
Position Paper: Incremental Search
Algorithms Considered Poorly Understood

Carlos Hernández∗
Depto. de Ingenierı́a Informática
Universidad Católica de la Ssma.

Concepción
Caupolican 491, Concepción, Chile

chernan@ucsc.cl

Jorge Baier
Computer Science Department

Pontificia Universidad Católica de Chile
Santiago, Chile

jabaier@ing.puc.cl

Tansel Uras and Sven Koenig
Computer Science Department

University of Southern California
Los Angeles, CA 90089, USA
{turas,skoenig}@usc.edu

Abstract
Incremental search algorithms, such as D* Lite, reuse in-
formation from previous searches to speed up the current
search and can thus solve sequences of similar search prob-
lems faster than Repeated A*, which performs repeated A*
searches. In this position paper, we study goal-directed nav-
igation in initially unknown terrain and point out that it is
currently not well understood when D* Lite runs faster than
Repeated A*. In general, it appears that Repeated A* runs
faster than D* Lite for easy navigation problems (where the
agent reaches the goal with only a small number of searches),
which means that it runs faster than D* Lite quite often in
practice. We draw two conclusions, namely that incremen-
tal search algorithms need to be evaluated in more diverse
testbeds to improve our understanding of their properties and
that they can be improved to be more competitive for easy
navigation problems.

We study goal-directed navigation with the freespace as-
sumption in initially unknown terrain, as needed in robotics
and video games. The terrain is discretized into a grid of
known dimensions. The agent does not know initially which
cells are blocked but always observes the blockage status
of the neighboring cells of its current cell and adds them
to its map. It can then move to any unblocked neighbor-
ing cell. In this paper, the agent moves to a goal cell with
given coordinates using the following navigation strategy: It
finds a shortest (unblocked) path from its current cell to the
goal cell. If such a path does not exist, it stops unsuccess-
fully. Otherwise, it follows the path until it either reaches the
goal cell, in which case it stops successfully, or observes the
path to be blocked, in which case it repeats the process. The
agent thus needs to solve a sequence of similar search prob-
lems fast. Incremental search algorithms, such as D* Lite
(Koenig and Likhachev 2005), reuse information from pre-
vious searches to speed up the current search. We claim that
it is currently not well understood when D* Lite runs faster

∗Our research was supported by NSF, ARO and ONR grants
to Sven Koenig (while he served at NSF) and a Fondecyt grant to
Jorge Baier.
Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

than Repeated Forward A*.1 For example, it appears that Re-
peated Forward A* runs faster than D* Lite in many cases,
typically for easy navigation problems where the agent ob-
serves its path to be blocked only a small number of times
and thus performs only a small number of searches before
it reaches the goal cell (or discovers that this is impossi-
ble). Examples are gridworlds where the start and goal cells
are close to each other or where the h-values are not mis-
leading (including where only a small number of cells are
blocked). The reason appears to be the following: D* Lite
has the advantage that it typically expands fewer cells than
Repeated Backward A* after the first search since it reuses
information from previous searches. However, D* Lite has
the disadvantage that Repeated Backward A* typically ex-
pands more cells during the first searches than Repeated For-
ward A* during the first searches. D* Lite also expands cells
more slowly than Repeated (Forward or Backward) A*. This
means that the first search of D* Lite typically runs more
slowly than the first search of Repeated Forward A*, an ef-
fect that becomes the more pronounced the further apart the
start and goal cells are. If the number of subsequent searches
needed for the agent to reach the goal cell is small then typ-
ically D* Lite runs more slowly than Repeated Forward A*.

1Repeated Forward A* performs repeated A* searches from the
current cell of the agent to the goal cell and typically expands fewer
cells than Repeated Backward A* during the first searches and thus
runs faster, see (Koenig and Likhachev 2005) for an explanation.
We use a version of Repeated Forward A* that finds a shortest path
whenever the agent observes a blocked cell on its path (as most
evaluations do), different from the previous evaluation in (Koenig
and Likhachev 2005) where it finds a shortest path whenever the
agent observes any blocked cell. D* Lite is a version of Repeated
Backward A* that reuses information from previous searches. We
use a version of D* Lite that breaks ties among cells with the same
f-value in favor of smaller g-values since it typically runs faster
than a version of D* Lite that breaks ties in the opposite direction
because it a) expands more cells during the first search but fewer
cells during subsequent searches and b) expands cells faster since
its f-values are pairs rather than triples.

159

Proceedings of the Fifth Annual Symposium on Combinatorial Search



Blocked Length Searches Algorithm Expansions Runtime (ms) Faster

8% 725.8 58.7
Rep. Forw. A* 25,235 6.76 95.4%
D* Lite 113,368 24.93 4.6%

16% 812.3 128.2
Rep. Forw. A* 52,527 13.47 86.9%
D* Lite 113,387 26.37 13.1%

24% 996.1 225.8
Rep. Forw. A* 89,792 22.35 77.4%
D* Lite 114,957 28.81 22.6%

32% 1562.3 429.2
Rep. Forw. A* 170,626 41.52 53.4%
D* Lite 123,482 36.07 46.6%

40% 13880.3 3671.0
Rep. Forw. A* 21,885,533 4,195.11 3.4%
D* Lite 299,762 172.95 96.6%

Total 3595.4 902.6
Rep. Forw. A* 4,444,743 855.85 63.3%
D* Lite 152,991 57.82 36.7%

