma 2 where these functions are defined. From the
maximum value of the right hand side of the linear inequal-
ity and from the function defining the regret on an interval of
values we directly compute the intervals of infeasible values
in the corresponding interval.

Example 1. We informally illustrate the previous steps on
the conjunction of constraints x0 ∈ [3, 10], x1 ∈ [0, 1] ∪
[5, 9], x2 ∈ [0, 3] ∪ [6, 9], x0 + 2 · x1 − x2 ≤ 5,
atleast(2, �x0, x1, x2�, {4, 6}). The conjunction of con-
straints admits four solutions �x0 = 4, x1 = 0, x2 = 6�,
�x0 = 4, x1 = 1, x2 = 6�, �x0 = 6, x1 = 0, x2 = 6�,
�x0 = 6, x1 = 1, x2 = 6�. We focus on the filtering of the
domain of variable x0 (GAC), which reduces its domain to
{4, 6}, i.e., it creates a hole in the domain of x0.

• Ignoring the atleast constraint, the lower bound of x0+
2 · x1 − x2 is equal to −6, where depending on the sign
of their coefficients, variables x0, x1, x2 are assigned to
3, 0, 9, respectively. But to satisfy the atleast constraint
we need two values in the set {4, 6}. The feasible lower
bound � = −2 is obtained by reassigning x0 from 3 to 4
and x2 from 9 to 6, which leads to the smallest possible
increase.

• For a value u ∈ {4, 6} the increase of the feasible lower
bound � = −2 when reassigning x0 to u is equal to
f(u) = u − 4. This stems from the fact that x0 was al-
ready assigned to 4 in � and that we do not change the
number of variables assigned to a value in {4, 6}. For a
value u in {3, 5, 7..10} the increase of � = −2 when re-
assigning x0 to u is g(u) = (u− 4) + 12, “u− 4” since
we reassign x0 from 4 to u, “+12” since we reassign, in
the term 2 · x1, variable x1 from 0 to the smallest value
in dom(x1) ∩ {4, 6}, i.e. 6, to still satisfy the atleast
constraint.

• Enforcing �+ f(u) ≤ 5 on the set {4, 6} does not lead to
any filtering, while enforcing �+g(u) ≤ 5 on {3, 5, 7..10}
leads to removing {3, 5, 7..10} from x0.

3 Necessary and Sufficient Condition for

Feasibility

In order to evaluate the feasibility of the conjunction of the
constraints

�n−1
i=0 ai·xi ≤ c and atleast, we need to evalu-

ate the minimum value of the left hand side of the inequality
subject to the atleast constraint and check that it does not
exceed c. For this purpose, we first introduce some notation:

• A domain variable x is a variable that ranges over a fi-
nite set of integers in Z denoted by dom(x); x and x re-
spectively denote the minimum and maximum value of
dom(x).

• Let Vi denote the set V ∩ dom(xi).

• Let X+
out (resp. X−

out) denote the set of indices i (0 ≤ i <
n) such that ai ≥ 0 (resp. ai < 0) and Vi = ∅.

• Let X+
in (resp. X−

in) denote the set of indices i (0 ≤ i < n)
such that ai ≥ 0 (resp. ai < 0) and Vi �= ∅. Let vi (resp.
vi) denote the smallest (resp. largest) value of Vi.

• For each element i of X+
in (resp. X−

in) we introduce the
quantity δi = ai ·(vi−xi) (resp. δi = ai ·(vi−xi)), which
represents the minimum increase of the term

�
i∈X+

in
ai ·

xi (resp.
�

i∈X−
in
ai ·xi) wrt. assigning xi to a value in Vi

rather than to xi (resp. xi).

• Given the set of δi (i ∈ X+
in ∪ X−

in), let
σ0, σ1, . . . , σ|X+

in |+|X−
in |−1 denote the δi sorted in increas-

ing order and increasing index i in case of ties.
• For i ∈ X+

in ∪ X−
in , let pi denote the position of δi in the

sequence σ, and let ∆i denote the sum
�i−1

k=0 σk. For
i ∈ X+

out ∪ X−
out , let pi = n.

Lemma 1. Assuming that each variable xi (0 ≤ i <
n) can be assigned to any value in its domain, a
necessary and sufficient condition for the feasibility of
atleast(b, �x0, x1, . . . , xn−1�,V) ∧

�n−1
i=0 ai ·xi ≤ c con-

sists of the following two conditions:
1. |X+

in |+ |X−
in | ≥ b.

2. � =
�

i∈X+
in ∪X+

out
ai · xi +

�
i∈X−

in ∪X−
out

ai · xi +∆b ≤ c.

Proof. First observe that |X+
in | + |X−

in | ≥ b must hold in
order to satisfy the atleast constraint. Assuming that
|X+

in | + |X−
in | ≥ b holds, we now show how to build an

assignment that both satisfies the atleast constraint and
minimizes the sum

�n−1
i=0 ai · xi.

The minimum value of the sum
�n−1

i=0 ai · xi is achieved
by setting those xi with a positive or zero (resp. negative)
coefficient ai to their minimum (resp. maximum) value.
This leads to the quantity s =

�
i∈X+

in ∪X+
out

ai · xi +�
i∈X−

in ∪X−
out

ai · xi. However we may have to correct (in-
crease) this quantity in order to handle the fact that at least b
variables from x0, x1, . . . , xn−1 must be assigned to a value
in V . For each variable xi that can be eventually assigned
to a value in V (i.e., xi|i ∈ X+

in ∪ X−
in) we have introduced

the quantity δi for representing the minimum increase of s
that can be achieved by assigning xi to a value in V . The

150

smallest possible increase assuming that at least b variables
must be assigned to a value in V is achieved by adding up
the b smallest δi, which leads to the feasible lower bound
� =

�
i∈X+

in ∪X+
out

ai · xi +
�

i∈X−
in ∪X−

out
ai · xi + ∆b. If �

exceeds c, the conjunction of the two constraints cannot be
satisfied, otherwise we have an assignment where the lower
bound is achieved.

