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Abstract

Heuristic search is a general problem solving technique.
While most evaluations of heuristic search focus on the speed
of search, there are relatively few techniques for predicting
when search will end. This paper provides a study of progress
estimating techniques for optimal, suboptimal, and bounded
suboptimal heuristic search algorithms. We examine two
previously proposed techniques, search velocity and search
vacillation, as well as two new approaches, path-based esti-
mation and distribution-based estimation. We find that both
new approaches are better at estimating the remaining amount
of search effort than previous work in all three varieties of
search, occasionally erring by less than 5%.

Introduction
Many problems can be modeled as search problem where
one is required to find a path in a state space. There are
many varieties of search problems and corresponding search
algorithms that are designed to handle them. For example,
search algorithms such as A* (Hart, Nilsson, and Raphael
1968) are used when we require solutions with the least pos-
sible cost, while algorithms like greedy best-first search are
used when we simply need to solve a problem quickly. In
this paper we investigate methods to monitor the progress of
the search process for finding solution paths.

End-users greatly value having progress indicators for
long tasks (Myers 1985). Further, being able to determine
how much time remains before a search algorithm will re-
turn a solution has a number of applications. Estimates of
time remaining let us know if we should wait for the current
algorithm to finish or if we need to change our requirements
to get something that will finish within our lifetimes. In the
context of anytime search algorithms, it can also help decide
whether we should interrupt a running anytime search algo-
rithm now, or if we should wait for an improved solution.

In this paper we propose three approaches for estimat-
ing the search progress. The first approach, called the
speed-based approach, uses existing techniques from time-
constrained search (Hiraishi, Ohwada, and Mizoguchi 1998;
Dionne, Thayer, and Ruml 2011) to estimate the speed of
search progression. The search speed is combined with an
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estimate of the distance to the goal to provide an estimate of
the future search effort.

The second approach, called the path-based approach,
considers the relation between cost of arriving at an ex-
panded node and the estimated cost of a solution through
the same node. The ratio of these values estimates progress.

Finally we present an approach called distribution based
progress estimator, or DBP, which is based on a novel con-
cept called the d-distribution. The d-distribution of a search
is the number of nodes that were generated with a specific
estimate of actions remaining, or d-value. DBP estimates
the search progress by estimating the final d-distribution of
search by fitting a curve to the current d-distribution.

We evaluate the proposed techniques for estimating the
search progress on two domains, the 15-puzzle and Life-
cost Grids (Thayer and Ruml 2011). We compare the ac-
curacy of the progress estimations for A∗, weighted A∗, and
greedy best-first search. Results show that the path-based
and distribution-based are superior to the search-speed tech-
niques. It is not conclusive if the distribution-based ap-
proach is significantly better than the path-based estimator.

Progress Estimation
In this section we describe formally what search progress
is, and how it relates to estimating future search effort.
Throughout this paper we assume the time until a search al-
gorithm returns a solution is directly related to the number
of nodes yet to be generated. This is reasonable for domains
where the cost of node generation is the same for all the
nodes. In domains where this isn’t true, it can be corrected
for so long as we know how the cost of generating nodes
changes during search.

Search progress is a number between 0 and 1, represent-
ing how near to completion a search is. More formally,
let GenA(P ) be the number of nodes generated by a given
search algorithm A while attempting to solve a search prob-
lem P . Let Rem∗A(P,GenA(P )) be the number of remain-
ing number of nodes that are going to be generated by A
when solving P after A has already generated Gen nodes.1
Search progress is the ratio between the already generated

1We omit P and A from both Gen and Rem∗ when A and P
are clear from the context.

129

Proceedings of the Fifth Annual Symposium on Combinatorial Search



nodes and the total number of nodes generated by A when
solving P .

Definition 1 (Search Progress) The search progress of A
solving P after generating Gen nodes is:

Prog∗(Gen) =
Gen

Gen + Rem∗(Gen)

The progress is composed of two components: Gen
and Rem∗(Gen). The number of nodes generated so far,
Gen , is known. Generally the number of remaining nodes,
Rem∗(Gen), is usually not known a priori.2

Using future search effort (Rem∗(Gen)), one can de-
rive the search progress (Prog∗(Gen)) and vice versa. Fre-
quently both values are unknown during search. Some
techniques presented in this paper directly estimate search
progress, while other techniques estimate future search ef-
fort and derive progress from that.

