
Execution Ordering in AND/OR Graphs with Failure Probabilities

Priyankar Ghosh and P. P. Chakrabarti and Pallab Dasgupta
Indian Institute of Technology, Kharagpur-721302, India

Abstract

In this paper we consider finding solutions for problems rep-
resented using AND/OR graphs, which contain tasks that
can fail when executed. In our setting each node represent
an atomic task which is associated with a failure probabil-
ity and a rollback penalty. This paper reports the following
contributions - (a) an algorithm for finding the optimal or-
dering of the atomic tasks in a given solution graph which
minimizes the expected penalty, (b) an algorithm for finding
the optimal ordering in the presence of user defined order-
ing constraints, and (c) a counter example showing the lack
of optimal substructure property for the problem of finding
the solution graph having minimum expected penalty, and a
pseudo-polynomial algorithm for finding the solution graph
with minimum expected penalty.

Introduction
Traditionally AND/OR structures are being used for prob-
lem reduction search (Pearl 1984; Nilsson 1980; Martelli
and Montanari 1973; Chang and Slagle 1971), where the
root node represents the problem to be solved and the leaf
nodes represent atomic subproblems. In this paper we in-
vestigate a variant of the AND/OR graph evaluation prob-
lem, where the atomic tasks associated with the nodes have
a known probability of failure. This variant has notable prac-
tical significance since in many problem domains which ex-
hibit AND/OR structure, probability of failure needs to be
factored into the process of choosing the best solution strat-
egy. Consider the following examples.

1. In majority of industrial project planning problems,
ranging from civil construction to software development, the
project goal is typically factored into a hierarchy of subtasks,
and for each subtask multiple options (possibly using differ-
ent types of components/strategy) exist for solving the sub-
task (Ren, Bai, and Guo 2010). Failure probabilities (Casali
2010; González et al. 2010; Demeulemeester et al. 2007;
Pich, Loch, and Meyer 2002; Nozik, Turnquist, and List
2001; Mori and Tseng 1997) for the atomic tasks may be
attributed to a variety of factors ranging from reliability of
the vendors to natural calamities.

2. In the context of service composition in semantic
web services, transactional model of web services (Gaaloul,

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Bhiri, and Rouached 2010; Liu et al. 2010) are emerging as a
result of several factors like – (a) the inherent unreliability of
the communication medium (network failure), (b) dynamic
nature of the underlying business model (like purchasing a
ticket may fail due to unavailability), etc. The need for en-
suring global atomicity of the overall composed service is
also greatly emphasized (Liu et al. 2008; Liu and Li 2007;
Montagut and Molva 2006) and the probability of ensuring
the global atomicity is largely dependent on the probability
of success of the individual services. Thus considering the
failure probabilities of individual services is becoming im-
perative.

In the traditional AND/OR graph the optimal solution
graph is unordered, that is, the sequence in which the atomic
subtasks are executed within the solution graph does not af-
fect the cost of the solution graph. In our problem, this is not
the case. If any task in a given solution graph fails, then that
solution graph cannot provide a solution to the problem any
more. We associate a penalty for rolling back the completed
tasks when some node in the solution graph fails. Therefore,
in our problem, each atomic task is associated with a prob-
ability of failure and a cost which is incurred only when the
task is solved but later rolled back due to the failure of other
subsequent tasks in the solution graph. We have addressed
the following problems.
1. Given a solution graph, we study the problem of finding

the sequence of executing the atomic tasks in that solution
graph which minimizes the expected penalty.

2. Given a AND/OR graph with failure probabilities and
rollback penalties for the atomic tasks, we study the prob-
lem of finding the solution graph for which the minimum
expected penalty is the least.

The overall structure of the paper is as follows. In the next
section we present the necessary definition and formalisms.
We describe an algorithm for finding the optimal sequence
of executing the tasks in a solution graph which minimizes
the expected penalty in the succeeding section. The exten-
sions for handling user-defined ordering constraints among
the tasks is discussed in the next section. Next we present
a counter example to show that the problem of finding the
optimum solution graph (that is, the one having minimum
expected penalty) does not enjoy the optimal substructure
property, thereby ruling out straight forward dynamic pro-
gramming solutions to the problem. We present an algo-

41

Proceedings of the Fifth Annual Symposium on Combinatorial Search

rithm, named CR-REV* that uses a user defined parameter
k, for finding the optimum solution graph. We show empiri-
cally that in practice the optimal solution is found with small
value of k.

Definitions
In this section we present the definitions and necessary for-
malisms required for presenting our approach. We develop
the formalisms around the notion of the atomic tasks which
may be associated with the nodes in the AND/OR graph. Let
Q denote a set of atomic tasks. With each task, ti ∈ Q we
associate the following two attributes:
a. s(ti): the probability of completing task ti successfully
b. c(ti): the cost for committing task ti, given that it has

completed successfully.
Also, the failure probability of a task is denoted as `(ti) =
1 − s(ti). It may be noted that no cost is incurred for an
atomic task which failed to complete. Henceforth, we will
use the term task and atomic task interchangeably.
Definition 1 [Evaluation Sequence] An evaluation se-
quence for a set of tasks,Q, is a permutation, π, of the tasks
in Q. We use the notation π[i] to denote the ith task in the
sequence, π. ut

The semantics of task execution is as follows. Given a
set of tasks, Q, and a evaluation sequence, π, the tasks
are executed, one at a time, following the given evaluation
sequence. If the task, π[i], completes successfully, then it
is committed with cost c(π[i]). The execution terminates
with success only if all tasks complete successfully. If any
task fails to complete, then execution is aborted and none
of the subsequent tasks in the evaluation sequence are at-
tempted. We are interested in finding the evaluation se-
quence which minimizes the expected cost incurred when
the execution aborts. Therefore we adopt the following def-
inition of penalty.
Definition 2 [Expected Penalty] Consider the evaluation
sequence, π, for tasks in Q where |Q| = n. The expected
penalty P(π) is defined as follows:
P(π) =

∑n
k=1 Uk(π), where U1(π) = 0, and

∀k > 1, Uk(π) =
[∏k−1

i=1 s(π[i])
]
.`(π[k]).