4 Computing the Regret of a Variable-Value

Pair

Given a variable-value pair (xi, u) (0 ≤ i < n, u ∈ dom(xi)),
the regret of this pair, denoted by r(xi, u), is defined as the
increase of the sharp lower bound � introduced in Condi-
tion 2 of Lemma 1 when xi is assigned to u. It is equal to
+∞ when the assignment xi = u is not feasible subject to
the atleast constraint.
Lemma 2. The regret r(xi, u) assuming that variable xi

is assigned to u (0 ≤ i < n) is defined by a set of linear
functions given by the following table:

case condition regret r(xi, u)

①+ u ∈ Vi ∧ i ∈ X+
in ∧ pi < b ai · (u − vi)

①− u ∈ Vi ∧ i ∈ X−
in ∧ pi < b ai · (u − vi)

②
u /∈ Vi ∧ pi < b ∧
|X+

in | + |X−
in | = b

+∞

③+ i ∈ X+
out ai · (u − xi)

③− i ∈ X−
out ai · (u − xi)

④+ u /∈ Vi ∧ i ∈ X+
in ∧ pi ≥ b ai · (u − xi)

④− u /∈ Vi ∧ i ∈ X−
in ∧ pi ≥ b ai · (u − xi)

⑤+ u ∈ Vi ∧ i ∈ X+
in ∧ pi ≥ b ai · (u − xi) − σb−1*

⑤− u ∈ Vi ∧ i ∈ X−
in ∧ pi ≥ b ai · (u − xi) − σb−1

⑥+ u /∈ Vi ∧ i ∈ X+
in ∧ pi < b ∧

|X+
in | + |X−

in | > b
ai · (u − vi) + σb

⑥− u /∈ Vi ∧ i ∈ X−
in ∧ pi < b ∧

|X+
in | + |X−

in | > b
ai · (u − vi) + σb

* For convenience we assume that σ−1 is defined and equal to 0.

Proof. We first prove that the conditions attached to cases
①+ to ⑥− are mutually exclusive and cover all cases. Fi-
nally we prove that the corresponding regrets are sharp.
[MUTUALLY EXCLUSIVE]: To prove that cases ①+ to ⑥−

are mutually exclusive we show that the cases ①+, ②, ③+,
④+, ⑤+ and ⑥+ are mutually exclusive, the cases corre-
sponding to negative ai being similar. Finally its is clear
that a case where ai is positive or zero is not compatible
with a case where ai is negative. In the context of positive or
zero ai, the next table provides for each pair of cases (j, k)
the two mutually exclusive subconditions condj

condk
respectively

associated with cases j and k, where each subcondition is a
subpart of the condition of its corresponding case.

② ③+ ④+ ⑤+ ⑥+

①+ u ∈ Vi

u /∈ Vi

i ∈ X+
in

i ∈ X+
out

u ∈ Vi

u /∈ Vi

pi < b

pi ≥ b

u ∈ Vi

u /∈ Vi

② -
pi < b

i ∈ X+
out

pi < b

pi ≥ b

u /∈ Vi

u ∈ Vi

|X+
in | + |X−

in | = b

|X+
in | + |X−

in | > b

③+ - -
i ∈ X+

out

i ∈ X+
in

i ∈ X+
out

i ∈ X+
in

i ∈ X+
out

i ∈ X+
in

④+ - - -
u /∈ Vi

u ∈ Vi

pi ≥ b

pi < b

⑤+ - - - -
u ∈ Vi

u /∈ Vi

[COVER ALL CASES]: Given the elementary subconditions
u ∈ Vi, u /∈ Vi, pi < b, pi ≥ b, |X+

in | + |X−
in | = b,

|X+
in | + |X−

in | > b, i ∈ X+
in ∪ X−

in and i ∈ X+
out ∪ X−

out

found in the conditions describing cases ①+ to ⑥−,2 the
next tree shows how all possible combinations of elemen-
tary conditions are covered, i.e. for every node of the tree,
the disjunction of the elementary conditions attached to all
its children corresponds to true.

u ∈ Vi

pi ≥ b

i ∈ X+
out ∪ X−

out : ③+,③−

i ∈ X+
in ∪ X−

in : ⑤+,⑤−

pi < b: ①+,①−

u /∈ Vi

pi < b

|X+
in |+ |X−

in | = b: ②

|X+
in |+ |X−

in | > b: ⑥+,⑥−

pi ≥ b

i ∈ X+
out ∪ X−

out : ③+,③−

i ∈ X+
in ∪ X−

in : ④+,④−

[SHARPNESS]: W.l.o.g. we omit cases ①−, ③−, ④−, ⑤−

and ⑥−, which are respectively similar to cases ①+, ③+,
④+, ⑤+ and ⑥+. We successively consider each remaining
case.

• In case ①+, xi corresponds to a variable with a positive
or zero coefficient ai that was assigned to vi in the assign-
ment attached to �. Since this variable remains assigned
to a value u in Vi this does not affect the number of vari-
ables assigned to values from Vi in the lower bound �.
Consequently the regret is equal to δi = ai · (u− vi).

• In case ②, xi corresponds to a variable that must be as-
signed to a value in Vi in order to satisfy the atleast
constraint. Since we cannot reassign it to any value u out-
side Vi the regret is equal to +∞.