Speed-Based Progress Estimator
We begin by considering speed-based progress estimators,
or SBP for short. Let hmin be the lowest h-value of any
expanded node. The value of hmin gives a heuristic notion
of how far the search is from the goal, starting from hmin =
h(start) and reaching hmin = 0 when the goal is found.
Clearly, hmin monotonically decreases to zero throughout
the search. The speed-based progress estimator described
in this section are based on estimating the rate of change
in hmin with respect to the number of nodes expanded by
search. We call this the search speed. The search speed
and hmin are then used to estimate the future search effort,
which is then used to estimate the search progress.

Next, we describe two methods for estimating the search-
speed, which are a based on previous work on time-
constrained search (Hiraishi, Ohwada, and Mizoguchi 1998)
and deadline-aware search (Dionne, Thayer, and Ruml
2011).

Velocity-Based Search Speed Estimator
Time-constrained search aims at finding the best possible
solution given a time constraint. Hiraishi et al. (1998) pro-
posed a time-constrained search algorithm that is based on
Weighted A* (Pohl 1970). Weighted A* uses the node eval-
uation function f ′(n) = g(n) + w · h(n), where w is a pa-
rameter. Setting w = 1 results in behavior identical to A*,
and as w is increased, the algorithm behaves more and more
like greedy best first search.

The time-constrained search algorithm of Hiraishi et al.
starts by running Weighted A* with w=1. During the search,
their algorithm considers two search values that relate to
search-speed: the target search velocity and search velocity.
The target search velocity is calculated at the beginning of
the search, as the initial hmin, which is the heuristic value
of the start state (hstart), divided by the time constraint t.
Then, during the search, after every node is expanded, the
search velocity, denoted by V is calculated as the difference

2The number of remaining nodes is also known as the future
search effort (Dionne, Thayer, and Ruml 2011)

between hstart and hmin, divided by time that has passed
from the beginning of the search. Let the time passed from
the beginning of the search be measured by the number of
nodes generated so far. Search velocity is V = hstart−hmin

Gen .
The time constrained search then adjusts w such that the ob-
served velocity and desired velocity match.

It is easy to see that the search velocity is defined to ex-
actly estimate the search speed mentioned above. Hence,
we can use the search velocity to estimate the future search
effort, denoted by SEV as follows:

SEV =
hmin

V

This search effort estimation can then be used to estimate
progress, as explained previously. We call the resulting
search progress estimator the velocity-based search progress
estimator (VeSP):

V eSP (Gen) =
Gen

Gen + SEV

Vacillation-Based Search Speed Estimator
Deadline-Aware Search (DAS) is an alternate technique to
search under a deadline (Dionne, Thayer, and Ruml 2011).
DAS builds on the understanding that generally many nodes
are expanded between the time a node is generated and its
expansion. This so called expansion delay is measured by
the DAS algorithm. The average expansion delay, ∆e, can
be used to estimate the speed with which search advances
towards a goal. We use it to estimate future search effort
estimation, SEe, as follows:

SEe = ∆e · hmin

We call the resulting search progress estimator the
vacillation-based search progress estimator, or VaSP for
short. The progress estimation formula of VaSP:

V aSP (Gen) =
Gen

Gen + SEe

Note that in order to calculate the average expansion de-
lay for VaSP, the search algorithm must maintain for every
generated node the time when it was generated. This incurs
some overhead not required by VeSP. Also, note that in VaSP
the average expansion delay is multiplied by hmin. This cor-
responds to unit edge cost domains. For non-unit edge-cost
domains, multiply the average expansion delay by dmin.

Both VeSP and VaSP generalize naturally to estimate the
progress of other search algorithms. Clearly, in the first
several hundred nodes the speed estimates are expected to
be inaccurate, but, at least intuitively, after enough nodes
have been expanded both speed estimations can adjust to the
speed of the search algorithm that is used.