[∑k−1
i=1 c(π[i])

]
ut

In the above definition, the term, Uk(π), represents the
weighted value of the penalty corresponding to the scenario,
where the tasks, π[0], . . . , π[k − 1], are completed success-
fully and subsequently the task π[k] fails to complete. The
scenario where every task is completed successfully does
not contribute anything to the computation of the expected
penalty. The evaluation sequence having the minimum ex-
pected penalty will be denoted by πmin, and will be called
the optimal/best evaluation sequence.

Recursive problem decomposition techniques (such as dy-
namic programming) decompose the given problem into
combinations of atomic tasks, where each combination rep-
resents a set of tasks which suffice to solve the problem.
AND/OR graphs are used to capture such alternative decom-
positions in a succinct way (Chang and Slagle 1971).

Also in the context of service composition, a typical use
of the AND/OR graph is to model the input/output depen-
dencies (Shin, Jeon, and Lee 2010; Gu, Xu, and Li 2010;

Gu, Li, and Xu 2008) among the services and such graphs
are also known as service dependency graphs (SDGs). Typ-
ically these SDGs are used to describe all possible input-
output dependencies among the available web services. In
an SDG two types of nodes are used – (a) service operation
nodes, and (b) data nodes corresponding to the inputs and
outputs. In order to determine the compositions, AND/OR
graphs are constructed from the SDGs. In this AND/OR
graph representation the services are modeled as AND nodes
and the data nodes (inputs and the outputs of services) are
modeled as OR nodes. For every AND node the children are
the input nodes and the parents are the output nodes. The
data nodes whose values are known to the service requester
are marked as solved, and a dummy AND node is connected
to the OR nodes corresponding to the requested data nodes.
This dummy AND node forms the root node of the AND/OR
graph which is searched for finding the compositions.

In our model of AND/OR graph we associate a task
with every node. Therefore for the hierarchical decompo-
sitions, where the actual task is typically associated with the
leaf nodes only, the tasks corresponding to the intermedi-
ate nodes will have zero failure probability and an arbitrary
positive value ε the rollback penalty. Whereas, for SDGs the
tasks corresponding to all other nodes that do not represent
a service will have zero failure probability and ε rollback
penalty. We develop our algorithms on the generic model
discussed above so that the same model can be used for both
type of AND/OR structures.

We use G = 〈V,E〉 to denote an AND/OR graph, where
V is the set of nodes, and E is the set of edges. vR ∈ V
is the root node of G. The nodes of G with no children
are called terminal nodes. Each terminal node represents an
atomic task. The non-terminal nodes of G are of two types,
namely OR-nodes and AND-nodes. Edges emanating out of
OR-nodes are called OR-edges, and edges emanating out of
AND-nodes are called AND-edges.

Definition 3 [Solution Graph] A solution graph, S(vq),
rooted at any node vq ∈ V , is a finite subgraph of G defined
as:
1. vq is in S(vq);
2. If v′q is an OR node in G and v′q is in S(vq), then exactly

one of its children in G is in S(vq);
3. If v′q is an AND node in G and v′q is in S(vq), then all of

its children in G are in S(vq);
4. No node other than vq or its successors in G is in S(vq).
By a solution graph S of G we mean a solution graph with
root, vR, of G. The set,Q(S), denotes the set of tasks repre-
sented by the terminal nodes of S. ut

Typically an AND/OR graph may have multiple solution
graphs. The set of terminal nodes of each solution graph rep-
resents an alternative combination of tasks that suffice to
solve the problem represented by the root of the AND/OR
graph. Figure 1 shows an example of an AND/OR tree.
This tree represents a hierarchical problem decomposition.
In the rest of the paper also we will only use examples of
AND/OR trees representing hierarchical problem decompo-
sition for brevity. This AND/OR tree has four solution trees,
namely: S1 = {n8, n9, n12, n13}, S2 = {n8, n9, n14, n15},

42

Figure 1: Example of an AND/OR Tree

S3 = {n10, n11, n12, n13} and S4 = {n10, n11, n14, n15}.
Given a solution graph, S, we can order its terminal nodes

in various ways. Each permutation of the terminal nodes rep-
resents an evaluation sequence of the tasks represented by
those nodes. In Figure 1, the values of s(ti) and c(ti) are
shown within angular brackets below each terminal node,
ti. Consider the solution tree, S1 and the evaluation se-
quence, π = 〈n8, n9, n12, n13〉. Following Definition 2, the
expected penalty for π on the solution tree, S1, is 13.23. As
it turns out, the best evaluation sequence (based on expected
penalty) for this solution tree is πmin = 〈n9, n13, n12, n8〉
having expected penalty of 9.325.