• In case ③+, xi corresponds to a variable that cannot be
assigned to a value in Vi and that has a positive or zero
coefficient ai. Such a variable was assigned to its mini-
mum value in the assignment attached to �. If we reassign
it to a new value u this does not affect the number of vari-
ables assigned to values from Vi in the lower bound �.
Consequently the regret is equal to δi = ai · (u− xi).

• In case ④+, xi corresponds to a variable that was not as-
signed to a value belonging to Vi in the assignment at-
tached to � (even if it could have been) and that has a pos-
itive or zero coefficient ai. Such a variable was assigned
to its minimum value in the lower bound �. If we reassign
it to a new value u that also does not belong to Vi, this
does not affect the number of variables assigned to values

2W.l.o.g. we group i ∈ X+
in and i ∈ X−

in together, and do the
same for i ∈ X+

out and i ∈ X−
out .

151

from Vi in the lower bound �. Consequently the regret is
equal to δi = ai · (u− xi).

• In case ⑤+, xi corresponds to a variable that was not as-
signed to a value belonging to Vi in the assignment at-
tached to � (even if it could have been) and that has a
positive or zero coefficient ai. Such a variable was as-
signed to its minimum value in the lower bound �. Now
if we reassign it to a value from Vi, this increases by one
the number of variables assigned to values from Vi in the
lower bound �. Consequently the regret is equal to the in-
crease δi = ai · (u− xi) minus σb−1. The last term σb−1

comes from the fact that we can reset the variable corre-
sponding to the b smallest δ to its minimum or maximum
value depending on the sign of its coefficient.

• In case ⑥+, xi corresponds to a variable with a positive
or zero coefficient ai that was assigned to vi in the as-
signment attached to �. Now if we reassign it to a value u

that does not belong to Vi, this decreases by one the num-
ber of variables assigned to values from Vi in the lower
bound �. Consequently the regret is equal to the increase
ai · (u− vi) due to the fact that we switch xi from vi to u

plus the increase σb due to the fact that we have to assign
one extra variable to a value from Vi. The term σb comes
from the fact that we select the variable corresponding to
the b + 1 smallest δ in order to minimize the new lower
bound.

We note rk(xi, u) k ∈ {①+,①−,②,③+,③−,④+,④−,⑤+,⑤−,
⑥+,⑥−} the regret associated with case k.

5 Filtering Algorithm

This section provides a filtering algorithm (see Algorithms 1
and 2) that is directly based on the lower bound introduced
in Lemma 1 and on the regret introduced in Lemma 2. To
filter dom(xi) (0 ≤ i < n), we first need to characterize how
the cases ①+ to ⑥− introduced in Lemma 2 are structured
with respect to an interval of values [xi, xi].

Lemma 3.

Given an interval of values [xi, xi], cases ①+ to ⑥− can
only follow one of the following four mutually exclusive
patterns shown by the following table plus four symmetrical
exclusive patterns where + is replaced by −:

pattern condition sequence of cases

a
+ i ∈ X+

out

xi xi

③+

� �� �

b
+ i ∈ X+

in ∧
pi ≥ b

xi xi

④+⑤+④+ · · · ⑤+④+

� �� �

c
+

i ∈ X+
in ∧

pi < b ∧
|X+

in | + |X−
in | > b xi xi

⑥+①+⑥+ · · · ①+⑥+

� �� �

d
+

i ∈ X+
in ∧

pi < b ∧
|X+

in | + |X−
in | = b xi xi

② ①+② · · · ①+②
� �� �

Proof. The patterns are obtained by first removing the sub-
conditions u ∈ Vi, u /∈ Vi from each condition attached
to cases ①+ to ⑥− and by grouping together the remaining
compatible conditions. The patterns are mutually exclusive
since their conditions are mutually incompatible.

Patterns b
+, c

+, d
+ consist of alternating cases switching

from condition u /∈ Vi to condition u ∈ Vi back and forth.
The filtering algorithm consists of the following steps:
• Fail if |X+

in |+ |X−
in | < b.

• Fail if � =
�

i∈X+
in ∪X+

out
ai · xi +

�
i∈X−

in ∪X−
out

ai · xi +
∆b > c.

• Prune each variable xi (0 ≤ i < n) such that xi �= xi by
considering the patterns a

+, b
+, c

+ and d
+ introduced by

the previous lemma, the other patterns a
−, b

−, c
− and d

−

being similar even if ai �= 0 in these later patterns:
a
+

. In the context of pattern a+ we are in case ③+. There-
fore we remove all values u such that �+ r3+(xi, u) >
c.

b
+

. In the context of pattern b+ we are in cases ④+ and
⑤+. Therefore we remove:

– all values u �∈V such that �+ r4+(xi, u) > c,
– all values u ∈ V such that �+ r5+(xi, u) > c.

c
+

. In the context of pattern c+ we are in cases ⑥+ and
①+. Therefore we remove:

– all values u �∈V such that �+ r6+(xi, u) > c,
– all values u ∈ V such that �+ r1+(xi, u) > c.

d
+

. In the context of pattern d+ we are in cases ② and ①+.
Since, in case ② the regret r2(xi, u) is equal to +∞,
we remove:

– all values u /∈ V ,
– all values u ∈ V such that �+ r1+(xi, u) > c.

This leads to Algorithm 2 with the following result.
Theorem 1. Given the two constraints
atleast(b, �x0, x1, . . . , xn−1�,V) and

�n−1
i=0 ai · xi ≤ c,

Algorithm 2 called with V and dom(xi) (0 ≤ i < n)
achieves GAC with a worst case time complexity of
O (n log n+ n · (r + s+ t)) where O(r), O(s), O(t)
and O(1) are the respective worst case time complexity
for (1) checking whether a domain variable intersects
V , (2) computing the minimum or maximum value of the
intersection between a domain variable and V , (3) removing
all values of the complement of V wrt. an interval from a
domain variable, (4) adjusting the minimum or maximum
value of a domain variable.