The above techniques for estimating search progress are
adaptations of techniques from time-constrained search to
estimate search progress. In the next section we propose
simple search progress estimator methods that directly esti-
mate the search progress. These simple estimators are found
to be more accurate in our experimental results.
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Path-Based Progress Estimator
We now introduce the path-based progress estimator, or
PBP in short. First, we describe PBP for estimating the
progress of an A∗ search. Then we describe how PBP can
be adapted to estimate the progress of greedy search.

Consider the components of f(n). Part of the evaluation
function, g(n), is in terms of expended cost, while a portion
of it, h(n), represents cost-to-go. Let n be the last node gen-
erated (i.e., n is the Gen-th node that was generated). The
first progress estimator that we consider, called the naive
path-based progress estimator (NPBP) is :

NPBP(Gen) =
g(n)

f(n)

Initially, NPBP returns zero, since the g-value of the root is
zero. When the goal node is expanded, NPBP returns one,
since the h-value of the goal is also zero. If the cost-to-go
estimate is perfectly accurate (h(n) = h∗(n)) and there is
a single path to the goal, NPBP will return perfect progress
estimations, in unit edge cost domains, and A∗ expands only
the nodes in the optimal path. In unit-cost domains g(n) is
the number of steps taken between the root and n, h∗(n) is
the number of steps between n and a goal, and f(n) is the
total number of steps along the optimal path. In this case
g(n)
f(n) is an accurate estimate of the progress of search.

Non-Uniform Edge Cost
The above reasoning is incorrect for domains with non-
uniform costs. Consider this example: there is a start node s,
an intermediate node i, and a goal node g. The cost of going
from s to i is c(s, i) = 1, and the cost of going from i to g
is c(i, g) = 2. Assuming perfect information, the previous
estimate of progress will tell us that we are only a third of
the way done at i, when we are halfway to the goal.

To adapt NPBP to non-uniform edge cost domains, we
make the progress estimate insensitive to cost as follows: let
d(n) be an estimate of the number of actions in the optimal
path from n to a goal and D(n) be the depth of node n. We
define L(n) = D(n) + d(n). Then the adapted NPBP is:

NPBPL(n) =
D(n)

L(n)

If we have perfect information on D and d as well as h,
then NPBPL will return the exact search progress for non-
uniform edge cost as well. For simplicity, we assume uni-
form edge-cost domain, unless stated otherwise.

Non-Perfect Heuristics
In reality, h(n) is not always equal to h∗(n) and A∗ will ex-
pand nodes off the optimal path. Here the progress estima-
tion of NPBP is imperfect. Furthermore, a perfect progress
estimation will increase after every node that is expanded.
Since NPBP is based on the g and h of the node that is cur-
rently expanded by A∗, its progress estimation may decrease
when a new node is expanded. This is because an A* search
may expand a node that is close to the goal (high g, low h)
and subsequently one far from the goal (low g, high h).

Figure 1: Example of PBP and fPBP

To overcome this we propose the following modification
of NPBP: always return the highest value that was returned
so far by NPBP. This ensures that the progress estimation
will be monotonic non-decreasing. We call this progress es-
timator the path-based progress estimator, or PBP in short.
PBP shares with NPBP the following properties: PBP ini-
tially returns zero, it returns one when the goal is found,
and it is perfect when we have a perfect heuristic. In non-
uniform edge cost domains, one can use the same logic as
PBP, but use D(n)

L(n) instead of g(n)
f(n) in a variant called PBPL.

Note that one can the same logic of PBP and PBPL to
construct a progress estimator for Weighted A* (Pohl 1970).
Weighted A* uses an evaluation function f ′(n) = g(n) +
w · h(n), where w is a parameter, instead of the f(n) eval-
uation function of A*. Thus, we can estimate the progress
of Weighted A* by g(n)

f ′(n) . We denote by wPBP this simple
adaptation of PBP to Weighted A*.

