
Diverse Depth-First Search in Satisificing Planning

Akihiro Kishimoto
Tokyo Institute of Technology

Rong Zhou
Palo Alto Research Center

Tatsuya Imai
Tokyo Institute of Technology

Introduction
In satisficing planning where suboptimal plans are accepted,
many planners use greedy best-first search (GBFS). De-
spite recent advances in automatic heuristic function gen-
eration, GBFS often suffers from performance degradation
caused by inaccurate state evaluations. Diverse best-first
search (DBFS) (Imai and Kishimoto 2011) avoids plateaus
of search due to such inaccuracies by occasionally selecting
states to expand that appear unpromising. Imai and Kishi-
moto showed that this approach outperforms the Fast Down-
ward planner (Helmert 2006) with the best configurations
based on GBFS for satisficing planning.

Although DBFS has been shown to be effective, many
hard planning problems remain unsolved. One drawback of
DBFS is memory, beause DBFS is a best-first search algo-
rithm and as such it must save all the open and closed states
in memory, which can severely limit the scalability of DBFS.

The Diverse Depth-First Search Algorithm
Our new Diverse Depth-First Search (DDFS) algorithm in-
tegrates the best features of DBFS and Korf’s recursive best-
first search (RBFS) algorithm (Korf 1993). As a depth-first
search algorithm, DDFS uses far less memory than DBFS.
But like DBFS, DDFS probabilistically selects a node to ex-
pand with a non-minimum h-value, in order to avoid search
plateaus caused by inaccurate heuristic estimates.

While DBFS has to maintain the open and closed lists,
DDFS only needs a stack to expand nodes in depth-first
order. DDFS uses as a subroutine a greedy-search version
of Korf’s RBFS algorithm, which we call Greedy Recur-
sive Best-First Search (GRBFS). DDFS controls the “greed-
iness” of GRBFS by limiting the number of leaf node ex-
pansions in GRBFS.

DDFS consists of two alternating search modes, greedy
mode and diverse mode. In greedy search mode, DDFS se-
lects a node to expand with the minimum h-value as in
GRBFS. The amount of search performed per greedy (or di-
verse) search is limited by lmax, the maximum number of
leaf nodes to be expanded in a single run of GRBFS. A simi-
lar limit, called node-expansion quota, is used in DBFS. The
reason only leaf node expansions are counted toward DDFS’

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

expansion quota is to ensure enough work is performed to
cover new search grounds instead of simply re-generating
previously explored regions.

When DDFS switches from its greedy search mode to di-
verse mode, it selects a node that may have a higher h-value
than the minimum. The selection of such a node is controlled
by parameters P and T , which are introduced in (Imai and
Kishimoto 2011). P determines the maximum depth d used
to probabilistically select the stack depth to which DDFS
backtracks from the current depth. Historically, GBFS vari-
ants tend to search deeply by greedily expanding nodes with
small h-values. To encourage diversity, DDFS is designed to
periodically visit regions of the search space that are closer
to the root node and that have not been explored enough
to avoid search plateaus. DDFS backtracks to a node n at
depth d with probability p[d], which is a function based on
the sum of Th(s), where s is n’s successor and h(s) is the
h-value of s or its h-value saved in the transposition table (to
be described later). Th(s) is used to strike a balance between
exploitation and exploration, according to the heuristic func-
tion. Like DBFS, DDFS assigns a smaller exploration prob-
ability to a successor s with a larger h(s). After a backtrack
node is determined, one of its successor s is chosen to start
a new round of GRBFS.

GRBFS uses the h-threshold, a technique adapted from
the original RBFS, to control the amount of exploration as
follows. Let n.th be the h-threshold of node n. GRBFS con-
tinues exploring the search space rooted at n, if the h-values
of the leaf nodes do not exceed n.th and GRBFS has not ex-
panded more than lmax leaf nodes. The successor best with
the minimum h-value (more precisely, the minimum backed-
up h-value) is selected and best.th is updated to be the min-
imum h-value of all the descendants of best. GRBFS stops
exploring the subtree rooted at best as soon as the minimum
h-value node changes from best to either another succes-
sor of n or another successor of n’s ancestor. This technique
was invented by Korf in his original RBFS algorithm, except
that here we use only the (backed-up) h-value instead of the
(backed-up) f-value.

Unlike RBFS, GRBFS is enhanced with a transposition
table (TT) that is a large cache that maps a state to its cor-
responding hash table entry. TTs are designed to improve
search efficiency by storing previous search effort, as ex-
plained in (Reinefeld and Marsland 1994). More specifi-

164

Proceedings of the Fifth Annual Symposium on Combinatorial Search



cally, the TT entry for node n keeps the minimum h-value
of all the leaf nodes in the subtree rooted at n. TT requires
only a fixed size of memory and plays an essential role in
reducing (1) duplicate search effort caused by transpositions
in the search space and (2) useless re-expansions of internal
nodes due to the iterative-deepening nature of GRBFS.

While a number of tie-breaking strategies can be used
when GRBFS finds more than one successor with the min-
imum h-value, our implementation randomly selects one of
the best successors to diversify the greedy search.