Proof. (sketch) GAC stems from the fact that lines 2 to 19
implement the necessary and sufficient condition introduced
by Lemma 1 and from the fact that lines 20 to 46 use
the sharp regret introduced by Lemma 2 to filter the do-
mains of the variables. The worst case time complexity
O (n log n+ n · (r + s+ t)) is made up from: (a) O(nr)

152

the n tests at line 5 of Algorithm 2 for checking whether a
domain intersects or not V , (b) O(ns) the 2 ·n computations
at lines 6 and 7 for extracting the minimum and maximum
value of the intersection between the domain of a variable
and V , (c) O(n logn) the sort at line 21, (d) O(nt) the at
most n calls to remove set in the filtering part (lines 25
to 46).

6 Related Work

We can use the cost gcc constraint (Régin 2002) to model a
conjunction of linear inequality and atleast constraint and
get GAC. For this purpose, we create a cost matrix indexed
by the variables and the values to be assigned. We then set
each row associated with a variable to the product of the
coefficient of the variable in the linear equality with the cor-
responding value. Corollary 1 on page 13 of (Régin 2002)
gives a complexity that depends on the number of arcs in
the flow graph (i.e. the sum of the domain sizes) and that as-
sumes all domain operations to be constant time. The space
complexity of using cost gcc is O(nd), for n variables and
d values, since we need a cost matrix. Our space complexity
is O(n). Section 8 provides an empirical comparison be-
tween our propagator and cost gcc.

7 Application to Learning Simple

Polynomials

The ModelSeeker (Beldiceanu and Simonis 2012) generates
elements of a model from sample solutions. Each element
consists of a partition description, which describes system-
atic subsets of the decision variables, and a global constraint,
which is applied to each subset of the variables. For every
problem size, different partition generator arguments and de-
rived arguments of the global constraint may be used. Our
motivation for the present work is to find simple polynomial
functions of maximal degree p, which describe all parame-
ters in terms of some basic parameters, e.g. problem size.
While many problems (like n-queens) can be described by a
single problem parameter, others will require multiple, inde-
pendent parameters (BIBDs for example use up to five pa-
rameters). Clearly, a solution with few parameters is prefer-
able to a solution with many parameters. Identifying the pa-
rameters and finding the right simple polynomials relating
the parameters is a key subproblem, especially when you
have few examples.

We cannot use standard curve fitting techniques, as we
search for “nice” polynomials, with few nonzero, small in-
teger coefficients. Alternatives like the “Method of Differ-
ences” (Langley et al. 1987) can find integer solutions, but
require n+2 samples to determine (arbitrary) coefficients of
a polynomial in one variable of order n. It seems difficult to
extend the method to search only for polynomials with few
non-zero coefficients.

Given parameters I , J and a set of samples K, we assume
known parameter values xik required to explain observed
parameters values yjk via a polynomial of M product terms

∀k∈K∀j∈J : qjyjk =
�

m∈M

cmj

�

i∈I

x
mmi
ik (1)

with unknown, integer values qj and cmj , and 0 ≤�
i∈I mmi ≤ p for all m ∈ M . Note that the product

term evaluates to an integer, i.e. the right-hand side is a lin-
ear function in variables cmj . Also note that, if we wish,
we can restrict a priori the form of the polynomials consid-
ered by only collecting some product terms, i.e. considering
only simple products of parameters, but not higher expo-
nents. The quotient variable qj gives us more flexibility for
the function we search for, we assume that gcd(qj , cmj) = 1
for at least one m.
Example 2. Consider the magic hexagon problem
(CSPlib (Gent and Walsh 1999) problem 23; see Fig. 1)
where, given solutions for the magic hexagon of order k ∈
K = {3, 4, 5, 6, 7}, we want to relate (1) the order x1k

of the hexagon, (2) the smallest value x2k used to fill the
hexagon and (3) the total sum y1k over the full hexagon.
From the parameters x1 = [3, 4, 5, 6, 7], x2 = [1, 3, 6, 21, 2]
and y1 = [190, 777, 2196, 6006, 8255] we obtain the simple
polynomial 2y1k = 9x4

1k + 6x2
1kx2k − 18x3

1k − 6x1kx2k +
12x2

1k + 2x2k − 3x1k, which describes the expected result
for all k ∈ K. The data for this problem are taken from
Wikipedia (http://en.wikipedia.org/wiki/Magic hexagon).

18

11

9

17

1

6

14

3

7

5

8

15

19

2

4

13

16

12

10

Figure 1: A magic hexagon of order 3, filled by integers 1
through 19. The sum of the integers in each row of cells, in
all three directions, is 38. The sum of all integers is 190.