Using Optimal Solution Cost
Sometimes an accurate estimate of the cost of the opti-
mal solution is available (Lelis, Stern, and Arfaee 2011;
Lelis et al. 2012). This information could be used to better
estimate the progress of search. Assume for a moment that
the cost of the optimal solution, OPT , is known. This new
progress estimator is based on OPT , and on the minimal
f -value in the open list, denoted as fmin. Assuming either
a consistent heuristic or the use of Pathmax (Mero 1984),
fmin is monotonic non-decreasing. When the search starts
fmin is the f -value of the start state f(start) (this is equiv-
alent to h(start)). During search fmin increases, and when
the goal is found fmin = OPT .

fmin can be used to define a new progress estimator,
which we call the f -value path-based progress estimator,
or fPBP, that is defined next.

fPBP(Gen) =
fmin − f(start)

OPT − f(start)

Here, the denominator OPT − f(start) denotes how much
progress must be made since the beginning of search un-
til the optimal solution is found, and the numerator fmin −
f(start) denotes the search effort completed thus far. Note
that for the extreme case where the heuristic is perfect, we
have that fstart = OPT and fPBP is undefined (since it
incurs zero divided by zero).

Naturally, OPT is often unavailable. However, we can
estimate OPT with an accurate inadmissible heuristic (Jab-
bari Arfaee, Zilles, and Holte 2011; Thayer, Dionne, and
Ruml 2011) or with solution cost predictors (Lelis, Stern,
and Arfaee 2011; Lelis et al. 2012).

Clearly, it is not always easy to obtain good estimates
of OPT , and thus it is easier in some cases to implement
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PBP. However, fPBP is less sensitive to an overly optimistic
heuristic function, as explained next. Consider the follow-
ing extreme example, depicted in Figure 1. There is only
a single path from the initial node S to the goal G, that
is composed of 10 nodes, i.e., OPT=10, and all the edges
have unit cost. Assume that the heuristic of the first two
nodes on the path is one, i.e., h(S) = h(A) = 1. This
value of h(A) and h(S) is admissible, as h∗(S) = 10, and
h∗(A) = 9. However, h is clearly very misleading with re-
spect to node A. This has a great effect on PBP, since once
A is expanded, PBP will return g(A)

f(A) = 1
2 , and will keep

this value until a node with a higher value of g
h is expanded.

Clearly, the search is far from being half done, since the op-
timal solution cost is 10. Furthermore, PBP will still return
1
2 even after node B is expanded, which has a perfect heuris-
tic h(B) = h∗(B) = 8. By contrast, when A is expanded,
fPBP will return 2−1

10−1 = 1
9 , which is clearly more accurate

than 1
2 that was returned by PBP.

PBP for Greedy Best-First Search
Next, we describe how to use the concept of PBP to estimate
the progress of greedy best-first search (GBFS). GBFS, also
known as Pure Heuristic Search, is a best-first search that
orders the nodes in the open-list according to their h-value,
always expanding the node in the open list with the lowest
h-value. GBFS is commonly used when the task is to find a
solution to a search problem as fast as possible.

One way to define PBP for GBFS is exactly the same as
PBP for A*. However, GBFS behaves differently from A∗.
GBFS accounts only for the heuristic value of the nodes in
the open list to decide which node to expand next. There-
fore, we propose the following variation of PBP for GFBS,
denoted by hPBP, that also only accounts for the heuristic
value of the nodes seen during search.

hPBP(Gen) =
h(root)− hmin

h(root)

As before, it is also possible to define an equivalent estima-
tor that considers distance-to-go (i.e., estimated number of
actions to reach the goal), for non-unit-cost domains:

dPBP(Gen) =
d(root)− dmin

d(root)

Both the path-based and the speed-based search progress es-
timations described so far heavily depend on the value of
hmin. This means that if a node is generated with very low
hmin in a early stage of the search, e.g., due to a gross under-
estimation of the heuristic, both search speed and path-based
progress estimators will be inaccurate. The next progress es-
timator, called the distribution based progress estimator or
DBP in short, is based on a completely different approach
that is robust to such sporadic heuristic errors.

Distribution-Based Progress Estimator
DBP estimates the search progress by learning the “struc-
ture” of the search space.3 Specifically, DBP tries to predict

3We use the term “search space” to denote the set of nodes that
will be visited by the search algorithm that is executed.

