
Abstracting Abstraction in Search II: Complexity Analysis

Christer Bäckström and Peter Jonsson
Department of Computer Science, Linköping University

SE-581 83 Linköping, Sweden
christer.backstrom@liu.se peter.jonsson@liu.se

Abstract

Modelling abstraction as a function from the original state
space to an abstract state space is a common approach in com-
binatorial search. Sometimes this is too restricted, though,
and we have previously proposed a framework using a more
flexible concept of transformations between labelled graphs.
We also proposed a number of properties to describe and clas-
sify such transformations. This framework enabled the mod-
elling of a number of different abstraction methods in a way
that facilitated comparative analyses. It is of particular inter-
est that these properties can be used to capture the concept of
refinement without backtracking between levels; how to do
this has been an open question for at least twenty years. In
this paper, we continue our previous research by analysing
the complexity of testing the various transformation proper-
ties for both explicit and implicit graph representations.

1 Introduction
Abstraction in combinatorial search is often modelled as a
function f from the vertices of one graph to the vertices
of another graph, the latter graph being the abstraction of
the first. It is also common that the function is a homomor-
phism. This approach is very natural and has proven useful
in many cases, cf. Holte et al. (1996), Helmert, Haslum,
and Hoffmann (2007) and Zilles and Holte (2010). It is not
always sufficient, however; one such case is abstraction in
planning. Motivated by the desire to model and compare
various abstraction methods for planning, we have earlier
(Bäckström and Jonsson 2012) defined a more flexible ab-
straction framework based on transformations between la-
belled graphs. A transformation is a pair 〈f,R〉, where f
is a transformation function and R is a label relation. The
function f maps vertices in the original graph to sets of ver-
tices in the abstract graph and the relation R specifies how
labels in the two graphs are related, which implicitly speci-
fies how subsets of arcs in the graphs are related. While the
transformation concept can capture many abstraction meth-
ods, it is a more general concept which is not specifically
tailored to abstraction. In order to classify, analyse and com-
pare transformations we also introduced a number of trans-
formation properties.

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

In our earlier publication (Bäckström and Jonsson 2012)
we have demonstrated the usefulness of this framework in
various ways. We have shown that a certain combination of
our transformation properties exactly captures the DPP con-
cept by Zilles and Holte (2010). A related concept is that
of path/plan refinement without backtracking to the abstract
level. Partial solutions to capturing this concept have been
presented in the literature, for instance, the ordered mono-
tonicity criterion by Knoblock, Tenenberg, and Yang (1991),
the downward refinement property (DRP) by Bacchus and
Yang (1994), and the simulation-based approach by Bundy
et al. (1996). However, how to define general conditions
that capture this concept has remained an open question in
the literature until our previous paper. There we proved that
different combinations of our transformation properties can
be used to capture this concept, and we can even distinguish
several different degrees of the concept. Furthermore, we re-
formulated five different abstraction methods in planning as
transformations. This enabled us to analyse and compare the
methods in new ways by determining their inherent transfor-
mation properties.

The reader is strongly recommended to also read our pre-
vious paper (Bäckström and Jonsson 2012) in connection
with this one, since that paper focused on presenting the
framework with motivating examples on how to use it, as
well as proving various theorems about it. This paper must
be viewed as a continuation of that work, focusing only on
the computational complexity of deciding which properties
a transformation has; certain aspects of the framework might
seem unmotivated if reading this paper alone. Sections 2 to 5
presents the framework used in our previous paper, but omits
all proofs and some of the discussions. All major definitions
and results about the framework itself remain. The new re-
sults are the complexity analyses in Sections 6 to 8. The
paper ends with a discussion of these results in Section 9.

2 STGs and STG Transformations
We first introduce our framework for studying abstractions.
Although the definitions may appear somewhat complex and
difficult to understand at first sight, there is a reason: we
want to prove results, not merely devote ourselves to dis-
cussions. We begin by defining some general notation and
concepts, then we introduce state transition graphs and our
transformation concept.

10

Proceedings of the Fifth Annual Symposium on Combinatorial Search

If X is a set, then |X| denotes the cardinality of X . A
partition of a set X is a set P of non-empty subsets of X
such that (1) ∪p∈P p = X and (2) for all p, q ∈ P , if p 6= q,
then p ∩ q = ∅. Let f : X → Y be a function, then
Rng(f) = {f(x) | x ∈ X} is the range of f . Often, a func-
tion f will be from X to 2Y (for some sets X and Y). In
this case, Rng(f) ⊆ 2Y , that is, the value of f is a subset of
Y , not an element in Y . For such functions we also define
f(Z) = ∪x∈Zf(x) for all Z ⊆ X .
Definition 1. A state transition graph (STG) over a set L of
labels is a tuple G = 〈S,E〉 where S is a set of vertices and
E ⊆ S×S×L is a set of labelled arcs. The set of labels in G
is implicitly defined as L(G) = L(E) = {` | 〈s, t, `〉 ∈ E}.
A sequence s0, `1, s1, `2, . . . , `k, sk of states in S and labels
in L(E) is a (state) path in G if either (1) k = 0 or (2)
〈si−1, si, `i〉 ∈ E for 1 ≤ i ≤ k.

The set S is called a state space and its members states.
More than one arc in the same direction between two states
is allowed, as long as the arcs have different labels. The in-
tention of the labels is to provide a means to identify a subset
of arcs by assigning a particular label to these arcs. This is
useful, for instance, in planning where a single action may
induce many arcs in an STG. If all arcs have the same la-
bel, which is allowed, then the STG collapses to an ordinary
directed graph. Arcs may be written as 〈s, t〉 and paths as
s0, . . . , sk if the exact labels are not relevant.
Definition 2. Let G1 = 〈S1, E1〉 and G2 = 〈S2, E2〉 be
two STGs. A total function f : S1 → 2S2 is a transfor-
mation function from G1 to G2 if Rng(f) is a partition of
S2. A label relation from G1 to G2 is a binary relation
R ⊆ L(G1)×L(G2). An (STG) transformation from G1 to
G2 is a pair τ = 〈f,R〉 where f is a transformation function
from G1 to G2 and R is a label relation from G1 to G2.