We now provide the simple polynomials learned for a
number of classical CSP problems from the parameters
mostly taken from the companion report to (Beldiceanu
and Simonis 2012) (http://4c.ucc.ie/∼hsimonis/modelling/report.
pdf). By simple we mean minimizing the following list of
criteria in lexicographic order: (1) the number of parameters
(one or two), (2) the maximum degree of the polynomials,
(3) the number of nonzero coefficients, (4) the absolute value
of the largest coefficient, (5) the sum of the absolute value of
the coefficients.3 We provide the interpretation of the param-
eters that are directly related to the problem and not of the

3In the case when only one or two sizes are available the cri-
teria, are reordered by (1), (3), (2), (4) and (5) in order to prevent
the discovery of linear expression with big coefficients rather than
nonlinear expressions with very small coefficients. This sometimes
allows the expected polynomial to be found even if we have a sin-
gle size; see example magic cube

153

parameters that are related to generated constraints, which is
outside the scope of this paper.
amazon (like n-queen but the queen may also move as a knight):

input x0 = [10, 12], x1 = [9, 11], x2 = [5, 6], x3 = [4, 5].
output x0 = 2x2, x1 = 2x2 − 1, x3 = x2 − 1.
interpretation x0 is the sample size, x1 is a constant used in

a smooth (Beldiceanu, Carlsson, and Rampon 2012) con-
straint between consecutive columns, x2 is a constant used
in a smooth constraint between columns two apart.

bibd (balanced incomplete block designs):
input x0 = [49, 60, 112], x1 = [7, 10, 14], x2 = [7, 6, 8].
output x0 = x2x1.
interpretation x0 is the size of the sample, x1 is the number of

columns, x2 is the number of rows.
bundesliga (http://www.weltfussball.de/alle spiele/bundesliga-2010-2011/):

input x0 = [612], x1 = [34], x2 = [18], x3 = [17].
output x0 = 18x1, x2 = 18, 2x3 = x1.
interpretation x0 is the size of the sample, x1 is the number of

days in a complete season, x2 is the number of teams, and x3

the length of a half season.
coinsgrid (http://www.svor.ch/competitions/competition2007/

AsroContestSolution.pdf):
input x0 = [100, 121, 441, 625], x1 = [10, 11, 21, 25], x2 =

[6, 6, 11, 13], x3 = [4, 5, 10, 12].
output x0 = x2

1, x2 = x1 − x3.
interpretation x0 is the size of the sample, x1 is the size of the

squared board, x2 is the number of zeros in one column, x3

is the number of ones in one column.
efpa (http://www-circa.mcs.st-and.ac.uk/Preprints/freqpermarrays.pdf) :

input x0 = [56, 72, 90], x1 = [8, 9, 10], x2 = [7, 8, 9], x3 =
[4, 6, 8], x4 = [1, 3, 4].

output x0 = −2x4 + 10x3 + 18, 2x1 = x3 + 12, 2x2 =
x3 + 10.

interpretation x0 is the size of the sample, x1 is the number of
columns of the rectangular board, x2 is the number of rows of
the rectangular board, x3 tells for any pair of columns from
how many positions they should differ at least, x4 is the max-
imum value used among a set of consecutive values.

franklin (http://mathworld.wolfram.com/FranklinMagicSquare.html and (van
Delft and Botermans 1990, page 95)):
input x0 = [130, 1028], x1 = [64, 256], x2 = [16, 32], x3 =

[8, 16], x4 = [4, 8], x5 = [2, 4].
output 4x0 = x3

3 + x3, 2x1 = x3, x2 = 2x3, 2x4 = x3,
4x5 = x3.

interpretation x0 is the sum along a half-row/column of the
squared board, x1 is the number of cells of the squared board,
x2 is the number of cells in one quarter of the squared board,
x3 is the size of the squared board.

kirkman :
input x0 = [105, 147, 351], x1 = [15, 21, 27], x2 = [7, 7, 13].
output x0 = x2x1.
interpretation x0 is the size of a sample, x1 is the number of

schoolgirls, x2 is the number of days.
magic cube :

input x0 = [42], x1 = [27], x2 = [3].
output 2x0 = x4

2 + x2, x1 = x3
2.

interpretation x0 is the sum along a direction of the cube, x1

is the number of cells of the cube, x2 is the size of the cube.
magic hexagon :

input x0 = [190, 777, 2196, 6006, 8255], x1 = [3, 4, 5, 6, 7],
x2 = [1, 3, 6, 21, 2].

output 2x0 = 9x4
1+6x2

1x2−18x3
1−6x1x2+12x2

1+2x2−3x1.
interpretation x0 is the overall sum over the full hexagon, x1

is the size of the hexagon, x2 is the smallest value among the
consecutive values used in the hexagon.

magic square :
input x0 = [34, 870, 7825], x1 = [16, 144, 625], x2 =

[4, 12, 25].
output 2x0 = x3

2 + x2, x1 = x2
2.

interpretation x0 is the sum along a column, row or diagonal
of the square, x1 is the size of the sample, x2 is the size of
the square.

queen :
input x0 = [7, 8, 9], x1 = [6, 7, 8].
output x0 = x1 + 1.
interpretation x0 is the size of the squared board and x1 is a

parameter of the smooth constraint on adjacent columns.
samuraı̈ (Dürr 2011):

input x0 = [4, 9], x1 = [2, 3].
output x0 = x2

1.
interpretation x0 is the size of the sample and x1 is the size of

the squared board.
sudoku :

input x0 = [81, 256, 625], x1 = [9, 16, 25], x2 = [3, 4, 5].
output x0 = x4

2, x1 = x2
2.

interpretation x0 is the total number of cells, x1 is the size of
the big square, x2 is the size of the small square blocks.

sudoku(1) :
input x0 = [144, 400, 900], x1 = [12, 20, 30], x2 = [4, 5, 6],

x3 = [3, 4, 5].
output x0 = x4

3 + 2x3
3 + x2

3, x1 = x2
3 + x3, x2 = x3 + 1.

interpretation x0 is the total number of cells, x1 is the size
of the big square, x2 and x3 are the width and height of the
small rectangular blocks. Width and height are linked.

sudoku(2) :
input x0 = [144, 400, 1296, 3969], x1 = [12, 20, 36, 63],

x2 = [4, 5, 6, 9], x3 = [3, 4, 6, 7].
output x0 = x2

2x
2
3, x1 = x2x3.

interpretation x0 is the total number of cells, x1 is the size
of the big square, x2 and x3 are the width and height of the
small rectangular blocks. Width and height are not linked.