(a) (b)

(c) (d)

Figure 2: d-distributions for A∗ and GBFS

how many nodes will be generated during the search for ev-
ery value of d.4 This is done by accumulating throughout
the search the number of nodes generated so far for every
possible d-value, and interpolating the number of nodes that
will be generated in the future for every possible d-value.

Let d0, .., dm be all the possible d-values a node can have.
Throughout the search, DBP maintains for every d-value di
a counter c[di] that counts the number of nodes generated
with d-value equal to di. Initially, c[di] = 0 for all d val-
ues, except for the d-value of the start state, ds, for which
c[ds] = 1. When a node n is generated, then c[d(n)] is in-
cremented by one. As the search progresses, the values of
c[d1], .., c[dm] are updated, resulting in a distribution of the
frequency of the different heuristic values. We call this dis-
tribution the d-distribution of the search at a given time, or
simply the current d-distribution. The d-distribution when
the search ends is called a complete d-distribution. Figure 2
shows the complete d-distribution for A∗ and GBFS of a ran-
dom instance of the 15-puzzle and of the life-grid domains.

Let c∗ denote the complete d-distribution, and corre-
spondingly, let c∗[di] be the number of nodes generated
throughout the search with d-value equal to di. Given the
complete d-distribution, one can easily compute the exact
search progress as follows:

Prog∗(Gen) =
Gen∑m

i=1 c
∗[di]

The complete d-distribution, c∗, is not available until the
search is finished. To overcome this, DBP estimates the
complete distribution from current distribution by using a
second degree polynomial fit. Let ĉ denote the resulting esti-
mation of the complete d-distribution, and correspondingly,

4Recall that in uniform edge cost domains d is equivalent to h.
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(a) (b) (c) (d)

Figure 3: Study of Progress Estimation in A* and the accuracy of d vs. h.

let ĉ[di] be the number of nodes that will have a d-value of
di according to ĉ. The search progress estimated by DBP
with ĉ is given by:

DBP(Gen) =
Gen∑m
i=1 ĉ[di]

In the beginning of the search the curve fitting required by
DBP is not given enough data to provide accurate estima-
tions of the complete d-distribution. However, as the search
progresses, more nodes are generated, and ĉ is expected to
provide a better estimation of the complete d-distribution.

Empirical Evaluation
In this section we evaluate accuracy of the proposed progress
estimators techniques for three search algorithms: A*,
Greedy Best First Search (GBFS) and Weighted A* (Pohl
1970). Recall that progress is measured by the ratio be-
tween the number of nodes generated and the total number
of nodes generated by the search algorithm when the goal is
found (Definition 1). Thus, the accuracy of a progress es-
timator is measured by the absolute difference between the
estimated progress returned by the progress estimator, and
the real progress, computed after the problem was solved. In
the plots shown in this section, the y-axis is the average ac-
curacy of a progress estimator for a set of problem instances.
The x-axis in the plots is the real progress. As it is impracti-
cal to write down the estimated progress for every expanded
node for these problems, we take 500 samples uniformly at
random from all data points generated by the search.

We test the estimators on Life-cost grids and on the 15
puzzle. Life-cost grids were first proposed by Ruml and
Do (2007). These are a standard 4-connected grid with a
slightly different cost function, moving out of a cell has cost
equal to the y-coordinate of the cell. We use 100 grids that
are 2000x1200, with a starting state in the lower left-hand
corner of the grid and the goal in the lower right. For the 15-
puzzle, we look at the 100 instances used by Korf (1985).

A*
Figure 3(a) shows the relative performance of VeSP, DBP,
PBP, and fPBP. We exclude the results of VaSP from this

plot because they were substantially worse than the other
approaches. The two best estimators in this case are clearly
the path-based estimators fPBP and PBP. Even though less
accurate than the path-based estimators, DBP is also fairly
accurate with errors no greater than 10%. We believe the ac-
curacy of DBP could be improved in this domain, however.
Figure 2(b) shows the d-distribution for this domain (life
grids). Clearly the second-order polynomial used by DBP
to estimate the real d-distribution does not capture the actual
distribution of d-values, explaining DBP’s performance.

