
Precomputed-Direction Heuristics
for Suboptimal Grid-Based Path-Finding

Álvaro Parra and Álvaro Torralba and Carlos Linares López
Planning and Learning Group, Universidad Carlos III de Madrid

Leganés (Madrid) - Spain
alvaro.parradm@gmail.com, {alvaro.torralba, carlos.linares}@uc3m.es

Abstract

This paper describes BubbleDragon, an entry in the
2012 Grid-based Path-Planning Competition. We aim
to solve path-finding problems in the minimum time
possible by precomputing paths from states in a region
to its frontiers. Experimental results show that subopti-
mal paths for 1024x1024 grids can be retrieved in less
than 1ms on average.

Introduction
Path-finding is a particular class of problems whose goal
consists of finding a path from a source node s to a goal state
g in a graph G(V,E). Grids are undirected planar graphs so
that movement is restricted to cardinal and octile directions
and obstacles in some tiles prevent us to move through them.
The problem is divided in two phases. In the preprocessing
phase a grid map of at most 2048x2048 tiles is given to the
program which may produce up to 50MB of preprocessed
data in at most 30 minutes. Then, the algorithm must find a
path between pairs of states s and g as fast as possible.

Most approaches use A∗-based algorithms with automati-
cally derived heuristics which make use of the preprocessed
data. There are several approaches taking advantage of a
partitioning of the map to derive better heuristic estimates,
such as gateway heuristics (Björnsson and Halldórsson
2006) or portal-based true-distance heuristics (Goldenberg
et al. 2010). Other approaches aim to solve the problem
without any search: by precomputing the optimal solutions
and compressing the data (Botea 2011) but they do not meet
the memory requirements allowed in the competition. Our
approach seeks to use precomputed partial solutions using
only the available memory at the expense of not optimizing
the cost. It partitions the state space into regions to divide
the path-finding problem into smaller subproblems and pre-
compute their solutions, avoiding search whenever possible.

Our Approach
In the preprocessing phase, the map is divided into con-
nected regions. The algorithm is initialized by considering
each transitable state a region. At each step a pair of adjacent
regions are merged, until the number of regions is below the

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

desired threshold. In order to obtain regions as balanced and
convex as possible, the region with the smallest frontier is
merged with the neighbour with which it shares the largest
frontier. Ties are broken in favour of smaller regions.

Regions are used as sub-goals, so that the search is di-
vided into shorter searches. All-pair shortest distances be-
tween all regions are computed, considering unitary costs
for traversing the regions in order to minimize the number
of regions traversed (instead of the total distance).

A gateway between each pair of adjacent regions is de-
fined as the pair of connected states in the frontier between
both regions nearest to the centroid of the frontier. A back-
wards Dijkstra search is performed from every gateway, pre-
computing the next step to optimally reach it from every
state in its region. In order to meet the memory require-
ments, we store up to 16 directions for each point 1. If a
region has more than 16 neighbours, only the path to the
first 16 gateways is precomputed, so that search will be nec-
essary for reaching others. When a region has less than 16
neighbours, the remaining memory is used to store the num-
ber of steps in the optimal path to the gateway following the
precomputed direction. Furthermore, if even more memory
is available (when there are 5 or less neighbours) more than
one direction is stored, allowing more steps to be retrieved
in one single lookup.

To find a path between two states s and g, there are two
possible cases, whether they are in the same region or not.
If s and g are in different regions we find a path from s to
a neighbour region nearer to the region of g and update s.
In this case, no search is necessary since the path until the
frontier gateway is already precomputed.

When s and g are in the same region, if s is a gateway
(which is likely, because we entered the region by using pre-
computed steps) the result is the inversion of the precom-
puted path from g to s. When the two points are in the same
region but none of them is a gateway, a Dijkstra search is
performed (in those cases, given that the regions are usually
small, non-informed search has good performance).

As the probability of s and g being on the same region is

1Spending 3 bits per direction, 6 bytes are necessary for each
tile, resulting in (20482 · 6 =)24MB. The rest of the memory is
spent in storing the region of each point (20482 · 2 =)8MB, the
distance between regions (10232 · 2 ≈)2MB and some extra space
for the open and close list.

211

Proceedings of the Fifth Annual Symposium on Combinatorial Search



1023 regions 511 regions 255 regions
Total Step Subopt Total Step Subopt Total Step Subopt
(µs) (µs) (µs) (µs) (µs) (µs)