The transformation function f specifies how the transfor-
mation maps states from one STG to the other while the label
relationR provides additional information about how sets of
arcs are related between the two STGs. Note that f is for-
mally a function from S1 to 2S2 , that is, it has a subset of
S2 as value. We use a function rather than a relation since
it makes the theory clearer and simpler and is more in line
with previous work in the area.

Example 3. Consider two STGs: G1 : 00
a→ 01

b→ 10
a→ 11 and G2 : 0

c→ 1. Also define f1 : G1 → G2

such that f1(xy) = {x}. We see immediately that f1
is a transformation function from G1 to G2. Define f2 :
G1 → G2 such that f2(xy) = {x, y}; this function is
not a transformation function since f2(00) = {0} and
f2(01) = {0, 1} which implies that Rng(f2) does not
partition G2. Finally, the function f3(xy) = {2x +
y, 7 − 2x − y} is a transformation function from G1 to
G3=〈{0, . . . , 7}, {〈x, y, d〉 | x 6= y}〉 since Rng(f3) par-
titions {0, . . . , 7} into {{0, 7}, {1, 6}, {2, 5}, {3, 4}}. The
functions f1 and f3 are illustrated in Figure 1.

A high degree of symmetry is inherent in our transforma-
tion concept. It is, in fact, only a conceptual choice to say
that one STG is the transformation from another and not the
other way around. This symmetry simplifies our exposition

00 01 10 11
a b aG1:

0 1
cG2:

f1(00) = f1(01) f1(10) = f1(11)

00 01 10 11
a b aG1:

0

1 2

3

7

6 5

4

G3: d

f3(00)

f3(01) f3(10)

f3(11)

Figure 1: The functions f1 and f3 in Example 3.

considerably, but it does not automatically carry over also to
all types of properties of transformations; some care must be
exercised in such cases, as we will see examples of later.
Definition 4. Let G1 = 〈S1, E1〉 and G2 = 〈S2, E2〉 be
two STGs, let f be a transformation function from G1 to
G2 and let R be a label relation from G1 to G2. Then, the
reverse transformation function f : S2 → 2S1 is defined as
f(t) = {s ∈ S1 | t ∈ f(s)} and the reverse label relation
R ⊆ L(G2)× L(G1) is defined as R(`2, `1) iff R(`1, `2).

Consider the functions f1 and f3 from Example 3 once
again. We see that f1(0) = {00, 01} and f1(1) = {10, 11},
while f3(0) = f3(7) = {00}, f3(1) = f3(6) = {01},
f3(2) = f3(5) = {10} and f3(3) = f3(4) = {11}.
Lemma 5. Let f be a transformation function from an STG
G1 = 〈S1, E1〉 to an STG G2 = 〈S2, E2〉. Then:

1) for all s1 ∈ S1, s2 ∈ S2, s1 ∈ f(s2) iff s2 ∈ f(s1).
2) f is a transformation function from G2 to G1.
3) If 〈f,R〉 is a transformation from G1 to G2, then 〈f,R〉

is a transformation from G2 to G1.

3 Path Refinement
If we want to find a path in an STG by abstraction, then we
must transform this STG into an abstract STG and find a
path in the latter. We must then somehow refine this abstract
path into a path in the original STG. Preferably, we want to
do this without backtracking to the abstract level. We define

11

three different kinds of path refinements that achieve this,
with varying degrees of practical usefulness.

Definition 6. Let G1 = 〈S1, E1〉 and G2 = 〈S2, E2〉 be two
STGs and let f be a transformation function from G1 to G2.
Let σ = t0, t1, . . . , tk be an arbitrary path in G2. Then:

1) σ is trivially downward state refinable if there are two
states s0 ∈ f(t0) and s` ∈ f(tk) s.t. there is a path in G1

from s0 to s`.
2) σ is weakly downward state refinable if there is a se-

quence s0, s1, . . . , sk of states in S1 such that si ∈ f(ti) for
all i s.t. 0 ≤ i ≤ k and there is a path from si−1 to si in G1

for all i (1 ≤ i ≤ k).
3) σ is strongly downward state refinable if for every i s.t.

1 ≤ i ≤ k, there is a path from si−1 to si in G1 for all
si−1 ∈ f(ti−1) and all si ∈ f(ti).

Trivial path refinement only requires that if there is a path
between two states in the abstract graph, then there is a path
between two corresponding states in the original graph. The
two paths need not have any other connection at all. The
other two refinements tie the two paths to each other in such
a way that the states along the abstract path are useful for
finding the ground path. Earlier attempts to capture refine-
ment without backtracking to higher levels appear in the
literature, eg. Knoblock, Tenenberg, and Yang (1991) and
Bacchus and Yang (1994), but these are more limited and
inherently tied to specific abstraction methods.

4 Properties of Transformations
As a tool to analyse and classify transformations in a general
way, we define the following properties.

Definition 7. Let G1 = 〈S1, E1〉 and G2 = 〈S2, E2〉 be
two STGs and let τ = 〈f,R〉 be a transformation from G1

to G2. Then τ can have the following method properties:

M↑: |f(s)| = 1 for all s ∈ S1.

M↓: |f(s)| = 1 for all s ∈ S2.
R↑: If 〈s1, t1, `1〉 ∈ E1, then there is some 〈s2, t2, `2〉 ∈ E2

such that R(`1, `2).
R↓: If 〈s2, t2, `2〉 ∈ E2, then there is some 〈s1, t1, `1〉 ∈ E1

such that R(`1, `2).
C↑: If R(`1, `2) and 〈s1, t1, `1〉 ∈ E1, then there is some
〈s2, t2, `2〉 ∈ E2 such that s2 ∈ f(s1) and t2 ∈ f(t1).