Since the path-based estimators performed best in this do-
main, we compared several variants of the path-based esti-
mators. Specifically, we consider three path-based estimator
variants: PBP, PBPL and fPBP. Recall that PBPL is PBP
that uses a distance-to-go heuristic (d) and depth (D) instead
of a cost-to-go heuristic (h) and cost-so-far (g).

The results are shown in Figure 3(b). First, we can see
that PBPL is outperformed by both fPBP and PBP. This is
counter intuitive, as the actions-to-go heuristics (i.e, d) cor-
responds more accurately than cost-to-go heuristics (h) to
the number of expansions required to reach a goal. This
phenomenon can be explained by considering the accuracy
of d and h in this domain, shown in Figure 3(d). In this plot,
we show the relative error in the cost-to-go and actions-to-
go heuristics computed as h(n)

h∗(n) and d(n)
d∗(n) respectively. The

plot shows clearly that the d heuristic in this domain is far
less accurate than the h heuristic, explaining the improved
performance of h-based estimators (fPBP and PBP) over the
d-based estimator PBPL.

The second observation that can be seen from Figure 3(b)
is that fPBP outperforms both PBP, and PBPL. This sup-
ports the analysis given in the path-based section and exem-
plified in Figure 1. However, note that fPBP uses additional
information that is not available to PBP: optimal solution
cost. Interestingly, the difference in accuracy between fPBP
and PBP is very small, where fPBP is only about 1% more
accurate than PBP.

The relative performance of the estimators on the 15-
puzzle problem is shown in Figure 3(c). In this domain both
DBP and PBP have similar accuracy. Figure 2(a) shows the
d-distribution seen during an A* search for a random start
state of the 15-puzzle. The second-order polynomial fit used
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(a) (b) (c) (d)

Figure 4: Study of Progress Estimation in Greedy Search

by DBP is clearly a good choice in this case, which explains
the improved performance of DBP in this domain.

In contrast to the life-grids domain, PBP is more ac-
curate than fPBP in the 15-puzzle domain. Recall that
fPBP measures search progress according to the function
fmin−f(start)
OPT−f(start) . As OPT and f(start) remain fixed through-
out the search, we have that fPBP measures search progress
based on fmin, i.e., the value of the largest expanded f -
value. Thus, fPBP assumes that the search effort required
to increase the f -value is the same throughout search. In
the Grid domain the number of nodes in different f -layers
is a relatively fixed number as the f -values increases. Thus,
this assumption of fPBP holds. However, in the tiles domain
the number of nodes in a f -layer grows exponentially as the
f -value increases. Thus, in the tiles domain the assumption
that the search effort required to increase fmin is the same
throughout search clearly does not hold. PBP, on the other
hand, measures search progress according to the maximal
g(n)
f(n) observed. Thus, PBP also considered the advance in
g-values in addition to the advance in f -values seen during
the search. Hence, PBP is able to estimate different search
effort for different f -layers, which results in more accurate
progress estimations in this domain.

Greedy Search
We now discuss the search progress estimators in Greedy
Best First Search. First, we compare the three progress es-
timation approaches presented in this paper: speed-based
(VaSP and VeSP), path-based and histogram-based (DBP).
As explained in the path-based estimation section, for GBFS
we modified fPBP to consider either h or d instead of f , re-
sulting in hPBP and dPBP progress estimators, respectively.

First, consider the y-axis scale used for the GBFS
progress estimations in Figure 4 in comparison to the y-axis
scale used for the A* plots in Figure 3. Clearly, all progress
estimators perform poorly for estimating the progress of
GBFS, with errors ranging up to in comparison with their
performance in estimating the progress of an A* search.

Next, consider the life grid results shown in Figure 4(a).
Similar to the A* results described above, both hPBP
and DBP significantly outperform the speed-based methods

VaSP and VeSP. VaSP and VeSP both frequently err in their
estimates by more than 30%, while PBP and DBP have esti-
mates that do not err by more than 20%, and frequently have
less than 10% absolute error. hPBP and DBP differentiate
themselves by when they are most accurate, with hPBP be-
ing more accurate early on, and DBP having better estimates
near the end of the search.

