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Abstract

To compute a motion trajectory that avoids collisions,
reaches a goal region, and satisfies differential con-
straints imposed by robot dynamics, this paper proposes
an approach that conducts a guided search over the con-
tinuous space of motions and over a discrete space ob-
tained by a workspace decomposition. A tree of fea-
sible motions and a frontier of workspace regions are
expanded simultaneously by first determining the next
region along which to expand the search and then us-
ing sampling-based motion planning to add trajectories
to the tree to reach the selected region. When motion
planning is not able to reach the selected region, its cost
is increased so that the approach has the flexibility to
expand the search along new regions. Comparisons to
related work show significant computational speedups.

Introduction

In motion planning, the objective is to compute motions that
enable a robot to move to a goal region while avoiding colli-
sions. In order to follow the planned motions in the physical
world, it is essential to take into account the underlying robot
dynamics during planning. Robot dynamics express physi-
cal constraints on the feasible motions, such as ensuring a
minimum turning radius or keeping the wheels from sliding
sideways. Such constraints are often modeled as a set of dif-
ferential equations of the form § = f(s, u), where u denotes
the control inputs that are applied to the state s.

Even though motion planning with differential constraints
poses significant computational challenges, considerable
progress has been made, especially by sampling-based
methods which approach it as a search problem over the
continuous space of feasible motions (LaValle and Kuffner
2001; Hsu et al. 2002; Plaku, Kavraki, and Vardi 2010;
Sucan and Kavraki 2012). As in discrete search, sampling-
based methods expand the search as a tree, starting from
the initial state. While in discrete search each state has
finitely many successors, due to the continuous nature
of motion planning, there are uncountably many different
ways of expanding the search from a state. To handle this
complexity, sampling-based approaches rely on a function
MOTION(S, u, f, dt), which provides the motion trajectory to
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a successor state obtained by applying the control u to the
state s and integrating the differential equations of motion f
for a short time dt. If not in collision, the motion trajectory
and the successor state are added to the tree. The control is
sampled according to a probability distribution, usually uni-
form, to expand the search along different directions. The
search continues to expand until the tree reaches the goal re-
gion in which case a collision-free and dynamically-feasible
solution trajectory is obtained by concatenating the trajecto-
ries associated with the tree edges connecting the initial state
to the goal region.

Method

This paper builds upon the success of sampling-based mo-
tion planning. To further improve the computational effi-
ciency when dealing with differential constraints, the pro-
posed approach simultaneously conducts a guided sampling-
based search over the continuous space of motions and a dis-
crete search over a workspace decomposition. The proposed
approach is motivated by (Plaku, Kavraki, and Vardi 2010),
which has been shown to improve over RRT (LaValle and
Kuffner 2001) and other approaches by using discrete search
to guide sampling-based motion planning. The workspace
on which the robot operates is triangulated into a number of
regions. The physical adjacency of the workspace regions
is captured by the edges of a graph whose vertices cor-
respond to workspace regions. In distinction from (Plaku,
Kavraki, and Vardi 2010), which would compute sequences
of regions along which to expand the sampling-based mo-
tion planning, the proposed approach maintains a frontier
of unreached regions. The overall search starts by rooting
the tree 7 at the initial continuous state and inserting the
neighbors of the initial region to the frontier. Proceeding
in an A* fashion, the region r with the lowest overall cost
cost(r) = geost(r) + hcost(r) is selected from the frontier
at each iteration of the search, where gcost(r) denotes the
cost to reach r and hcost(r) denotes a heuristic cost to reach
the goal region 140, from r computed as the length of the
shortest path in the graph G = (R, E) from 7 t0 7 o1
Sampling-based motion planning is then invoked for a
short time with to expand the tree from the parent region
parent(r) to r. This expansion adds new collision-free and
dynamically-feasible trajectories starting from vertices asso-
ciated with parent(r). Such trajectories are obtained by sam-



pling control inputs and integrating the differential equations
of motions for several steps, and stopping the integration
earlier if a collision occurs. If the expansion is successful,
r is removed from the frontier and is inserted into a closed
list. The neighbors of 7, which do not appear in the closed
list, are then inserted into the frontier. If the expansion from
parent(r) to 7 is not successful, then r remains in the fron-
tier but its cost to the goal is increased. This provides the
flexibility to consider other regions toward which to expand
T, which is essential to ensure an effective exploration of
the continuous state space, since, due to collision avoidance
and differential constraints, it may be difficult or even im-
possible to reach a particular region r. The search continues
to expand the frontier and the tree 7 until it reaches 7goq1.
The proposed approach is shown to offer significant compu-
tational speedups over related work in solving challenging
motion-planning problems with differential constraints.

Experiments and Results

Experimental validation is provided by comparing the pro-
posed approach to related work. The experiments use a
second-order dynamics model of a tractor-trailer robot in
which several links are attached to each other, as detailed
in (Laumond 1993; Plaku, Kavraki, and Vardi 2010). By in-
creasing the number of trailer links, the robot provides chal-
lenging test cases for high-dimensional motion-planning
problems with differential constraints.

The workspace benchmarks provide challenging environ-
ments where the robot has to wiggle its way through numer-
ous obstacles and narrow passages to reach the goal. The
“random obstacles” benchmark is parametrized by the per-
centage p of the workspace area covered by randomly-added
obstacles. The “random mazes” benchmark is parametrized
by the number of dimensions p. A p X p maze is generated
using a randomized version of the Kruskal’s algorithm. The
computational efficiency of a method for a fixed benchmark
type, parameter value, and number DOFs is measured as the
average time to solve 30 random instances.

Fig. 1 provides a summary of the results when varying the
number of DOFs. As more and more links are added to the
robot, it becomes increasingly difficult to navigate through
narrow passages and reach the goal. As shown in Fig. 1,
the running time of RRT increases rapidly with the num-
ber of DOFs and times out on the high-dimensional prob-
lems. Syclop is considerably faster than RRT, but the run-
ning time still starts to slow down as more and more DOFs
are added to the robot. The proposed approach yields signif-
icant speedups over RRT and Syclop, and efficiently solves
even the high-dimensional problems.

Discussion

This paper focused on motion planning with differential con-
straints, where the objective is to compute a trajectory that
reaches a goal region while not only avoiding collisions,
but also satisfying differential constraints imposed by the
robot dynamics. The motivation comes from navigation, ex-
ploration, search-and-rescue, and other robotics applications
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Figure 1: Results of the experiments for the “random ob-
stacles” and “random mazes” benchmarks when varying the
DOFs of the snake-like robot. The label new indicates the
results of the proposed approach.

where it is essential to plan motions that the robot can follow
in the physical world.

The proposed approach couples discrete search and
sampling-based motion-planning in continuous state spaces,
and by doing so opens up several venues for further re-
search. In particular, the approach could benefit from more
advanced discrete search techniques and improved heuris-
tics to more effectively couple discrete search and sampling-
based motion planning. Pruning or branch-and-bound tech-
niques could be used in connection with sampling-based
motion planning to determine tree vertices and regions from
which to expand the search.
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