Finding the Best Evaluation Sequence
Given a set of tasks, our first objective is to determine the
evaluation sequence, πmin, having the minimum expected
penalty. Given any evaluation sequence, π, suppose we ex-
change the tasks, π[k] and π[k + 1], to obtain the sequence
π′. We define the following function which returns the value
of P (π)−P (π′), that is, the difference between the expected
penalties of π and π′.

Definition 4 [Swap Function on Pair of Tasks] Given an
evaluation sequence, π, and two consecutive tasks, π[k] and
π[k + 1], we define a swap function as follows:
f(π[k], π[k + 1]) = Uk(π) + Uk+1(π)− Uk(π

′)− Uk+1(π
′),

where π[k] = π′[k + 1], π[k + 1] = π′[k],
∀j ∈ Nn

1 , (j 6= k ∧ j 6= k + 1)⇒ π[j] = π′[j], and
Uk is defined earlier in Definition 2 ut

In this paper we use Nn
1 to denote the set {1, · · · , n}. Now,

f(π[k], π[k + 1]) =
[∏k−1

i=1 s(π[i])
]
.`(π[k]).

[∑k−1
i=1 c(π[i])

]
+
[∏k

i=1 s(π[i])
]
.`(π[k + 1]).

[∑k
i=1 c(π[i])

]
−
[∏k−1

i=1 s(π
′[i])
]
.`(π′[k]).

[∑k−1
i=1 c(π

′[i])
]

−
[∏k

i=1 s(π
′[i])
]
.`(π′[k + 1]).

[∑k
i=1 c(π

′[i])
]

∵ ∀j ∈ Nn
1 , (j 6= k ∧ j 6= k + 1)⇒

(
π[j] = π′[j]

)
∴
∏k−1

i=1 s(π[i]) =
∏k−1

i=1 s(π
′[i]) = A(suppose), and∑k−1

i=1 c(π[i]) =
∑k−1

i=1 c(π
′[i]) = B(suppose). Also A,B > 0.

∴ f(π[k], π[k+1])
= A.B.`(π[k]) +A.s(π[k]).

[
B + c(π[k])

]
.`(π[k+1])

−A.B.`(π′[k])−A.s(π′[k]).
[
B + c(π′[k])

]
.`(π′[k+1])

= A.B.`(π[k]) +A.s(π[k]).B.`(π[k+1])
+A.s(π[k]).c(π[k]).`(π[k+1])−A.B.`(π′[k])

−A.s(π′[k]).B.`(π′[k+1])−A.s(π′[k]).c(π′[k]).`(π′[k+1])
= A.B.`(π[k])−A.s(π[k+1]).B.`(π[k])
−A.B.`(π[k+1]) +A.s(π[k]).B.`(π[k+1])
+A.s(π[k]).c(π[k])`(π[k+1])
−A.s(π[k+1]).c(π[k+1])`(π[k])∣∣ ∵ π[k] = π′[k+1] and π[k+1] = π′[k]

= A.
[
s(π[k]).c(π[k]).`(π[k+1])

− s(π[k+1]).c(π[k+1]).`(π[k])
]

Definition 5 [Reduced Form of Swap Function] The re-
duced form of swap function, g, on a pair of tasks, ti and
tj , is defined as follows:
g(ti, tj) = s(ti).c(ti).`(tj)− s(tj).c(tj).`(ti) ut
Therefore, f(π[k], π[k + 1]) = A.g(π[k], π[k + 1]), where
A =

∏k−1
i=1 s(π[i]). This shows that f(π[k], π[k+1]) can be

factored into A, which involves only tasks preceding π[k],
and g(π[k], π[k+1]), which involves only π[k] and π[k+1].

We present a few lemmas about function g and function
f . Some of the proofs are skipped for brevity; details are
available in (Ghosh, Chakrabarti, and Dasgupta 2011).
Lemma 1 Consider the evaluation sequence π of a set of
tasks Q and |Q| = n. We claim that
a.
[
f(π[k], π[k + 1]) > 0

]
⇔
[
g(π[k], π[k + 1]) > 0

]
b.
[
f(π[k], π[k + 1]) < 0

]
⇔
[
g(π[k], π[k + 1]) < 0

]
c.
[
f(π[k], π[k + 1]) = 0

]
⇔
[
g(π[k], π[k + 1]) = 0

]
Lemma 2 For tasks t1, t2 and t3, we claim that,
a.
[
g(t1, t2) > 0

]
∧
[
g(t2, t3) > 0

]
⇒
[
g(t1, t3) > 0

]
b.
[
g(t1, t2) = 0

]
∧
[
g(t1, t3) < 0

]
⇒
[
g(t2, t3) < 0

]
If a given evaluation sequence π contains a pair of consec-

utive tasks, π[k] and π[k + 1], such that g(t(vi), t(vj)) > 0,
then we can reduce the expected penalty by swapping π[k]
with π[k + 1]. Therefore evaluation sequences of minimal
costs will never have such pairs. Since the value of g(ti, tj)
depends only on ti and tj (and not on the tasks which pre-
cede and succeed them), we can define the following eval-
uation graph and claim that every evaluation sequence of
minimal expected penalty is a topological ordering of this
graph. We will never construct this graph in practice – we
use this representation only to prove the correctness of our
approach.

Definition 6 [Evaluation Graph] We define the evaluation
graph for a set of tasks Q as D = 〈Ve, Ee〉 , where Ve is the
set of nodes and Ee is the set of edges. The node vi ∈ Ve
represents a task ti. Let t(vi) denote the task represented by
node vi. Ee contains a directed edge from node vi to node
vj iff g(t(vi), t(vj)) < 0. Ee contains an undirected edge
from node vi to node vj iff g(t(vi), t(vj)) = 0. ut
Lemma 3 No orientation of the undirected edges of an eval-
uation graph D can create a directed cycle involving one or
more original directed edges.