Following, consider the performance of the different vari-
ants of PBP, namely hPBP, dPBP, PBP and PBPL. Accu-
racy results are shown in Figure 4(b) In this domain we see
small difference between these variants, where some of them
are more accurate at the beginning of the search (dPBP and
hPBP), while others path-based predictors are are better near
the end of the search (e.g., PBPL). It is hard to see a signifi-
cant variant outperforming the other.

Figure 4(c) presents these same estimation techniques in
greedy search on the 15-puzzle. Results in the tiles problem
are similar to those reported on grids in that DBP and hPBP
are still the best predictors overall, with DBP being more
accurate in most of the search, except near the end.

While hPBP produces accurate estimates with error fre-
quently below 10% on the Grid domain, its estimates on the
tiles domain are inaccurate. We conjecture that the inaccu-
racy of hPBP on the 15-puzzle is explained by the combina-
tion of two facts. First, usually in the beginning of a greedy
search the value of hmin decreases rapidly (Imai and Kishi-
moto 2011). This will mislead hPBP into thinking that the
search progressed more than it actually have. Second, the
range of heuristic values for the 15-puzzle is much smaller
than the range for the Grid domain. Thus, the rapid decrease
in hmin in the beginning of search will have a major impact
on the hPBP estimations for the 15 puzzle. For instance,
if hmin decreases from 40 to 20 with just a few nodes ex-
panded, hPBP will mistakenly assert that the search is about
half-way done. On the other hand, on a domain with much
deeper solutions and larger range of heuristic values, a quick
decrease of 20 in the hmin will not represent a large change
in the estimated search progress.

Another factor that contributes to the difference in accu-
racy of hPBP between the two domains is the accuracy of
the heuristic functions used. Figure 4(d) shows the accu-
racy of hPBP when using heuristic functions of different ac-
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curacy. Here we make hPBP estimations when employing
Manhattan Distance and the 7-8 additive pattern database
(7-8 PDB) (Felner, Korf, and Hanan 2004). Korf and Felner
showed that the 7-8 PDB is far more accurate than Man-
hattan Distance, and we see that the progress estimations
when using the 7-8 PDB are also more accurate. The heuris-
tic used in grid is relatively more accurate than the heuristic
used in the 15-puzzle. Thus, as observed in the results, hPBP
is often more accurate for life grids.

Even though DBP is the best estimator on the 15-puzzle as
shown in Figure 4(c), its estimations have an average error of
about 25%, reaching values of almost 40% in the beginning
and in the end of search. These are inaccurate estimations,
especially if compared to the DBP estimations for A* (where
the error of DBP is at most 10%). The inaccuracy of DBP for
greedy search is explained by the histograms in Figure 2(d)
and 2(c); the second-order polynomial used by DBP doesn’t
capture the shape of the d-distribution of greedy search.

Weighted A*
Now that we have discussed A* search and greedy search,
we turn our attentions to Weighted A* (Pohl 1970), a
best-first search algorithm that uses an evaluation function
fw(n) = g(n) + w · h(n), where w is a parameter. The be-
havior of Weighted A* (WA*) scales smoothly between the
A* and GBFS extremes, according to the value of w, where
w = 1 results in A*, and w =∞ results in GBFS.

First, we compare the accuracy of the speed-based, path-
based and distribution-based approaches, when used to esti-
mate the progress of Weighted A* with w = 1.5. Results for
life grid and 15-puzzle are shown in Figure 5(a) and 5(b). As
before, we see that PBP and DBP have, in general, the best
performance, and are more accurate than either VeSP and
VaSP when estimating search progress (VaSP is not shown
as it was much worse than other estimators).

Next, consider the effect of different values of w on the
performance of PBP. Figure 5(c) compares the performance
of PBP with w = 1.1, 1.5, 1.75 and 2. As can clearly be
seen, increasing w results in less accurate search progress
estimations. This is understandable, as increasing w results
in Weighted A* behaving more like GBFS. Since the accu-
racy of PBP was shown to be significantly worse for GBFS
than for A*, it is clear that PBP with higher w will be less
accurate that PBP for lower values w.