Table 1: Results for Random Four-Neighbor Grids

Blocked Length Searches Algorithm Expansions Runtime (ms) Faster

10% 569.8 48.0
Rep. Forw. A* 14,725 4.23 91.6%

D* Lite 45,753 13.41 8.4%

20% 596.2 98.2
Rep. Forw. A* 29,494 8.28 84.5%

D* Lite 47,334 15.01 15.5%

30% 644.7 155.8
Rep. Forw. A* 46,483 13.05 76.5%

D* Lite 49,409 16.89 23.5%

40% 740.5 233.1
Rep. Forw. A* 69,382 19.53 67.5%

D* Lite 51,531 19.93 32.5%

50% 1142.3 421.4
Rep. Forw. A* 126,509 35.75 54.8%

D* Lite 61,209 30.10 45.2%

Total 738.7 191.3
Rep. Forw. A* 57,319 16.17 75.0%

D* Lite 51,047 19.07 25.0%

Table 2: Results for Random Eight-Neighbor Grids

Case Study: Random Grids
To support our claims, we generate four-neighbor random
grids of size 1024× 1024 with 8, 16, 24, 32 and 40 percent
blocked cells. For each percentage of blocked cells, we gen-
erate 1000 grids with randomly blocked cells and randomly
chosen start and goal cells from all unblocked cells, differ-
ent from many previous evaluations that used fixed start and
goal cells (for example, in diagonally opposite corners of
the grids). The h-values are the Manhattan distances. We
ensure that Repeated Forward A* and D* Lite follow the
same trajectory, different from many previous evaluations.
We report the average length of the trajectory, the average
number of searches performed, the average number of cells
expanded and the runtime until the agent reaches the goal
cell and the percentage of navigation problems for which
the search algorithm runs faster than its competitor. Table
1 shows that the average runtime of Repeated Forward A*
over all navigation problems is larger than the one of D*
Lite. Yet, perhaps surprisingly, Repeated Forward A* runs
faster than D* Lite on the majority of navigation problems
with 9, 16, 24 and 32 percent blocked cells and on the major-
ity of all navigation problems. Most research evaluates D*
Lite only on four-neighbor grids, with only few exceptions
such as (Koenig and Likhachev 2005). However, we now
show that it makes sense to evaluate it on eight-neighbor
grids as well. We generate eight-neighbor random grids of
size 1024×1024 with 10, 20, 30, 40 and 50 percent blocked

cells and proceed otherwise as before. Table 2 shows, per-
haps surprisingly, that the average runtime of Repeated For-
ward A* over all navigation problems is now smaller than
the one of D* Lite (which is likely due to the fact that naviga-
tion problems on eight-neighbor grids are easier than those
on four-neighbor grids with the same percentage of blocked
cells), which supports our claim that one needs use more di-
verse testbeds to evaluate incremental search algorithms.

Case Study: Game Maps,
Office Maps and Mazes

Navigation problems on random grids get harder as the per-
centage of blocked cells increases. It is not immediately ob-
vious how to characterize the hardness of navigation prob-
lems on other kinds of grids. We use the general solution to
classify navigation problems as easy iff the runtime of Re-
peated Forward A* is small. Consequently, we group nav-
igation problems into buckets according to the runtime of
Repeated Forward A* so that each bucket contains the same
number of navigation problems. We compare eight-neighbor
game maps, office maps and mazes, obtained from Nathan
Sturtevant’s repository movingai.com. We omit all details
due to space constraints but the results are similar to those
on random grids. For game and office maps, Repeated For-
ward A* runs faster than D* Lite on the majority of easy
navigation problems (that is, navigation problems in buck-
ets where the runtime of Repeated Forward A* is small)
and on the majority of all navigation problems. Only for
mazes, Repeated Forward A* runs more slowly than D* Lite
on the majority of all navigation problems. Overall, naviga-
tion problems on game maps seem to be easier than on of-
fice maps, and navigation problems on office maps seem to
be easier than on mazes, which supports our claim that Re-
peated Forward A* is faster than D* Lite for many naviga-
tion problems, including those often encountered in practice.

Conclusions
Evaluations of incremental search algorithms are often per-
formed on only one or two kinds of grids. However, we
conclude that one needs to evaluate them in more diverse
testbeds and with more diverse implementations (for ex-
ample, of the priority queue) to improve our understand-
ing of their properties. Evaluations of incremental search
algorithms also often average over many randomly gener-
ated grids of a given kind. We conclude that this can give
the wrong impression in cases where D* Lite appears to
run faster than Repeated Forward A* because Repeated For-
ward A* runs faster than D* Lite on many easy navigation
problems but much more slowly on a few hard navigation
problems. We currently use these insights to develop new
incremental search algorithms (for example, by classifying
navigation problems and then either running Repeated For-
ward A* or D* Lite, as appropriate) and to improve exist-
ing incremental search algorithms (for example, by speed-
ing up the first search of D* Lite). D* Lite performs its first
search essentially on an empty map, which means that the
first search can be simulated by initializing the values of
all (or a subset of) cells appropriately, namely by setting

160



rhs(s) = g(s) = h(s). In general, it would be helpful to
have computational models that can predict the performance
of incremental heuristic search methods as a function of the
navigation problem, experimental setup and implementation
details. Runtime proxies, such as the number of cells ex-
panded, cannot be used to compare incremental heuristic
search methods against Repeated Forward A* since they do
not expand cells equally fast. Furthermore, the maps of navi-
gation problems typically fit in memory. For such navigation
problems, big O-analyses do not make sense and small im-
plementation details can have a big effect on the runtime.

References
Koenig, S., and Likhachev, M. 2005. Fast replanning
for navigation in unknown terrain. IEEE Transactions on
Robotics and Automation 21(3):354–363.

161