Definition 7 [Topological Ordering] We define a topologi-
cal ordering, O, of the nodes of an evaluation graph D as
follows. For any pair of nodes, vi and vj , vi appears before
vj in the topological ordering, if there exists a path from vi
to vj with at least one directed edge. D does not have any
cycle involving one or more directed edges (by Lemma 3).
Hence at least one topological ordering exists. ut

43

Lemma 4 Consider an evaluation graph D = 〈Ve, Ee〉.
Consider a node vi ∈ Ve, such that ∀vj ∈ Ve, (vi 6= vj)⇒
g(t(vi), t(vj)) 6= 0. We claim that vi appears at a fixed po-
sition in all possible topological ordering of the nodes in D.

Proof: Consider the set nodes, V 1
e , where ∀vj ∈

V 1
e , g(t(vj), t(vi)) < 0. Clearly ∀vj ∈ V 1

e , vj will appear
before vi in any topological order. Similarly consider the set
nodes, V 2

e , where ∀vk ∈ V 2
e , g(t(vi), t(vk)) < 0. Clearly

in this case, ∀vk ∈ V 2
e , vk will appear after vi in any topo-

logical order. Since Ve = V 1
e ∪V 2

e ∪{vi}, the location of vj
is fixed for all topological order. ut

Theorem 1 Given the set of tasks Q and the evaluation
graph D, every topological ordering of D yields an eval-
uation sequence having the same expected penalty which is
the minimum expected penalty.

Proof: Let O1 and O2 be two topological orderings of D,
which yield the evaluation sequences π1 and π2 respectively.
According to Lemma 4, consider a node vi, such that for all
other nodes v′i ∈ Ve, g(t(vi), t(v′i)) 6= 0. The position of
each such node vi is the same in O1 and O2.

Therefore, O1 and O2 can differ only in the position of
nodes of the type vj and vk, such that g(t(vj), t(vk)) = 0.
By Lemma 2, the number of directed incoming edges to vj
and vk are the same (say x). Likewise, the number of out-
going edges from vj and vk are also similar (say y). Clearly
these x nodes will appear before vj and vk in both O1 and
O2, and these y nodes will appear after vj and vk in both O1

and O2. Between the x nodes and the y nodes, another node
v′j can only appear, if g(t(vj), t(vk)) = 0. ThereforeO1 and
O2 can differ only in terms of such intermediate nodes where
swapping two such nodes does not change the expected
penalty. Therefore we can conclude that P(π1) = P(π2).

Any evaluation sequence π that does not follow any topo-
logical ordering of D will contain at least a pair of consecu-
tive tasks π[i], π[i+1] such that g(π[i], π[i+1]) > 0. Clearly,
swapping that pair of tasks, π[i] and π[i+ 1], will create an
evaluation sequence with a lower expected penalty. Thus,
any evaluation sequence that does not follow a topological
ordering of D can not have the minimum expected penalty.
Also all possible topological ordering yields evaluation se-
quences having same expected penalty. Hence, the expected
penalty of an evaluation sequence that is based on a topolog-
ical ordering of D has the minimum expected penalty. ut

A alternative proof line for Theorem 1 can be derived
from a theorem that is presented in (Smith 1956) in the con-
text of a different class of problems, after proving some of
the necessary properties (Lemma 1 and Lemma 2) of the
functions presented in this paper. However, the proof pre-
sented in this paper is self-contained.

Minimizing the Expected Penalty
From Theorem 1 it follows that the evaluation sequence cor-
responding to a topological order has the minimum expected
penalty. Therefore starting from any arbitrary evaluation se-
quence πj of a set of atomic tasks Q, evaluation sequence
πmin with minimum expected penalty can be obtained by

repeatedly swapping pair of successive elements of the eval-
uation sequence depending on the value of the g function
on that pair. The complexity of such repetitive swapping is
O(n2) where |Q| = n. This time complexity can be further
improved as follows. We define another function, h, on a

task, ti, as : h(ti) =
s(ti).c(ti)

`(ti)
=
s(ti).c(ti)

1− s(ti)
Consider a set of tasks Q and an evaluation sequence π. For
a pair of consecutive tasks, the relation between function h
and function g is shown in the following equation, where
|Q| = n and k ∈ Nn−1

1 .
g(π[k], π[k+1]) = s(π[k]).c(π[k])`(π[k+1])−

s(π[k+1]).c(π[k+1])`(π[k])
= `(π[k]).`(π[k+1])

[
h(π[k])− h(π[k+1])

]
Lemma 5 Consider the evaluation sequence π of a set of
tasks Q. We claim that,[

h(π[k])− h(π[k+1]) > 0
]
⇔
[
g(π[k], π[k+1]) > 0

]
where |Q| = n and k ∈ Nn−1

1 .

Lemma 6 The function h is transitive.

Theorem 2 Given the set of tasks Q, the complexity of de-
termining πmin is O(n. log n), where |Q| = n.