C↓: If R(`1, `2) and 〈s2, t2, `2〉 ∈ E2, then there is some
〈s1, t1, `1〉 ∈ E1 such that s1 ∈ f(s2) and t1 ∈ f(t2).
Properties M↑/M↓ (upwards/downwards many-one) de-

pend only on f and may thus hold also for f itself. The in-
tention of M↑ is to say that f maps every state in G1 to a sin-
gle state in G2. We often write f(s) = t instead of t ∈ f(s)
when f is M↑ and analogously for f . Properties R↑/R↓ (up-
wards/downwards related) depend only on R and may thus
hold also for R itself. The intention behind R↑ is that if
there is a non-empty set of arcs in G1 with a specific label,
then there is at least one arc in G2 that is explicitly speci-
fied via R to correspond to this arc set. Properties C↑/C↓
(upwards/downwards coupled) describe the connection be-
tween f and R. The intention behind C↑ is to provide a way

to tie up f and R to each other and require that arcs that are
related via R must go between states that are related via f .
We use a double-headed arrow when a condition holds both
upward and downward. For instance, Cl (up-down coupled)
means that both C↑ and C↓ hold. These classifications re-
tain the symmetric nature of transformations. For instance,
〈f,R〉 is a C↓ transformation from G1 to G2 if and only if
〈f,R〉 is an C↑ transformation from G2 to G1.
Example 8. We reconsider Example 3. The function f1 :
G1 → G2 is M↑ but is not M↓ while function f3 : G1 → G3

is M↓ but not M↑. Define R = {a, b} × {c} and note that
the transformation 〈f1, R〉 : G1 → G2 has both property R↑
and R↓. Furthermore, 〈f1, R〉 is neither C↓ nor C↑. One
may also note that if R′ = {a, b} × {d} then 〈f3, R′〉 is C↑
but not C↓
As a further example, the homomorphism-based abstraction
concept used by Zilles and Holte (2010) and others, is cap-
tured by the class of M↑RlCl transformation functions.

In addition to these properties we also define a number of
properties that describe various ways in which paths in one
graph can be refined into paths in the other graph. We first
need to define a concept of reachability, though.
Definition 9. Let G = 〈S,E〉 be an STG. Then for all
s ∈ S, the set R(s) of reachable states from s is defined
as R(s) = {t ∈ S | there is a path from s to t in G}. We
extend this s.t. for all T ⊆ S,R(T) = ∪s∈TR(s).
When we consider two STGs G1 and G2 simultaneously we
write R1(·) and R2(·) to clarify which graph the reachabil-
ity function refers to. The refinement properties can now be
defined as follows.
Definition 10. Let G1 = 〈S1, E1〉 and G2 = 〈S1, E1〉 be
two STGs and let f be a transformation function from G1 to
G2. Then f can have the following instance properties:1.
Pk↓: For every path t0, . . . , tk in S2, there are s0, . . . , sk ∈
S1 s.t. si ∈ f(ti) for all i (0 ≤ i ≤ k) and si ∈ R1(si−1)
for all i (1 ≤ i ≤ k).

Pk↑: For every path s0, . . . , sk in S1, there are t0, . . . , tk ∈
S2 s.t. ti ∈ f(si) for all i (0 ≤ i ≤ k) and ti ∈ R2(ti−1)
for all i (1 ≤ i ≤ k).

PT↓: P1↓ holds.
PT↑: P1↑ holds.
PW↓: Pk↓ holds for all k > 0.
PW↑: Pk↑ holds for all k > 0.
P↓: If t ∈ R2(f(s)), then f(t) ∩R1(s) 6= ∅.
P↑: If t ∈ R1(s), then f(t) ∩R2(f(s)) 6= ∅.
PS↓: If t ∈ R2(f(s)), then f(t) ⊆ R1(s).
PS↑: If t ∈ R1(s), then f(t) ⊆ R2(f(s)).
We briefly explain the downward properties and note that
the upward properties can be understood in an analogous,
but not fully symmetric, way. Consider a path t0, t1, . . . , tk
in the abstract graph, for some k > 0. If property Pk↓
holds, then there are states s0, s1, . . . , sk in the original

1The earlier KR paper contains a typo in the definitions of Pk↓
and Pk↑, which is corrected here.

12

graph such that there is a path from s0 to sk passing through
all of s1, . . . , sk−1 in order. Consider the example in Fig-
ure 2. This transformation function f satisfies P1↓ since
both single-arc paths t0, t1 and t1, t2 in G2 have correspond-
ing paths in G1. However, f does not satisfy P2↓ since the
path t0, t1, t2 does not have a corresponding path in G1; we
can go from f(t0) to f(t1) and from f(t1) to f(t2) but we
cannot go all the way from f(t0) to f(t2).

t0 t1 t2G2:

s0

u0

s1

u1

s2

u2

G1:

f(t0) f(t1) f(t2)

Figure 2: A transformation that is P1↓ but not P2↓.

The following relationships hold:

PS↓ ⇒ P↓ ⇒ PW↓ ⇒ PT↓
PT↓ 6⇒ PW↓ 6⇒ P↓ 6⇒ PS↓

Property Pl is a generalisation to our transformation func-
tions of the DPP property (Zilles and Holte 2010), and it co-
incides with DPP if the functions are restricted in the same
way as theirs. Some of the other P properties can be used to
capture different degrees of path refinement as follows.

Theorem 11. Let G1 = 〈S1, E1〉 and G2 = 〈S1, E1〉 be
two STGs and let τ = 〈f,R〉 be a transformation from G1

to G2. Then every path in G2 is
1) trivially downward state refinable iff τ is PT↓,
2) weakly downward state refinable iff τ is PW↓ and
3) strongly downward state refinable iff τ is PS↓.

Zilles and Holte (2010) proved that testing if DPP holds
is in P for explicit graphs and PSPACE-complete for im-
plicit graphs. We will later generalise these results to hold
also for testing Pl.

5 MSTRIPS and Implicit STGs
To be able to specify STGs implicitly with succinct repre-
sentations we will introduce the MSTRIPS concept, which is
a straightforward generalisation of STRIPS to multi-valued
state variables. Other such formalisms are possible and the
choice does not matter much for the forthcoming results.
MSTRIPS uses state spaces that are induced by variables.
A state is then defined as a vector of values for these vari-
ables. We will, however, do this a bit differently and use a
state concept based on sets of variable-value pairs. While
this make the basic definitions slightly more complicated, it
will simplify the forthcoming definitions and proofs.