8 Experiments

To test the efficiency of our algorithm, we performed some
randomized tests on a model based on our application prob-
lem. The benchmarks were run on a quad core 2.2 GHz Intel
Core i7 MacBookPro machine with 16Gb of memory run-
ning MacOS 10.7.5 (using only one processor core), with
linear atleast implemented as an addition to SICStus
Prolog (Carlsson and et al. 2012). We compare four imple-
mentations, System DECOMP, a model with separate linear

154

and atleast constraints, System GLOBAL, using several
linear atleast constraints, System CGCC, stating each
equality as a single cost gcc constraint, and System MIP,
the straightforward 0/1 MIP model of the problem solved
with CPLEX 12.4.

We impose two variants of the atleast constraint. The
first enforces that there be at most four nonzero coefficients,
the second states that there is a single “large” (absolute value
greater than 5) coefficient. All cmj are between -25 and 25,
qj is 1, 2 or 3. These values match the domain range en-
countered in our application. We use six samples (x val-
ues), which for our cases is sufficient to make the solutions
unique. For feasible problems, we randomly generate poly-
nomials with 4 nonzero coefficients, for infeasible problems
we use polynomials with 5 nonzero coefficients, and evalu-
ate them for our samples, generating the observations yjk.

In our tests, we search for polynomials with two parame-
ters, varying the maximal degree between 3 and 9. We per-
form 100 runs for each set, and report the number of vari-
ables, the minimum, average, maximum run time (in ms),
the standard deviation, and the ratio of average times com-
pared to our new version. For the finite domain models, we
use a static variable order by decreasing order of the expo-
nents, and a static (increasing) value order in our search rou-
tine to allow a fair comparison of the systems. The MIP
model uses the default CPLEX branching method. We do
not show results if the longest run needed more than 1000
seconds.

Table 1 shows results for the feasible problems, Table 2
shows results for infeasible problems. The infeasible results
are of particular interest: In our application we solve a prob-
lem repeatedly with different choices of independent param-
eters, increasing domain sizes and increasing maximum de-
gree of the polynomial. We therefore often encounter several
infeasible problems, before a feasible solution is found.

System Deg Vars Min Avg Max StdDev Ratio
DECOMP 3 10 0 717 2590 613.88 7.46
GLOBAL 3 10 0 96 340 69.47 1.00
CGCC 3 10 3360 17770 38210 8364.26 185.10
MIP 3 511 9 164 2210 247.70 1.71

DECOMP 4 15 150 8592 26760 7154.63 28.26
GLOBAL 4 15 10 304 930 208.51 1.00
CGCC 4 15 13790 78003 164860 36820.77 256.59
MIP 4 766 22 1218 5891 1410.07 4.01

DECOMP 5 21 1300 58864 153670 42253.77 62.42
GLOBAL 5 21 30 943 2980 722.07 1.00
CGCC 5 21 39190 193683 554560 98938.79 205.39
MIP 5 1072 20 6712 40804 7095.47 7.12

DECOMP 6 28 5560 267582 658470 153104.90 97.87
GLOBAL 6 28 80 2734 7410 1839.16 1.00
MIP 6 1429 122 19549 92924 19015.32 7.15

GLOBAL 7 36 240 5349 15330 3646.60 1.00
MIP 7 1837 561 40280 173112 36476.62 7.53

GLOBAL 8 45 430 7042 19780 4779.71 1.00
MIP 8 2296 370 75005 344072 73742.91 10.65

GLOBAL 9 55 300 18160 43610 8627.43 1.00
MIP 9 2806 2809 196379 880427 160229.00 10.81

Table 1: Results Feasible Problems

System Deg Vars Min Avg Max StdDev Ratio
DECOMP 3 10 50 2449 9550 2555.77 23.10
GLOBAL 3 10 0 106 420 94.68 1.00
CGCC 3 10 11450 74542 168120 39675.52 703.23
MIP 3 511 8 142 747 136.33 1.34

DECOMP 4 15 820 33045 103880 30271.70 74.93
GLOBAL 4 15 10 441 1940 378.28 1.00
CGCC 4 15 43630 278255 641410 143783.80 630.96
MIP 4 766 26 1517 9349 1968.44 3.44

DECOMP 5 21 3840 199777 570410 162089.1 121.15
GLOBAL 5 21 10 1649 6110 1410.89 1.00
MIP 5 1072 36 7486 27581 6827.52 4.54

GLOBAL 6 28 70 4754 17620 3927.10 1.00
MIP 6 1429 150 20729 77729 18028.52 4.36

GLOBAL 7 36 210 12391 41690 11231.11 1.00
MIP 7 1837 1260 36516 171297 44041.36 2.95

GLOBAL 8 45 210 28214 79860 22136.83 1.00
MIP 8 2296 686 129338 636411 112111.90 4.58

GLOBAL 9 55 810 54200 167370 37568.83 1.00
MIP 9 2806 20369 279949 900200 200853.50 5.16

Table 2: Results Infeasible Problems

The results show a clear improvement of our new con-
straint over the other finite domain versions. Even though
the cost gcc constraint achieves the same consistency,
Model CGCC is not competitive, as the overhead of the flow
model and cost matrix are too high. The decomposition in
Model DECOMP performs better, but still becomes too slow
for larger problem sizes. Our model GLOBAL also clearly
outperforms Model MIP, even though we are using a de-
fault, static variable and value ordering for the finite domain
solver. In practical terms, the new version, Model GLOBAL,
is powerful enough to handle all problem sizes we are inter-
ested in, in a few seconds.