Proof: From Theorem 1, for any evaluation sequence πm
of Q, ∀i ∈ Nn−1

1 ,
[
g(πm[i], πm[i+1]) ≤ 0

]
⇒
[
P(πm) =

P(πmin)
]
. Also from Lemma 5, it follows that

[
h(π[k]) −

h(π[k+1]) > 0
]
⇒
[
g(π[k], π[k+1]) > 0

]
. Therefore,

(
∀i ∈

Nn−1
1

)
,
[
h(πm[i]) − h(πm[i+1]) ≤ 0

]
is the sufficient con-

dition for πm to be the evaluation sequence with minimum
expected penalty. Therefore, the evaluation sequence with
minimum expected penalty, πmin, for a set of tasks, Q, is
obtained by sorting the tasks in the non decreasing order of
the h values. Hence, the complexity of determining πmin is
O(n. log n). ut

Incorporating Ordering Constraints
Often practical considerations impose partial orders on the
set of tasks represented by the solution graph of an AND/OR
graph. For example in the context of SDGs represented by
AND/OR graph, it is often the case that in a solution of a
given SDG, the task associated with an intermediate service
node cannot be performed until all other services on which
that service node is dependent are completed. Such restric-
tions may also arise in the case of hierarchical problem de-
composition also. We discuss such ordering constraints that
can be imposed over the nodes of a solution graph and the
algorithms to find the evaluation sequence of minimum ex-
pected penalty, under the ordering constraints. An ordering
constraint is formally defined as follows.

Definition 8 [Ordering Constraint] Consider a solution
graph, S, of an AND/OR graph. An ordering constraint im-
posed on an intermediate node, vq , of S, forces the sub-
problem represented by that node to be treated as an atomic
task, that is, all terminal nodes of the subgraph rooted at vq
must be executed consecutively. Therefore an evaluation se-
quence, π, satisfies an ordering constraint at a node, vq , if
all the terminal nodes of the subgraph rooted at vq appear
consecutively in π. ut

44

Figure 2: Solution Tree with Ordering Constraints

Consider the solution tree shown in Figure 2. In this solu-
tion tree the intermediate node, n2 and n6, highlighted using
circles, have ordering constraints. Therefore, the set of tasks,
{n8, n9, n10, n11} and {n12, n13}, are executed atomically,
i.e., if an evaluation sequence starts the execution of any of
the tasks belonging to one of the mentioned set, all other
tasks from that set must be executed consecutively.

Given a solution graph and a set of ordering constraints,
our objective is to find the evaluation sequence with min-
imum expected penalty under the specified ordering con-
straint. To approach the problem we derive the swap func-
tion on a pair of evaluation sequences and then define the ĥ
function which is similar to the h function.

We reduce the expression of the expected penalty to a sim-
pler expression. This reduced expression will be used to de-
rive the swap function on a pair of evaluation subsequences.
Consider a evaluation sequence π = 〈t1, · · · , tn〉. The ex-
pression P(π) is reduced as follows:
P(π) =

∑n
k=2

[∏k−1
i=1 s(ti)

]
.
[∑k−1

i=1 c(ti)
]
.`(tk)

= s(t1)c(t1)
[
1−s(t2)

]
+s(t1)s(t2)

[
c(t1)+c(t2)

][
1−s(t3)

]
+ s(t1)s(t2)s(t3)

[
c(t1) + c(t2) + c(t3)

][
1− s(t4)

]
+ · · ·

= s(t1)c(t1) + s(t1)s(t2)c(t2) + s(t1)s(t2)s(t3)c(t3) + · · ·
+s(t1) . . . s(tn)c(tn)−s(t1) . . . s(tn)

[
c(t1)+ · · ·+c(tn)

]
=
∑n

i=1 xi − y, where xi =
∏i

j=1 s(tj).c(ti), and
y =

∏n
j=1 s(tj).

[∑n
j=1 c(tj)

]
Definition 9 [Swap Function on a Pair of Evaluation Se-
quences] Consider an evaluation sequence π of length
n. Within π, π1 and π2 are two consecutive evaluation
subsequences, where π1 = 〈π[a], · · · , π[b − 1]〉, π2 =
〈π[b], · · · , π[c]〉 and 1 ≤ a < b ≤ c ≤ n. Let π′ be the
evaluation sequence where position of π1 and π2 are inter-
changed. The swap function, f̂ , on two consecutive evalua-
tion subsequences, π1 and π2, is defined as follows:
f̂(π1, π2) = P(π)− P(π′) = xa + · · ·xc − (x′a + · · ·+ x′c)

= A
[
X1 + Y1.X2 − (X ′1 + Y ′1 .X

′
2)
]

= A
[
X1 + Y1.X2 − (X2 + Y2.X1)

]
Here A =

∏a−1
i=1 s(π[i]), Y1 = Y ′2 =

∏b−1
i=a s(π[i]),

Y2 = Y ′1 =
∏c

i=b s(π[i])

X1 = X ′2 =
∑b−1

j=a

([∏j
i=a s(π[i])

]
.c(π[j]

)
,

X2 = X ′1 =
∑c

j=b

([∏j
i=b s(π[i])

]
.c(π[j]

)
, ut

Definition 10 [Reduced Form of Swap Function on a
Pair of Evaluation Sequences] Consider two evaluation se-
quences, π1 and π2, corresponding to the sets of tasks, Q1

andQ2, where |Q1| = n1 and |Q2| = n2. The reduced form
of swap function, ĝ, on a pair of evaluation sequences, π1
and π2, is defined as follows:
ĝ(π1, π2) =

[
X1.(1− Y2)−X2.(1− Y1)

]
, where

X1=
∑n1

j=1

[(∏j
i=1 s(π1[i])

)
.c(π1[j]

]
, Y1=

∏n1
i=1 s(π1[i])

X2=
∑n2

j=1

[(∏j
i=1 s(π2[i])

)
.c(π2[j]

]
, Y2=

∏n2
i=1 s(π2[i]) ut

We define function ĥ on a evaluation sequence, π, of a set of

tasks Q, as : ĥ(π) =
(X

1− Y

)
, where |Q| = n,

X =
∑n

j=1

[∏j
i=1 s(π[i])

]
.c(π[j], and Y =

∏n
i=1 s(π[i])

Consider the special case when |Q| = 1, i.e., Q contains
a single task, there can be only one possible evaluation se-
quence for Q. In this case function ĥ reduces to h.