Definition 12. A variable set V is a set of objects called
variables. A domain function D for V is a function that
maps every variable v ∈ V to a corresponding domain Dv

of values. An atom over V and D is a pair 〈v, x〉 (usually
written as (v = x)) such that v ∈ V and x ∈ Dv . A state is
a set of atoms and V ·D = ∪v∈V ({v}×Dv) denotes the set
of all possible atoms over V and D. A state s ⊆ V ·D is

1) consistent if each v ∈ V occurs at most once in s,
2) total if each v ∈ V occurs exactly once in s.

The filter functions T and C are defined for all S ⊆ V ·D as:
1) C(S) = {s ⊆ S | s is consistent }.
2) T (S) = {s ⊆ S | s is total }.

Let s, t ∈ C(V ·D), U ⊆ V and v ∈ V . Then
V (s) = {v | (v = x) ∈ s}, s[U] = s ∩ (U ·D),
s[v] = s[{v}] and sn t = s[V − V (t)] ∪ t.
Note that T (V ·D) is the set of all total states over V and
D and C(V ·D) is the set of all consistent states. Unless
otherwise specified, states will be assumed total and we will
usually write state rather than total state.

We can define MSTRIPS as follows.
Definition 13. An MSTRIPS frame is a tuple f = 〈V,D,A〉
where V is a variable set, D is a domain function for
V and A is a set of actions. Each action a ∈ A
has a precondition pre(a) ∈ C(V ·D) and a postcondi-
tion post(a) ∈ C(V ·D). The STG G(f) = 〈S,E〉
for f is defined s.t. 1) S = T (V ·D) and 2) E =
{〈s, t, a〉 | a ∈ A,pre(a) ⊆ s and t = sn post(a)}. A se-
quence ω = a1, . . . , ak of actions in A is a plan from
a state s ∈ S to a state t ∈ S if there is a path
s0, a1, s1, a2 . . . , ak, sk in G(f) s.t. s0 = s and sk = t.
An MSTRIPS STG is an STG specified as an MSTRIPS
frame, with the actions used as labels.

6 Computational Problems
We define the following decision problems.

Transformation Function
INSTANCE: Two state spaces S1 and S2 and a function
f : S1 → 2S2 .
QUESTION: Is f a transformation function from S1 to S2?

X-Test
INSTANCE: Two STGs G1 = 〈S1, E1〉 and G2 = 〈S2, E2〉
and a transformation τ = 〈f,R〉 from S1 to S2.
QUESTION: Does τ satisfy property X?

For properties that have up and down variants, we will usu-
ally omit the arrow when the complexity is the same for both
directions. For instance, M-Test refers collectively to M↑-
Test, M↓-Test and Ml-Test.

The STGs may be given either explictly or implic-
itly as MSTRIPS frames. The function f and the rela-
tion R are assumed polynomial-time computable, and for
Transformation Function we assume that f returns some
special marker symbol for undefined input values (which is
possible since f is polynomial-time computable). Note that
in the case of explicit STGs we have that if f is polynomial
time then also f is polynomial-time computable. However,
this implication does not necessarily hold for implicit STGs.
Lemma 14. Let G1 and G2 be two arbitrary STGs and let f
be an arbitrary polynomial-time computable transformation
function from G1 to G2. Then:

13

1) f is polynomial-time computable if G1 and G2 are ex-
plicit.

2) Deciding if f(s) 6= ∅ for arbitrary s ∈ S2 is NP-
complete in the general case if G1 and G2 are implicit.

Proof. 1) Straightforward since we can enumerate the states
in both STGs in polynomial time.

2) Membership: Guess a state t ∈ S1 and check (in poly-
nomial time) whether s ∈ f(t), or not.
Hardness: Reduction from Satisfiability. Let ϕ be an ar-
bitrary formula over the variables x = x1; . . . ;xn. Let
V1 = {x1, . . . , xn} and V2 = {y} where Dv = {0, 1} for
all v ∈ V1 ∪ V2. Let S1 and S2 be the corresponding state
spaces. Define the transformation function f from G1 to G2

s.t. f(x) = {1} iff ϕ(x) is true. Then, f(1) is the set of
models for ϕ, so ϕ is satisfiable if and only if ϕ 6= ∅.

It should be noted that the size of f(s) is not even polyno-
mially bounded in the general case.

Table 1 summarizes the complexity results that will be
proven in the following two sections.

Problem Explicit STGs Implicit STGs
Transf. Func. in P Πp

2-complete
M-Test in P coNP-complete
R-Test in P in P
C↑-Test in P coNP-complete
C↓-Test in P Πp

2-complete
Pk-Test in P PSPACE-complete
PW-Test coNP-complete PSPACE-complete
P-Test, PS-Test in P PSPACE-complete

Table 1: Complexity results.

7 Explicit STGs
In this section we analyse the decision problems from the
previous section for explicit STGs.

Theorem 15. Transformation Function, M-Test, R-Test
and C-Test are in P for explicit STGs.

Proof sketch. Straightforward since we can enumerate the
vertices and arcs in polynomial time.

Theorem 16. Pk-Test is in P for all k > 0 and explicit
STGs.

Proof sketch. We prove the Pk↓ case. Let t0, . . . , tk be a
path in G2. Obviously |f(ti)| ≤ |S1| for each i s.t. 0 ≤
i ≤ k. Hence, there are at most |S1|k combinations of states
s0, . . . , sk s.t. si ∈ f(ti) to check for a path from s0 to sk
via s1, . . . , sk−1. Furthermore, there at most |S2|k paths of
length k in G2 (since we can ignore the labels). It follows
that we can check all these in polynomial time.

The Pk↑ case is analogous.

Theorem 17. P-Test and PS-Test are in P for explicit STGs.

Proof. Immediate from Definition 10 since f , R1 and R2

can be computed in polynomial time for explicit STGs.

Theorem 18. PW-Test is coNP-complete for explicit STGs.