Preferred operators (aka helpful actions) (Hoffmann and
Nebel 2001; Helmert 2006) are incorporated into our DDFS
implementation using a dedicated stack. Furthermore, a sep-
arate transposition table is used to explore the search space
induced by the preferred operators. As in (Imai and Kishi-
moto 2011), when DDFS with preferred operators performs
the search, a node is chosen randomly from one of the two
stacks (i.e., one for all the applicable operators and the other
for only the preferred operators). A search starting from the
chosen node is then performed until a leaf node is expanded.
These steps are repeated until DDFS finds a plan or proves
that no solution exists.

Experimental Results
The performance of DDFS and DBFS was evaluated by run-
ning experiments on 1,932 planning instances in 48 domains
from the International Planning Competitions 1-7 on a dual
quad-core 2.33 GHz Xeon E5410 machine with 6 MB L2
cache with 16 GB memory. A single core was used in all
the experiments. Algorithms are implemented on top of Fast
Downward with the FF heuristic, which is the best configu-
ration in (Imai and Kishimoto 2011).

We used the best available parameters P and T for DBFS
and DDFS by running a number of preliminary experiments.
DBFS used T = 0.5 and P = 0.1; whereas DDFS used
T = 0.99 and P = 0.1.

The size of the TT was set to 0.5 GB (approximately 13.1
million TT entries) for each DBFS search (i.e., one generat-
ing only preferred operators and the other with all applicable
operators), resulting in a total TT size of 1 GB memory. Ad-
ditionally, a hash table preserving preferred operators used
at most about 0.6 GB memory.

We ran the experiments with time limits of 30 minutes
and 4 hours per planning instance, respectively, with a mem-
ory limit of 2 GB using the best available seeds obtained by
preliminary experiments. We observed that both DDFS and
DBFS were robust to different seeds, as shown in (Imai and
Kishimoto 2011). The difference in the number of solved
problems between the best and worst seeds was 21 for DDFS
and 22 for DBFS. The number was reduced to 13 for DDFS
and 10 for DBFS, if only the difference between the best and
average seeds was considered.

Table shows the number of solved instances by DBFS
and DDFS. The number inside the parentheses in the DBFS
column indicates the number of instances DBFS was unable
to solve because it used up the 2 GB memory. On the other
hand, the number inside the parentheses in the DDFS col-
umn is the number of such instances DDFS solved while
DBFS ran out of memory.

30 minutes 4 hours
DBFS DDFS DBFS DDFS

Total (1,932) 1,740 (115) 1,755 (24) 1,762 (136) 1,800 (40)

Table 1: The number of instances solved by DBFS and
DDFS.

The table shows that DDFS outperforms DBFS in the
number of solved instances. With a time limit of 30 min-
utes, DBFS exhausted memory when trying to solve 115
instances. Of these 115 instances, DDFS solved 24. This
highlights the linear-space advantage of depth-first search,
which gives DDFS a significant scalability boost over DBFS
in solving hard planning problems. Moreover, when the time
limit was set to four hours, the scalability advantage of
DDFS can be observed more clearly: DDFS solved 47 in-
stances DBFS could not solve. Of the 47 instances, DBFS
ran out of memory in trying to solve 40 instances. Nine
instances were solved only by DBFS and the remaining
1,753 instances were solved by both algorithms. In solving
four instances, DBFS required 1.6–2GB memory, which is
larger than the preset memory size for the tables needed by
DDFS. This indicates that the additional 40 instances that
only DDFS was able to solve are the difficult ones in the test
suite.

We observed that DDFS tends to expand more nodes than
DBFS. This is not surprising because DDFS often needs to
re-expand interior nodes due to its iterative-deepening char-
acteristics. However, their difference in the number of node
evaluations was much smaller than the number of node ex-
pansions. Since state evaluation is by far the most computa-
tionally expensive part in satisficing planning, DDFS’ node
reexpansion overhead did not have a significant impact on
its performance.

Traditionally, greedy search based on depth-first strategy
tends to find plans of lesser quality than their best-first coun-
terparts. Interestingly, this is not the case for DDFS. In fact,
the average plan quality for DDFS is 0.2 % better than that
of DBFS. This underscores the importance of search diversi-
fication in depth-first search, which improves not only prob-
lem coverage but also the quality of the plan.

References
Helmert, M. 2006. The Fast Downward planning system. Journal
of Artificial Intelligence Research 26:191–246.
Hoffmann, J., and Nebel, B. 2001. The FF planning system: Fast
plan generation through heuristic search. Journal of Artificial In-
telligence Research 14:253–302.
Imai, T., and Kishimoto, A. 2011. A novel technique for avoid-
ing plateaus of greedy best-first search in satisficing planning. In
Proceedings of AAAI 2011, 985–991.
Korf, R. E. 1993. Linear-space best-first search. Artificial Intelli-
gence 62(1):41–78.
Reinefeld, A., and Marsland, T. 1994. Enhanced iterative-
deepening search. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence 16(7):701–710.

165