Overall Approach

We address the problem of computing the evaluation se-
quence having minimum expected penalty under one or
more ordering constraints into two stages. In the first stage
the tasks in every subset (specified by a constraint), are or-
dered in the non-decreasing value of the h function. In other
words, the best evaluation subsequence is computed for ev-
ery such subset of tasks. In the second stage, we use the
function ĥ to order the evaluation subsequences correspond-
ing to the subsets of tasks in order to get the evaluation se-
quence for the tasks in the given solution graph.

We show the computation of the sequence having min-
imum expected penalty under ordering constraints on the
example solution tree shown in Figure 2. In the solu-
tion tree the ordering constraints are given on intermedi-
ate nodes, n2 and n6. Therefore the set of terminal nodes
belonging to the solution tree is split into the following
4 subsets, Q1 = {n8, n9, n10, n11}, Q2 = {n12, n13},
Q3 = n14, and Q4 = n15. Let the evaluation sequences
yielding minimum expected penalty for Q1 and Q2 be
π1
min and π2

min respectively. π1
min = 〈n9, n8, n10, n11〉

and π2
min = 〈n13, n12〉. The value of ĥ function for

Q1, · · · ,Q4 are - ĥ(Q1) = 13.99, ĥ(Q2) = 12.23,
ĥ(Q3) = 12, and ĥ(Q4) = 16. The evaluation sequence
having minimum expected penalty for the solution tree,
πmin, is 〈n14︸︷︷︸

Q3

, n13, n12︸ ︷︷ ︸
Q2

, n9, n8, n10, n11︸ ︷︷ ︸
Q1

, n15︸︷︷︸
Q4

〉 and the min-

imum expected penalty is 12.06.

Generating the Solution of an AND/OR Graph
In this section we address the problem of generating the
solution having minimum expected penalty for a given
AND/OR graph. First we demonstrate the lack of optimal
substructure property through a counter example and present
an algorithm for solving the problem of computing the so-
lution graph having minimum expected penalty for a given
AND/OR graph.

45

Lack of Optimal Substructure Property
Traditional methods for finding minimum solution graphs of
AND/OR graphs adopt a dynamic programming approach,
where we traverse the graph bottom up marking the most
favoured child at each OR node by analysing the problem
represented by that OR node.

Figure 3: Example Showing the Lack of Optimal Substruc-
ture

For the problem presented in this paper we first
demonstrate that the problem lacks the optimal substruc-
ture property. This is illustrated in the example shown
in Figure 3. Here n1, · · · , n6 are terminal nodes, and
the 〈probability, cost〉 pair is shown below each ter-
minal node. Suppose S1 and S2 are two solutions of
the AND/OR tree shown in Figure 3, where Q(S1) =
{n1, n2, n3, n4} and Q(S2) = {n1, n2, n5, n6}. For so-
lution S1, πmin(Q(S1)) = 〈n3, n1, n4, n2〉 and the
minimum expected penalty is 133.5. Similarly, for S2,
πmin(Q(S2)) = 〈n5, n6, n1, n2〉 and the minimum ex-
pected penalty is 101.5. The evaluation sequences with min-
imum expected penalty for node na, · · · , ne are specified
as sa, · · · , se and the corresponding value of the minimum
expected penalty is specified within square brackets. Here
solution S2 has the minimum expected penalty. Within S2,
the sub-solution rooted at node OR node, nc, consists of
terminal nodes n5 and n6 (the minimum expected penalty
of this sub-solution is 19.20). However the optimal sub-
solution rooted at node nc, consists of terminal nodes n3
and n4 having minimum expected value 15.75. Clearly the
optimal solution contains a sub-solution rooted at nc which
is not optimal. This shows the lack of optimal substructure
property for this problem.

We conjecture that the problem of finding the solution
with minimum expected penalty for a given AND/OR graph
is NP hard, however the proof is open. Next, we present a
cost recomputation based algorithm for the problem.

Overall Method
We have demonstrated that combining minimum expected
penalty sub solutions may not generate the solution with
minimum expected penalty. Our idea is to compute k-best
solutions at every intermediate node instead of only one so-
lution and recompute the expected penalty for every newly
computed solution from the set of tasks belonging to that

solution. Here k is an input parameter. Keeping k-best solu-
tions at every child node, allows us to explore multiple com-
binations at the parent node. The bottom-up method of com-
puting k-best solutions works by keeping k-best solutions at
every child and then using them to compute the solutions at
the parent node.

In the context of finding k-best solutions for valued
sd-DNNF (Darwiche 2001) based structures that exhibit
AND/OR DAG structures, a bottom-up method was pro-
posed by Elliot (2007). The problem of finding minimum
cost solution for AND/OR graphs with cycles has been well
addressed by the research community (Bonet and Geffner
2005; Hansen and Zilberstein 2001; Jiménez and Torras
2000; Chakrabarti 1994). A bottom up method, REV*, for
computing the minimum cost solution of explicit AND/OR
graphs with cycles has been proposed by Chakrabarti.