Proof. We prove the PW↓ case.
Membership: The complementary problem of testing if PW↓
does not hold can be solved as follows. Guess a path
t0, . . . , tk of length k in G2, for some k s.t. 1 ≤ k ≤ |S2|.
Define the sequence T0, . . . , Tk of subsets of S1 s.t.

1) T0 = f(t0) and
2) Ti = f(ti) ∩R1(Ti−1) for 0 < i ≤ k.

This sequence can be computed in polynomial time since
we can compute f and R1 in polynomial time. Further-
more, there is a path s0, . . . , sk in G1 s.t. si ∈ f(ti) for
all i (0 ≤ i ≤ k) if and only if Tk 6= ∅. Hence, this problem
is in NP so it follows that testing if PW↓ holds is in coNP.

Hardness: Reduction from Unsatisfiability. Let
F = {c1, . . . , cm} be a set of clauses where each clause
cj ∈ F is a set of literals over the variables x1, . . . , xn.
Construct an STG G1 = 〈S1, E1〉such that:
S1 = S0

1 ∪ . . . ∪ Sm+1
1 , where

Sj
1 = {f j0 , . . . , f

j
n+1, t

j
0, . . . , t

j
n+1} for 0 ≤ j ≤ m+1.

E1 = E0
1 ∪ . . . ∪ Em+1

1 , where
E0

1 = {〈t00, f01 〉, 〈t00, t01〉} ∪
{〈f0i , f0i+1〉, 〈f0i , t0i+1〉, 〈t0i , f0i+1〉, 〈t0i , t0i+1〉 |

1 ≤ i < n},
Ej

1 = {〈tj0, f
j
1 〉 | x1 6∈ cj} ∪ {〈t

j
0, t

j
1〉 | x1 6∈ cj} ∪

{〈f ji , f
j
i+1〉, 〈t

j
i , f

j
i+1〉 | 1 ≤ i < n, xi+1 6∈ cj}∪

{〈f ji , t
j
i+1〉, 〈t

j
i , t

j
i+1〉 | 1 ≤ i < n, xi+1 6∈ cj}∪

{〈f jn, t
j
n+1〉, 〈tjn, t

j
n+1〉}, for 1 ≤ j ≤ m, and

Em+1
1 = {〈fm+1

n , tm+1
n+1 〉, 〈tm+1

n , tm+1
n+1 〉} ∪

{〈fm+1
i , fm+1

i+1 〉, 〈f
m+1
i , tm+1

i+1 〉,
〈tm+1

i , fm+1
i+1 〉, 〈t

m+1
i , tm+1

i+1 〉 | 1 ≤ i < n}.
Also define an STG G2 = 〈S2, E2〉 such that:
S2 = {f0, . . . , fn+1, t0, . . . , tn+1} and
E2 = {〈t0, f1〉, 〈t0, t1〉, 〈fn, tn+1〉, 〈tn, tn+1〉} ∪

{〈fi, fi+1〉, 〈fi, ti+1〉, 〈ti, fi+1〉, 〈ti, ti+1〉 |
1 ≤ i < n}.

For each j such that 0 ≤ j ≤ m + 1, define the subgraph
Gj

1 = 〈Sj
1, E

j
1〉 of G1. These STGs are illustrated in Fig-

ure 3. Define the transformation function f from G1 to G2

such that
f(tji) = {ti} for 0 ≤ i ≤ n+ 1 and 0 ≤ j ≤ m+ 1

f(f ji) = {fi} for 1 ≤ i ≤ n and 0 ≤ j ≤ m+ 1
We first note that every path in G2 from t0 to tn+1 must

pass either fi or ti, but not both, for every i such that 1 ≤
i ≤ n. That is, there is exactly one path from t0 to tn+1 for
every possible truth assignment for x1, . . . , xn. We also note
that G0

1 and Gm+1
1 are both isomorphic to G2 except that in

G0
1 there are no arcs to t0n+1 and in Gm+1

1 there are no arcs
from tm+1

0 . Hence, any path in G2 of length at most n is
always weakly refinable to a path in either G0

1 or Gm+1
1 . We

further note that for arbitrary j such that 1 ≤ j ≤ m, every

14

G2 :
f0

t0

f1

t1

f2

t2

fn−1

tn−1

fn

tn

fn+1

tn+1

G0
1 :

f00

t00

f01

t01

f02

t02

f0n−1

t0n−1

f0n

t0n

f0n+1

t0n+1

Gj
1 :

f j0

tj0

if x1 6∈ cj

if x1 6∈ cj

f j1

tj1

if x2 6∈ cj

if x2 6∈ cj

f j2

tj2

f jn−1

tjn−1

if xn 6∈ cj

if xn 6∈ cj

f jn

tjn

f jn+1

tjn+1

Gm+1
1 :

fm+1
0

tm+1
0

fm+1
1

tm+1
1

fm+1
2

tm+1
2

fm+1
n−1

tm+1
n−1

fm+1
n

tm+1
n

fm+1
n+1

tm+1
n+1

G1 :

Figure 3: The STG G2 and the components of the STG G1

in the proof of Theorem 18 (only one generic component is
shown for G1

1 . . . ,Gm
1). Dashed arcs occur or not dependent

on the literals of the corresponding clause.

path in Gj
1 from tj0 to tjn+1 corresponds to a truth assignment

for x1, . . . , xn that does not satisfy clause cj . Consider an
arbitrary path σ2 of length n+1 in G2, which must be from
t0 to tn+1. Assume σ2 is refinable to a path σ1 in G1. Since
neither G0

1 nor Gm+1
1 has any path of length n + 1, there

must be some j such that 1 ≤ j ≤ m and σ1 is a path in
Gj

1, i.e. clause cj is not satisfied by the assignment. Instead
assume that σ2 is not refinable to any path in G1. Then all
clauses c1, . . . , cm must be satisfied by the assignment.

That is, every path of length at most n in G2 is always
weakly refinable to a path in G1 and every path of length
n+1 in G2 is weakly refinable to a path in G1 if and only if
F is not satisfiable. Since G2 has no paths longer than n+1
it follows that f is PW↓ if and only F is not satisfiable. The
theorem follows since Unsatisfiability is coNP-hard.