Lastly, we consider the performance of variants of the
PBP technique in Weighted A* search. Results are shown
in Figure 5(d). As the dPBP and PBPL estimates did not
work in either A* or GBFS, we omit them from the evalua-
tion here. Instead, we focus on hPBP, PBP, and wPBP. As
the results show, PBP outperforms both hPBP and wPBP.
We conjecture that PBP outperforms wPBP because f ′(n)
provides a pessimistic estimate of the search effort required
to complete search. Thayer and Ruml (2008) have shown
that WA* typically finds solutions with cost much lower than
w ∗OPT , and thus wPBP is misled.

Discussion and Summary
fPBP assumes that the search effort required to increase
fmin is the same across search; PBP assumes that the search

effort required to increase the value of g(n)
f(n) is also the same

throughout search. These assumptions might be problem-
atic in domains with shallow solutions and large branch-
ing factor. In such domains any change in fmin and in the
largest g-value seen might represent a large change in the
estimated percentage of search completed. For instance, in
a domain with average solution depth of 5, after expanding
the root node PBP might estimate that about 20% of search
was completed, while in reality very little of the search was
completed after expanding the root node. In such domains
we expect DBP to perform better, as long as the fitting func-
tion being used is able to capture the actual distribution of
d-values.

We observed the following trends in the results. First, the
novel PBP and DBP progress estimators are able to predict
with high accuracy the progress of an A* search, differing
from the actual progress by less than 5%. Second, the pro-
posed progress estimators are in general less accurate for
GBFS. Results for Weighted A* lie in the continuum be-
tween these two extremes. Third, it is often the case that the
simpler PBP variants are more accurate than even the more
complex DBP, as well as VaSP and VeSP.

Related Work
A considerable amount of research was devoted to estimat-
ing the search effort of tree-based methods (Korf, Reid, and
Edelkamp 2001; Zahavi et al. 2010; Lelis, Zilles, and Holte
2012; Knuth 1975; Burns and Ruml 2012; Kilby et al. 2006).
The largest difference between the methods we presented in
this paper and the ones mentioned above is that we estimate
search progress for best-first searches instead of tree-based
searches. Breyer and Korf (2008) predicted the number of
nodes expanded by A* for the 15-puzzle, but they used the
information learned from a complete breadth-first search in
the state space. Hernadvolgyi and Holte (2004) also made
estimations for the number of nodes expanded by A*, but
they ignored the transposition detection the algorithm does.
None of the methods cited above account for transposition
detection other than transpositions on a single path. To the
best of our knowledge we are the first to make predictions
of the search effort of algorithms that detect transpositions.
In addition, the methods presented in this paper are online
estimators in the sense that they estimate search effort while
using the information learned by a search algorithm, while
most tree-based methods do not consult search performance.

Future Work
While having good indications of when our searches will
end is important, the most exciting potential application of
progress estimation techniques is in the realm of search un-
der time constraints. Our evaluation showed that we have
more accurate estimators than those previously used in dead-
line search algorithms, and that is likely to lead to better per-
formance for search under a deadline.

In this paper, we do not consider adapting techniques for
estimating the size of an IDA* search tree to estimating best-
first search progress. The largest challenge here is learning
how to account for duplicates in tightly connected search
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Figure 5: Study of Progress Estimation in WA*

spaces like grids. Future work will investigation of how to
adapt the methods mentioned above so that they can be used
to measure search progress of best-first search.

Conclusion
In this paper we have presented and evaluated several tech-
niques for estimating the search progress during the execu-
tion of a search algorithm. Estimating the search progress
can improve the applicability of search algorithms in real ap-
plications, as end-users strongly prefer having progress indi-
cators such as progress bars when applications perform long
tasks (Myers 1985). This is to our knowledge the first work
on estimating the search progress. The proposed techniques
work well for A* and Weighted A* with low-weights. Fu-
ture work will study how to estimate the progress of GBFS
and other search algorithms.
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