In our proposed method CR-REV*, we use the idea of
REV* for traversing the explicit AND/OR graph bottom-
up while computing the k-best solutions at the intermediate
nodes using cost recomputation; that is, at every intermedi-
ate AND node, while combining the solutions of the chil-
dren nodes the expected penalty is computed directly from
the set of tasks belonging to the new solution, instead of
using the expected penalty values of the children solutions.
We use the visited flag for every vertex to keep track of the
vertices which are processed during the bottom-up traversal.
The visited flag for all vertices are initially set to false.

Algorithm 1: CR-REV*
input : An AND/OR graph G and k
output : k solutions in the order of non-decreasing penalty
Open← ∅;1
foreach terminal node vt ∈ G do Insert vt to Open;2
while Open 6= ∅ do3
v ← Remove from Open that element whose best4
solution has the least value for expected penalty;
if v is not visited earlier then5

foreach parent node vp of v do6
if ∀vq ∈ S(vp) visited(vq) = true then7

if vq is an AND node then8
Compute the k best combinations by combining9
the solutions of the children nodes;
Recompute the expected penalty of each of the10
combination;

else if vq is an OR node then11
Compute the k best selections from the solutions12
of the children nodes;

end13
Insert vp to Open;14

else if vq is an OR node then15
if the expected penalty of the best solution of v is16
less than any of the current k best solutions of vp
then

Merge the solutions of v with the solutions vp17
and keep the k best solution of vp;
if vp 6∈ Open then Insert vp to Open;18

end19
end20

end21
end22

The computation of the k-best solution ((Elliott 2007))

46

has the running time of O(|E|.k log k + |E|. log d +
|V |.k log d) and a space complexity of O(k|E|) where |V |
and |E| denotes the number of nodes and edges in the graph
and every node has d children. The cost revision step re-
quires |V | steps at most. Hence, the time complexity of the
proposed algorithm is O(|E|.|V |.k log k + |E|.|V |. log d +
|V |2.k log d).

Experimental Results
In order to demonstrate the effect of ordering to reduce the
expected penalty, we have used the test cases provided for
Web Services Challenge (2010). We have chosen 4 test cases
(TC-1, · · · , TC-4) and constructed the AND/OR graphs
from the given service descriptions. The number of nodes
in TC-1, TC-2, TC-3, and TC-4 are 3113, 3864, 6298, and
8279, respectively. Since these graphs contains cycles, we
obtained a solution graph using REV* (Chakrabarti 1994).
In the solution graph we assigned each task the following -
(a) the probability of failure as a random number between
0.1 and 0.9, and (b) the rollback penalty as a random num-
ber between 200 to 20000. The details of the experimental
result are presented in Figure 4 which shows the effect of ex-
ecution ordering of the tasks on the expected penalty. Here
we have reported the expected penalty under both best and
worst ordering. It may be observed that typically the worst
case expected penalty is more than two times of the best case
expected penalty.

Figure 4: Min and max expected penalty for solutions of dif-
ferent SDGs

We have experimented with randomly constructed
AND/OR trees. The trees are constructed by keeping the
depth of the tree at 5 and varying the degree parameter for
the intermediate OR nodes. The minimum degree parameter
for the OR nodes, denoted by dm, is varied from 3 to 7. We
have created a set of 10 trees for every value of dm by incre-
menting the degrees of OR nodes of the bottom most level
of OR nodes.

The proposed method CR-REV* is used to generate k so-
lutions, where k is an input to CR-REV*. We use differ-
ent values of k (from the set {5, 10, 15, 20, 25}) and among
the solutions generated by CR-REV* we compute the num-
ber of solutions, κ, that belong to the actual k-best solu-
tions. In order to determine the number κ, first we construct
the entire set of solutions and order them according to the
non-decreasing value of expected penalty. Next we compare

the top k solutions within this ordered set with the k solu-
tions reported by CR-REV* method and count the number
of matched solutions. It is important to note that the opti-
mal solution is the best solution in the ordered set of all so-
lutions. Since the problem lacks optimal substructure prop-
erty, CR-REV* computes the minimum expected penalty of
the solutions that are generated as a result of combining the
sub-solutions at the AND nodes. Therefore, some solution
that actually belong to the k-best solutions may be missed
from the k solutions generated using CR-REV*.

In Figure 5, for each value of k in the set
{5, 10, 15, 20, 25}, we report the average percentage
of ordered solutions generated for each value of dm. For
a certain value of k, the average percentage of ordered
solutions, θ, over #tc test cases is obtained using the fol-

lowing formula : θ =

∑#tc
i=1 κi

#tc× k × 100(%), where κi denotes

the number of solutions that belong to the actual k-best
solutions for the ith test-case. For our experimentation,
#tc = 10. It may be observed that for a fixed value of dm
the value of θ increases with the increase of k.

Figure 5: Average percentage of ordered solutions generated
for different values of k

Figure 6: Percentage of test-cases for which the best solution
was found for different values of k

In Figure 6, we report the percentage of test cases (among
the 50 test cases used) for which the optimal solution is gen-
erated by CR-REV* for different values of k. It may be
observed that for most of the cases the optimal solution is
found with small value of k (less than 25).