8 Complexity for Implicit STGs
We now turn to implicit STGs represented as MSTRIPS
frames. The symbol “;” denotes sequence concatenation.
Theorem 19. Transformation Function is Πp

2-complete
for MSTRIPS STGs.

Proof. Hardness: Reduction from ∀∃-SAT. Let ψ =
∀x∃y.ϕ(x,y) be a ∀∃-SAT formula s.t. x =

x1, . . . , xm and y = y1, . . . , yn. Define V1 =
{x1, . . . , xm, y1, . . . , yn, z} and V2 = {x1, . . . , xm, z},
where Dv = {0, 1} for all v ∈ V1 ∪ V2. Let S1 = V1 ·D1

and S2 = V2 ·D2 be the corresponding state spaces. Define
a function f : S1 → 2S2 as follows:
f(x;y; 0) = {x; 1} if ϕ(x,y) is true.
f(x;y; 0) = {x; 0} if ϕ(x,y) is false.
f(x;y; 1) = {x; 0} always.

Note that testing whether ϕ is true for an assignment is poly-
nomial time. Also note that |f(x;y; z)| = 1 for all x, y and
z, so f is total and maps every state in S1 to exactly one
state in S2. Hence, Rng(f) is a partition of S2 if and only
if f(S1) = S2. For all x there are always y and z such
that f(x;y; z) = {x; 0}, but there are y and z such that
f(x;y; z) = {x; 1} if and only if there is some y such that
ϕ(x,y) is true. That is, f(S1) = S2 if and only if ψ is sat-
isfiable. Since f is a transformation function from S1 to S2

if and only if Rng(f) is a partition of S2, it follows that f is
a transformation function if and only if ψ is satisfiable. We
conclude that Transformation Function is Πp

2-hard.
Membership: We must verify that f is total and that

Rng(f) is a partition of S2. We can verify that f is not
total by guessing a state s ∈ S1 and verifying that f(s) is
undefined. This is in NP since f is polynomial time, so ver-
ifying that f is total is in coNP. Verifying that f(s) 6= ∅ for
all s ∈ S1 is in coNP by an analogous argument. To verify
that f(s) and f(t) are disjoint if f(s) 6= f(t), consider the
complementary problem of verifying that they are not dis-
joint in this case. This can be done by guessing two states s
and t and verifying that f(s) 6= f(t) but f(s) ∩ f(t) 6= ∅.
Hence, this problem is in NP, so the original problem is in
coNP. Finally, we need to prove that f(S1) = S2, i.e. that

∀t ∈ S2∃s ∈ S1 . t ∈ f(s).
Consider the complementary problem, that is, to verify that

∃t ∈ S2¬∃s ∈ S1 . t ∈ f(s).
We can guess t and use an oracle for coNP to verify there
is no s s.t. t ∈ f(s). Hence, this problem is in NPcoNP =

NPNP so the original problem is in coNPNP = Πp
2.

Theorem 20. M-Test is coNP-complete for MSTRIPS
STGs.

Proof. Membership: We first prove the M↑ case. Consider
the complementary problem of deciding if f does not satisfy
M↑. This can be solved by guessing a state s ∈ S1 and then
verify that |f(s)| > 1. Hence, this problem is in NP so
testing if τ is M↑ is in coNP.

Since f is not guaranteed to be polynomial-time com-
putable we must handle the M↓ case differently. We first
note that for arbitrary state s ∈ S2, |f(s)| > 1 iff there are
two states t, t′ ∈ S1 s.t. t 6= t′ and s ∈ f(t)∩f(t′). Consider
the complementary problem of deciding if τ does not satisfy
M↓. We can check this by guessing two states t, t′ ∈ S1 and
then verify that t 6= t′ and f(t) ∩ f(t′) 6= ∅. Hence, this
problem is in NP so testing if τ is M↓ is in coNP.

Hardness: We first prove the M↑ case by reduction
from Unsatisfiability. Let ϕ(x) be a formula over x =

15

x1, . . . , xm. Define V1 = V2 = {x1, . . . , xm, z}, where
Dv = {0, 1} for all v ∈ V1. Let S1 = V1 ·D1 = S2 be the
corresponding state spaces. Define f : S1 → 2S2 s.t.
f(x; 0) = {x; 0} if ϕ(x) is false.
f(x; 1) = {x; 1} if ϕ(x) is false.
f(x; 0) = f(x; 1) = {x; 0,x; 1} if ϕ(x) is true.

We note that f is a transformation function from G1 to
G2. Furthermore, f(x; 0) 6= f(x; 1) if ϕ(x) is false but
f(x; 0) = f(x; 1) if ϕ(x) is true. That is, |f(x; z)| = 1 for
all x and z if and only if ϕ(x) is not satisfiable. It follows
that M↑-Test is coNP-hard.

For the M↓ case, we first note that every element in f(S1)
is either of the form {s} or {s, t}, where s, t ∈ S1. Hence,
we have f({s}) = f(s) and f({s, t}) = f(s) = f(t), i.e.
f is polynomial-time computable. It then follows from the
symmetry between M↑ and M↓ that testing M↓ is coNP-hard
since we can swap G1 with G2 and f with f .

Theorem 21. R-Test is in P for MSTRIPS STGs.

Proof. We prove the R↑ case and R↓ is analogous. For ev-
ery a1 ∈ A1, both pre(a1) and post(a1) are consistent by
definition so a1 defines at least one arc in G1. The analo-
gous holds for A2. To check if R↑ holds it is thus sufficient
to check that for every a1 ∈ A1 there is some a2 ∈ A2 s.t.
R(a1, a2). This is obviously polynomial time.

Theorem 22. C↑-Test is coNP-complete for MSTRIPS
STGs.

Proof. Membership: Consider the complementary problem
of deciding if τ is not C↑. Guess an a1 ∈ A1, an a2 ∈ A2

and two s, t ∈ S1 s.t. 〈s, t, a1〉 ∈ E1. Then we check that
there are no s′ ∈ f(s) and t′ ∈ f(t) s.t. 〈s′, t′, a2〉 ∈ E2.
Since f is polynomial-time computable, there can be at most
a polynomial number of such pairs. Hence, this problem is
in NP so deciding if τ is C↑ is in coNP.