BG 70 (14) 7 (6) 1.15 (0.04) 37 (11) 6 (8) 1.18 (0.03) 22 (3) 3 (1) 1.18 (0.03)
DAO 90 (50) 9 (13) 1.16 (0.11) 45 (24) 5 (7) 1.17 (0.10) 27 (15) 4 (7) 1.18 (0.09)
SC 83 (18) 7 (7) 1.23 (0.05) 46 (12) 6 (8) 1.23 (0.04) 336 (2632) 313 (2632) 1.23 (0.05)
WCIII 66 (14) 12 (13) 1.19 (0.03) 33 (7) 5 (6) 1.20 (0.02) 21 (1) 4 (1) 1.21 (0.03)
Maze 1 178 (26) 6 (1) 1.00 (0) 114 (17) 7 (0) 1.00 (0) 88 (14) 9 (1) 1.00 (0)
Maze 2 180 (13) 6 (0) 1.01 (0) 113 (8) 7 (0) 1.00 (0) 84 (6) 9 (0) 1.00 (0)
Maze 4 193 (32) 5 (0) 1.04 (0) 98 (16) 4 (0) 1.02 (0) 63 (10) 5 (0) 1.01 (0)
Maze 8 264 (48) 4 (1) 1.11 (0.01) 118 (21) 4 (0) 1.07 (0.01) 69 (12) 4 (0) 1.04 (0.01)
Maze 16 304 (47) 4 (0) 1.26 (0.02) 135 (19) 3 (0) 1.18 (0.02) 77 (10) 3 (0) 1.12 (0.02)
Maze 32 192 (30) 4 (1) 1.17 (0.01) 107 (17) 3 (0) 1.27 (0.02) 70 (10) 3 (0) 1.30 (0.02)
Random 10 59 (1) 5 (1) 1.20 (0.01) 37 (1) 6 (1) 1.20 (0.01) 26 (1) 6 (1) 1.21 (0.01)
Random 20 63 (1) 5 (0) 1.20 (0.01) 39 (1) 5 (0) 1.21 (0.01) 29 (1) 6 (0) 1.22 (0.01)
Random 30 68 (1) 6 (0) 1.20 (0.01) 42 (2) 6 (1) 1.21 (0.01) 34 (4) 7 (2) 1.23 (0.01)
Random 40 126 (19) 5 (1) 1.09 (0.01) 71 (10) 4 (1) 1.09 (0.02) 48 (7) 5 (1) 1.08 (0.02)
Rooms 8 64 (1) 5 (0) 1.18 (0.01) 38 (1) 5 (1) 1.19 (0.01) 28 (2) 6 (1) 1.20 (0.01)
Rooms 16 72 (1) 4 (0) 1.07 (0) 37 (2) 4 (0) 1.15 (0.01) 25 (1) 5 (0) 1.18 (0.01)
Rooms 32 68 (4) 4 (0) 1.16 (0.01) 39 (1) 4 (0) 1.24 (0.01) 25 (1) 4 (1) 1.06 (0.01)
Rooms 64 68 (4) 4 (1) 1.12 (0.01) 39 (1) 4 (1) 1.21 (0.02) 25 (1) 4 (1) 1.16 (0.01)

Table 1: Total search time, maximum time per step and suboptimality rate for different kind of maps in the benchmark suite.
All the results show the average value and standard deviation.

very low, in most cases the algorithm just retrieves the pre-
computed steps. However, the algorithm is not optimal since
adding the gateways between regions as sub-goals might
worsen the path quality. On the other hand, it is trivial to
see that the algorithm is complete.

Results
Experiments were performed over a set of bench-
marks (Sturtevant 2012) with four types of maps: video
games, mazes, random maps and rooms. All reported re-
sults are average values over 10 512x512 grids, except in
video games where the number of maps ranges from 41 (WC
III) to 156 (DAO) and their size from 21x30 to 1024x1024.
The number of paths computed per map is around 10,000 in
mazes and around 1,000 or 2,000 for the rest.

The machine used has a 2.26 GHz Intel Core i3-350M
processor and 4 GB RAM. The precomputing phase uses
four threads, with a time limit of 30 minutes. The maximum
amount of precomputed data was 11.3MB for all the tested
benchmarks. In the search phase a single thread is used.

Table 1 shows the total time, maximum time per step and
suboptimality rate (Subopt) when executing our algorithm
with different thresholds on the number of regions: 1023,
511 and 255. The suboptimality rate is the path cost divided
by the optimal cost, so that a suboptimality value of 1 stands
for an optimal solution. In all cases, the average total search
time is under 1 ms as most of the path steps are precom-
puted and little or no search is needed. An exception occurs
when using only 255 groups in the StarCraft (SC) set, where
an anomaly is observed in a 1024x1024 map with 254 iso-
lated components. The region partitioning does not generate
enough adjacent regions so the algorithm derives in a non-
informed Dijkstra search. On the other hand, the quality of

the solutions is far from optimal, except in maps in which
the frontiers between regions are really small, such as Maze
1 or Maze 2. When comparing the different configurations
on the number of regions, the ones with lower regions are
faster, mainly due to less intermediate searches. Regarding
the time per single step and the suboptimality rate, there are
no significant differences among the different versions.

The version submitted to the competition used a thresh-
old on the number of regions of 1023. Even though ex-
perimental results suggest lower runtimes for configurations
with less regions, as maps in the competition can be larger
than in our benchmarks, we expect the 1023-regions version
to be more consistent for arbitrary maps.

Acknowledgements
This work has been supported by the Spanish MICINN
projects TIN2011-27652-C03-02, TIN2008-06701-C03-30.

References
Björnsson, Y., and Halldórsson, K. 2006. Improved heuris-
tics for optimal path-finding on game maps. In Laird, J. E.,
and Schaeffer, J., eds., AIIDE, 9–14. The AAAI Press.
Botea, A. 2011. Ultra-fast Optimal Pathfinding without
Runtime Search. In AIIDE-11, 122–127.
Goldenberg, M.; Felner, A.; Sturtevant, N. R.; and Schaef-
fer, J. 2010. Portal-based true-distance heuristics for path
finding. In SOCS.
Sturtevant, N. 2012. Benchmarks for grid-based pathfind-
ing. Transactions on Computational Intelligence and AI in
Games.

212