47

Conclusion
This paper highlights the complexity of handling failure
probabilities in AND/OR graph based problem decompo-
sition approaches. It is not hard to envisage numerous ap-
plications in which failure probabilities must be factored
into problem decomposition. However, the tractability of the
problem remains an open question. We propose an approx-
imate algorithm for finding the solution with minimum ex-
pected penalty for a given AND/OR graph and experimental
results shows that the proposed algorithm performs well.

Acknowledgments
This work is partially supported by Department of Science
and Technology, Govt. of India.

References
Bonet, B., and Geffner, H. 2005. An algorithm better than
AO*? In Proceedings of the 20th national conference on
Artificial intelligence - Volume 3, 1343–1347. AAAI Press.
Casali, G. L. 2010. Ethical decision making and health care
managers: developing managerial profiles based on ethical
frameworks and other influencing factors. Ph.D. Disserta-
tion, Queensland University of Technology.
Chakrabarti, P. P. 1994. Algorithms for searching explicit
AND/OR graphs and their applications to problem reduction
search. Artif. Intell. 65(2):329–345.
Chang, C.-L., and Slagle, J. R. 1971. An admissible and op-
timal algorithm for searching AND/OR graphs. Artif. Intell.
2(2):117–128.
Darwiche, A. 2001. Decomposable negation normal form.
J. ACM 48:608–647.
Demeulemeester, E.; Deblaere, F.; Herbots, J.; Lambrechts,
O.; and de Vonder, S. V. 2007. A multi-level approach to
project management under uncertainty. Review of Business
and Economics 0(3):391–409.
Elliott, P. H. 2007. Extracting the k best solutions from a val-
ued And-Or acyclic graph. Master’s thesis, Massachusetts
Institute of Technology.
Gaaloul, W.; Bhiri, S.; and Rouached, M. 2010. Event-based
design and runtime verification of composite service trans-
actional behavior. IEEE T. Services Computing 3(1):32–45.
Ghosh, P.; Chakrabarti, P. P.; and Dasgupta, P. 2011.
Solving AND/OR graphs with failure probabilities.
http://cse.iitkgp.ac.in/˜prynkrg/TechReports/PWP-TR.pdf.
Technical Report.
González, V.; Alarcón, L. F.; Maturana, S.; Mundaca, F.;
and Bustamante, J. 2010. Improving planning reliabil-
ity and project performance using the reliable commitment
model. Journal of Construction Engineering and Manage-
ment 136(10):1129–1139.
Gu, Z.; Li, J.; and Xu, B. 2008. Automatic service compo-
sition based on enhanced service dependency graph. In Web
Services, 2008. ICWS ’08. IEEE International Conference
on, 246 –253.

Gu, Z.; Xu, B.; and Li, J. 2010. Service data correlation
modeling and its application in data-driven service compo-
sition. Services Computing, IEEE Transactions on 3(4):279–
291.
Hansen, E. A., and Zilberstein, S. 2001. LAO*: A heuristic
search algorithm that finds solutions with loops. Artificial
Intelligence 129(1-2):35–62.
Jiménez, P., and Torras, C. 2000. An efficient algorithm for
searching implicit AND/OR graphs with cycles. Artif. Intell.
124:1–30.
Liu, A., and Li, Q. 2007. Ensuring consistent termination of
composite web services. In SIGMOD’07 Ph. D. Workshop.
Liu, A.; Li, Q.; Huang, L.; Xiao, M.; and Liu, H. 2008.
QoS-aware scheduling of web services. In WAIM, 171–178.
Liu, A.; Li, Q.; Huang, L.; and Xiao, M. 2010. Facts:
A framework for fault-tolerant composition of transactional
web services. IEEE T. Services Computing 3(1):46–59.
Martelli, A., and Montanari, U. 1973. Additive and/or
graphs. In Proceedings of the 3rd international joint con-
ference on Artificial intelligence. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc.
Montagut, F., and Molva, R. 2006. Augmenting web
services composition with transactional requirements. In
ICWS, 91–98.
Mori, M., and Tseng, C. 1997. A resource constrained
project scheduling problem with reattempt at failure: A
heuristic approach. Journal of the Operations Research
40(1):33–44.
Nilsson, N. J. 1980. Principle of artificial intelligence.
Tioga Publishing Co.
Nozik, L.; Turnquist, M.; and List, G. 2001. Project man-
agement under uncertainty with applications to new product
development. In Change Management and the New Indus-
trial Revolution, 2001. IEMC ’01 Proceedings., 394–399.
Pearl, J. 1984. Heuristics: intelligent search strategies for
computer problem solving. Boston, MA, USA: Addison-
Wesley Longman Publishing Co., Inc.
Pich, M. T.; Loch, C. H.; and Meyer, A. D. 2002. On un-
certainty, ambiguity, and complexity in project management.
Manage. Sci. 48(8):1008–1023.
Ren, L.; Bai, S.; and Guo, Y. 2010. Project scheduling in
and-or graphs based on design structure matrix. In Emer-
gency Management and Management Sciences (ICEMMS),
2010 IEEE International Conference on, 161–164.
Shin, D.-H.; Jeon, H.-B.; and Lee, K.-H. 2010. A sophisti-
cated approach to composing services based on action dom-
inance relation. In Services Computing Conference (AP-
SCC), 2010 IEEE Asia-Pacific, 164 –170.
Smith, W. E. 1956. Various optimizers for single-stage pro-
duction. Naval Research Logistics Quarterly 3:59–66.
WSChallenge. 2010. Web services challenge 2010.
http://ws-challenge.georgetown.edu/wsc10/.

48