Hardness: Reduction from Unsatisfiability. Let ϕ(x)
be a formula over x = x1, . . . , xm. Define V1 = V2 =
{x1, . . . , xm, y, z}, where Dv = {0, 1}. Let S1 and S2

be the corresponding state spaces. Define the action sets
A1 = A2 = {a} where pre(a) = {(y = 0), (z = 0)}
and post(a) = {(z = 1)}. Consider the MSTRIPS frames
f1 = f2 = 〈V1, D1, A1〉 and their corresponding STGs
G1 = 〈S1, E1〉 and G2 = 〈S2, E2〉. Obviously, both E1

and E2 have an arc from x; 0; 0 to x; 0; 1 for every x and no
other arcs. Define f : S1 → 2S2 s.t.
f(x; y; z) = {x; y; z} if ϕ(x) is false.
f(x; 0; z) = {x; 1; z} if ϕ(x) is true.
f(x; 1; z) = {x; 0; z} if ϕ(x) is true.

We note that f is a transformation function from G1 to G2.
Furthermore, f map x; 0; 0 and x; 0; 1 to the sets of them-
selves if and only if ϕ(x) is false. Also define the relation
R = {〈a, a〉} and the transformation τ = 〈f,R〉. We must
prove that ϕ is unsatisfiable if and only if τ is C↑.

if: Suppose C↑ holds. Let 〈s, t, a〉 be an arbitrary arc in
E1. Then s = x; 0; 0 and t = x; 0; 1 for some x. Since
R(a, a) holds there must be an arc 〈f(s), f(t), a〉 in E2.
This is only possible if f(s) = s and f(t) = t. Since 〈s, t, a〉
was chosen arbitrarily, we have f(x; 0; 0) = {x; 0; 0} and

f(x; 0; 1) = {x; 0; 1} for all x. It thus follows from the
definition of f that there is no x s.t. ϕ(x) is true.

only if: Suppose ϕ is unsatisfiable. Then f(x; 0; 0) =
{x; 0; 0} and f(x; 0; 1) = {x; 0; 1} for all x. Hence,
C↑ holds.

Theorem 23. C↓-Test is Πp
2-complete for MSTRIPS STGs.

Proof. Membership: Consider the complementary problem
of deciding if τ does not satisfy C↓, that is, checking that

∃s, t, `, `′(〈s, t, `〉 ∈ E2 ∧ R(`′, `) ∧ ¬ϕ)
holds, where ϕ is

∃s′, t′(〈s′, t′, `′〉 ∈ E1 ∧ s′ ∈ f(s) ∧ t′ ∈ f(t)).
Consider the problem of deciding if ϕ holds. This problem
is in NP since ϕ is equivalent to

∃s′, t′(〈s′, t′, `′〉 ∈ E1 ∧ s ∈ f(s′) ∧ t ∈ f(t′)).
Hence, the complementary problem C of deciding if ¬ϕ
holds is in coNP. We can thus check that C↓ does not hold
by guessing an arc 〈s, t, `〉 ∈ E2 and a label `′ and then use
an oracle for C to verify that there is no corresponding arc
in E1. It follows that the problem is in NPcoNP = NPNP.
That is, checking if C↓ holds is in coNPNP = Πp

2.
Hardness: Reduction from ∀∃-SAT. Let ψ =

∀x∃y.ϕ(x,y) be a ∀∃-SAT formula s.t. x = x1, . . . , xm
and y = y1, . . . , yn. Define V2 = {x1, . . . , xm, z, u}
and V1 = V2 ∪ {y1, . . . , yn}, where Dv = {0, 1} for
all v ∈ V1. Let S1 = V1 ·D1 and S2 = V2 ·D2 be the
corresponding induced state spaces. Define the action sets
A1 = A2 = {a} where pre(a) = {(z = 0), (u = 0)}
and post(a) = {(u = 1)}. Consider the MSTRIPS frames
f1 = 〈V1, D,A1〉 and f2 = 〈V2, D,A2〉 with their corre-
sponding STGs G1 = 〈S1, E1〉 and G2 = 〈S2, E2〉. Define
f : S1 → 2S2 as follows:
f(x;y; z;u) = {x; z;u} if ϕ(x,y) is true.
f(x;y; 0;u) = {x; 1;u} if ϕ(x,y) is false.
f(x;y; 1;u) = {x; 0;u} if ϕ(x,y) is false.

We note that f is a transformation function from G1 to G2.
Furthermore, f map x; 0; 0 and x; 0; 1 to the sets of them-
selves if and only if ϕ(x) is false. Also define the relation
R = {〈a, a〉} and the transformation τ = 〈f,R〉. We must
prove that ψ is true if and only if τ is C↓.

if: Suppose C↓ holds. Let 〈s, t, a〉 be an arbitrary arc in
E2. Then s = x; 0; 0 and t = x; 0; 1 for some x. Since
R(a, a) holds and C↓ holds there must be an arc 〈s′, t′, a〉 ∈
E1 s.t. s′ ∈ f(s) and t′ ∈ f(t). By definition of f this is
only possible if {s} = f(s′) and {t} = f(t′). Since 〈s, t, a〉
was chosen arbitrarily, we have f(x;y; 0; 0) = {x; 0; 0} and
f(x;y; 0; 1) = {x; 0; 1} for at least one y for every x. It
follows from the definition of f that ψ must be true.

only if: Suppose ψ is true. Then for every x there is at
least one y s.t. f(x;y; 0; 0) = {x; 0; 0} and f(x;y; 0; 1) =
{x; 0; 1}, i.e. x;y; 0; 0 ∈ f(x; 0; 0) and x;y; 0; 1 ∈
f(x; 0; 1). It follows that C↓ is satisfied.

Theorem 24. PT-Test, Pk-Test, PW-Test, P-Test and PS-
Test are PSPACE-complete for MSTRIPS STGs, even if f is
the identity function.