System Deg Domain Min Avg Max StdDev Ratio
DECOMP 3 -10..10 20 194 420 81.36 7.19
GLOBAL 3 -10..10 0 27 60 14.98 1.00
CGCC 3 -10..10 120 711 1800 349.17 26.33

DECOMP 3 -15..15 0 259 870 299.23 7.85
GLOBAL 3 -15..15 0 33 100 19.53 1.00
CGCC 3 -15..15 530 2896 5990 1245.95 87.76

DECOMP 3 -20..20 10 410 1550 363.34 10.25
GLOBAL 3 -20..20 0 40 110 26.28 1.00
CGCC 3 -20..20 2090 8303 18620 3494.18 207.58

DECOMP 3 -25..25 20 683 2200 600.83 17.08
GLOBAL 3 -25..25 0 40 110 29.29 1.00
CGCC 3 -25..25 3360 17770 38210 8364.26 444.25

Table 3: Results for Increasing Domain Sizes

To confirm our hypothesis that the behavior of the
cost gcc model is influenced by the domain size, we per-
formed an additional experiment. Table 3 shows the run
times when, for the model with maximal degree 3 (10 vari-
ables), we vary the domain sizes between -10..10 and -
25..25, but keep all other constraints, i.e. we allow a sin-
gle large coefficient for the polynomial with the increased
range. The decomposition Model DECOMP shows a moder-
ate increase in run times, our new Model GLOBAL with the

155

1: procedure prune(var ,V, limit , a, b, δ)
2: if a > 0 then

3: u ← � limit−b
a � // last feasible out-value

4: u� ← � limit−b+δ
a � // last feasible value

5: remove set(x[i], [u+ 1,+∞] \ V)
6: adjust max(x[i], u�)
7: else if a < 0 then

8: u ← � limit−b
a � // first feasible out-value

9: u� ← � limit−b+δ
a � // first feasible value

10: remove set(x[i], [−∞, u− 1] \ V)
11: adjust min(x[i], u�)
12: else if b > limit then

13: remove set(x[i], \V)
Algorithm 1: First remove from variable var all values u

such that u �∈ V∧ a ·u+ b > limit . Then remove from vari-
able var all values u such that a · u+ b− δ > limit . Called
by main algorithm, Algorithm 2, in a context where it can
never fail since lines 19 and 23 of Algorithm 2 check the
necessary and sufficient condition introduced by Lemma 1
for having at least one solution. adjust min, adjust max
and remove set respectively adjust the minimum value of
a variable, adjust the maximum value of a variable, and re-
move a set of values from a variable.

linear atleast constraints shows nearly no increase at
all, while the times for Model CGCC with a single cost gcc
constraint for each equation increase dramatically. This in-
crease is due to the larger flow model and cost matrix that
must be considered when the domain sizes increase.

9 Conclusion

The notion of regret and its use in the context of cost-
based filtering was originally introduced for dealing with
constraints having a cost variable (Focacci, Lodi, and Mi-
lano 1999) and used more extensively later on, e.g. (Fo-
cacci, Lodi, and Milano 2002; Sellmann, Gellermann, and
Wright 2007; Kovács and Beck 2011). This paper shows
how to use this notion of regret for providing a GAC filter-
ing algorithm for a conjunction of a linear inequality and
an atleast constraint. Experiment shows that this stronger
filtering has a key impact on finding simple polynomials or
for proving that no solution with a given structure exists, and
that it scales much better than using a reformulation or using
the cost gcc constraints, which provide the same filtering.
The model also out-performs a 0/1 MIP model, even without
a dynamic search routine.

Acknowledgments

We thank the anonymous reviewers for their detailed feed-
back, which helped improve the paper.

1: function filter(b,V, c, n, a[0..n−1], x[0..n−1]) :
boolean

2: // 1. computing the lower bound �

3: in ← 0; � ← 0;
4: for i = 0 to n− 1 do

5: if dom(x[i]) ∩ V �= ∅ then

6: v[i] ← min(dom(x[i]) ∩ V)
7: v[i] ← max(dom(x[i]) ∩ V)
8: (X+

in [i],X
−
in [i]) ← (a[i] ≥ 0, a[i] < 0)

9: (X+
out [i],X−

out [i]) ← (false, false)
10: if a[i] ≥ 0 then

11: σ[in] ← a[i] · (v[i]− x[i])
12: else

13: σ[in] ← a[i] · (v[i]− x[i])
14: index [in] ← i; in ← in + 1;
15: else

16: (X+
out [i],X−

out [i]) ← (a[i] ≥ 0, a[i] < 0)
17: (X+

in [i],X
−
in [i]) ← (false, false)

18: � ← �+ a[i] · (if a[i] ≥ 0 then x[i] else x[i])
19: if in < b then return false

20: // 2. filtering x[0..n−1] wrt. the regret
21: sort the pairs (σ[i], index [i]) (0 ≤ i < in) increasing
22: for i = 0 to b− 1 do � ← �+ σ[i]
23: if � > c then return false

24: for i = 0 to in − 1 do p[index [i]] ← i

25: for i = 0 to n− 1 do

26: if x[i] �= x[i] then

27: if X+
out [i] then

28: if a[i] > 0 then

29: adjust max(x[i], � c+a[i]·x[i]−�

a[i] �)
30: else if X+

in [i] ∧ p[i] ≥ b then

31: prune(x[i],V, c, a[i], �− a[i] · x[i], σ[b− 1])