16

Proof sketch. Hardness: We first prove the PT↓ case, i.e. the
case P1↓. Let f = 〈V,D,A〉 be an MSTRIPS frame and let
G1 = 〈S1, E1〉 be the STG for f . Let s and t be arbitrary
states in S1. Construct the STG G2 = 〈S2, E2〉 s.t. S2 = S1

and E2 = {〈s, t〉}. Let f be the identity function. There is
only one path in G2, the path from s to t consisting of one
arc. Checking if there is a corresponding path from s to t
in G1 requires deciding if there is a plan from s to t in G1,
which is PSPACE-complete (Bylander 1994, Theorem 3.1).
Hence, it is PSPACE-hard to check if PT↓ holds.

The same construction can be used to prove that all the
other properties are also PSPACE-hard.

Membership: We prove only the Pk↓ case since the oth-
ers are similar. First consider the complementary problem
of verifying that Pk↓ does not hold. The algorithm NotRe-
finable in Figure 4 solves this problem: it accepts if and
only if there is at least one path of length k or shorter in
G2 that is not refinable to a path in G1. Note that if it re-
jects in line 4 or 6, then there is not even a path of length k,
and all paths are refinable. The algorithm runs in nondeter-
ministic polynomial space, so the problem is in NPSPACE.
However, testing if Pk↓ holds is then also in NPSPACE since
NPSPACE is closed under complement. The theorem fol-
lows since NPSPACE=PSPACE.

1 function NotRefinable(k,G1,G2)
2 guess s, t ∈ S2, s′ ∈ f(s) and t′ ∈ f(t)
3 while k > 0 do
4 if s = t then reject
5 guess u ∈ S2 and u′ ∈ f(u)
6 if there is no 〈s, u〉 ∈ E2 then reject
7 if there is no path from s′ to u′ in G1 then accept
8 s := u, s′ := u′, k := k − 1
9 reject

Figure 4: Algorithm for disproving Pk↓.

Note that the theorem implies that all properties are
PSPACE-hard even if we know that Ml holds.

9 Discussion
We only discuss the complexity aspects of the framework
here, and refer to Bäckström and Jonsson (2012) for discus-
sion of the framework in general.

Although all P properties are PSPACE-hard for implicit
graphs, it is sometimes possible to get around this. For
instance, we know (Bäckström and Jonsson 2012, Theo-
rem 27) that if M↑R↑C↑ holds then PS↑ must hold too.
Hence, a coNP-complete test is sufficient to guarantee that
PS↑ holds in this case.

The difference in complexity for testing C↑ and C↓ in
the case of implicit graphs may, perhaps, seem counterin-
tuitive given the symmetry of these properties. The reason
for this is that we only assume f to be polynomial-time com-
putable, leaving the complexity of f unspecified. As soon as
we know that also f is polynomial, then both directions are
coNP-complete to test.

It is interesting that PW is harder than the other P proper-
ties for explicit graphs. This warrants the question whether
it is harder also for implicit graphs, but that this is not visi-
ble due to the coarseness of the class PSPACE. However, in
the case of explicit graphs, testing PW immediately becomes
polynomial if we know that M holds in the same direction.
Theorem 25. PW↑-Test (PW↓-Test) is in P for explicit STGs
if τ is M↑ (M↓).
Recall that f is a homomorphism if 〈s, t〉 ∈ E1 implies that
〈f(s), f(t)〉 ∈ E2.

Proof sketch. We prove that PW↑ holds if and only if f is
a homomorphism from G1 to G+

2 = 〈S2, E
+
2 〉, where E+

2
is the transitive closure of E2. (The PW↓ case is analogous
since f must then be a homomorphism from G2 to G+

1 .)
if: Suppose f is a homomorphism from G1 to G+

2 .
Let σ = s0, . . . , sk be an arbitrary path in G1. Then
f(s0), . . . , f(sk) is a path in G+

2 , so there must be
a path in G2 from f(s0) to f(sk) passing through
f(s1), . . . , f(sk−1). It follows that PW↑ holds since σ was
chosen arbitrarily.

only if: Suppose f is not a homomorphism from G1 to
G+

2 . Then there is some 〈s, t〉 ∈ E1 s.t. 〈f(s), f(t)〉 6∈ E+
2 .

Hence, there is no path from f(s) to f(t) in G2 so no path in
G1 containing the arc 〈s, t〉 is refinable. It follows that PW↑
does not hold.

The theorem follows since it is a polynomial-time prob-
lem to check if f (or f) is a homomorphism.

References
Bacchus, F., and Yang, Q. 1994. Downward refinement and
the efficiency of hierarchical problem solving. Artif. Intell.
71(1):43–100.
Bäckström, C., and Jonsson, P. 2012. Abstracting abstrac-
tion in search with applications to planning. In Proc. 13th
Int’l Conf. Principles Knowledge Repr. and Reasoning, (KR-
2012), Rome, Italy.
Bundy, A.; Giunchiglia, F.; Sebastiani, R.; and Walsh, T.
1996. Calculating criticalities. Artif. Intell. 88(1-2):39–67.
Bylander, T. 1994. The computational complexity of propo-
sitional STRIPS planning. Artif. Intell. 69(1-2):165–204.
Helmert, M.; Haslum, P.; and Hoffmann, J. 2007. Flexi-
ble abstraction heuristics for optimal sequential planning. In
Proc. 17th Int’l Conf. Automated Planning and Scheduling,
(ICAPS-2007), Providence, Rhode Island, USA, 176–183.
Holte, R. C.; Mkadmi, T.; Zimmer, R. M.; and MacDonald,
A. J. 1996. Speeding up problem solving by abstraction: A
graph oriented approach. Artif. Intell. 85(1-2):321–361.
Knoblock, C. A.; Tenenberg, J. D.; and Yang, Q. 1991.
Characterizing abstraction hierarchies for planning. In Proc.
9th Nat’l Conf. Artif. Intell. (AAAI’91), Anaheim, CA, USA,
692–697.
Zilles, S., and Holte, R. C. 2010. The computational com-
plexity of avoiding spurious states in state space abstraction.
Artif. Intell. 174(14):1072–1092.

17