32: else if X+
in [i] ∧ p[i] < b ∧ in > b then

33: prune(x[i],V, c, a[i], �+ σ[b]− a[i] · v[i], σ[b])
34: else if X+

in [i] then

35: remove set(x[i], \V)
36: if a[i] > 0 then

37: adjust max(x[i], � c+a[i]·v[i]−�

a[i] �)
38: else if X−

out [i] then

39: adjust min(x[i], � c+a[i]·x[i]−�
a[i] �)

40: else if X−
in [i] ∧ p[i] ≥ b then

41: prune(x[i],V, c, a[i], �− a[i] · x[i], σ[b− 1])
42: else if X−

in [i] ∧ p[i] < b ∧ in > b then

43: prune(x[i],V, c, a[i], �+ σ[b]− a[i] · v[i], σ[b])
44: else

45: remove set(x[i], \V)
46: adjust min(x[i], � c+a[i]·v[i]−�

a[i] �)
47: return true
Algorithm 2: GAC algorithm for the conjunction
atleast(b, �x0, x1, . . . , xn−1�,V) and

�n−1
i=0 ai · xi ≤ c.

Patterns a+,b+, c+,d+,a−,b−, c−,d− correspond resp.
to line 29, 31, 33, 35..37, 39, 41, 43, 45..46.

156

References

Beldiceanu, N., and Simonis, H. 2012. A model seeker:
Extracting global constraint models from positive examples.
In Principles and Practice of Constraint Programming (CP
2012), volume 7514 of LNCS, 141–157. Springer.
Beldiceanu, N.; Carlsson, M.; Petit, T.; and Régin, J.-C.
2012. An O(n logn) bound consistency algorithm for the
conjunction of an alldifferent and an inequality between a
sum of variables and a constant, and its generalization. In
Raedt, L. D.; Bessière, C.; Dubois, D.; Doherty, P.; Frasconi,
P.; Heintz, F.; and Lucas, P. J. F., eds., 20th European Con-
ference on Artificial Intelligence (ECAI’12), volume 242 of
Frontiers in Artificial Intelligence and Applications, 145–
150. Montpellier, France: IOS Press.
Beldiceanu, N.; Carlsson, M.; and Rampon, J.-X. 2012.
Global constraint catalog, 2nd edition (revision a). Technical
Report T2012:03, Swedish Institute of Computer Science.
Bessière, C.; Narodytska, N.; Quimper, C.-G.; and Walsh,
T. 2011. The alldifferent constraint with precedences. In
Achterberg, T., and Beck, J. C., eds., International Con-
ference on Integration of AI and OR Techniques in Con-
straint Programming for Combinatorial Optimization Prob-
lems (CPAIOR’11), volume 6697 of LNCS, 36–52. Springer.
Bessière, C. 2006. Constraint propagation. In Rossi, F.;
van Beek, P.; and Walsh, T., eds., Handbook of Constraint
Programming. Elsevier. chapter 3.
Carlsson, M., and et al. 2012. SICStus Prolog User’s Man-
ual. SICS, 4.2.1 edition.
Dürr, C. 2011. n samuraı̈s. Published electroni-
cally at http://www.enseignement.polytechnique.fr/informatique/
INF580/exams/examen 11.pdf. Taken from 2011 constraint
exam at Polytechnique, Palaiseau, France.
Focacci, F.; Lodi, A.; and Milano, M. 1999. Cost-based
domain filtering. In Jaffar, J., ed., Principles and Practice of
Constraint Programming (CP’99), volume 1713 of LNCS,
189–203. Springer.
Focacci, F.; Lodi, A.; and Milano, M. 2002. Optimization-
oriented global constraints. Constraints 7(3-4):351–365.
Gent, I. P., and Walsh, T. 1999. CSPlib: A benchmark li-
brary for constraints. In Jaffar, J., ed., Principles and Prac-
tice of Constraint Programming (CP’99), volume 1713 of
LNCS, 480–481. Springer.
Kovács, A., and Beck, J. C. 2011. A global constraint for
total weighted completion time for unary resources. Con-
straints 16(1):100–123.
Langley, P.; Simon, H. A.; Bradshaw, G. L.; and Zytkow,
J. M. 1987. Scientific Discovery. Cambridge, MA.: MIT
Press.
Petit, T.; Régin, J.-C.; and Beldiceanu, N. 2011. A θ(n)
bound-consistency algorithm for the increasing sum con-
straint. In Lee, J. H., ed., Principles and Practice of Con-
straint Programming (CP 2011), volume 6876 of LNCS,
721–728. Springer.
Puget, J.-F. 2004. Improved bound computation in presence
of several clique constraints. In Wallace, M., ed., Princi-

ples and Practice of Constraint Programming (CP 2004),
volume 3258 of LNCS, 527–541. Springer.
Régin, J.-C., and Rueher, M. 2000. A global constraint
combining a sum constraint and difference constraints. In
Dechter, R., ed., Principles and Practice of Constraint Pro-
gramming (CP’2000), volume 1894 of LNCS, 384–395.
Springer.
Régin, J.-C. 2002. Cost-based arc consistency for global
cardinality constraints. Constraints 7(3–4):387–405.
Sellmann, M.; Gellermann, T.; and Wright, R. 2007. Cost-
based filtering for shorter path constraints. Constraints
12(2):207–238.
van Delft, P., and Botermans, J. 1990. Denk Spiele der Welt.
Hugendubel.
Zhang, Y., and Yap, R. H. C. 2000. Arc consistency on n-ary
monotonic and linear constraints. In Dechter, R., ed., Prin-
ciples and Practice of Constraint Programming (CP 2000),
volume 1894 of LNCS, 470–483. Springer.

157

