
Performance Analysis of Planning Portfolios

Sergio Núñez and Daniel Borrajo and Carlos Linares López
Departamento de Informática, Universidad Carlos III de Madrid

Avda. de la Universidad, 30. 28911 Leganes (Madrid). Spain
sergio.nunez@uc3m.es, dborrajo@ia.uc3m.es, clinares@inf.uc3m.es

Abstract

In recent years the concept of sequential portfolio has be-
come an important topic to improve the performance of mod-
ern problem solvers, such as SAT engines or planners. The
PbP planner and more recently Fast Downward Stone Soup
are successful approaches in Automated Planning that follow
this trend. However, neither a theoretical analysis nor formal
definitions about sequential portfolios have been described.
In this paper, we focus on studying how to evaluate the per-
formance of planners defining a baseline for a set of prob-
lems. We present a general method based on Mixed-Integer
Programming to define the baseline for a training data set.
In addition to prior work, we also introduce a short empir-
ical analysis of the utility of training problems to configure
sequential portfolios.

Introduction
The AI community constantly designs faster and more effi-
cient heuristics and algorithms for solving Automated Plan-
ning problems. However, it has not been able to develop a
single planner that dominates all others for classical Auto-
mated Planning (Roberts and Howe 2009). Also if a planner
does not solve a planning task quickly, it is likely that it will
not solve it at all (Howe and Dahlman 2002). Both facts led
to a new concept of planner termed portfolio in the litera-
ture. This is based on the following idea: several planners
are executed in sequence with shorter timeouts, expecting
that at least one of them will find a solution in its allotted
time. In case of solving planning tasks optimally, the port-
folio halts as soon as one planner finds a solution; otherwise,
all planners are invoked and the best solution is picked up.
This technique has been shown to be a successful approach
in classical Automated Planning.

Recently, different approaches to build planner port-
folios have been introduced. Fast Downward Stone
Soup (FDSS) (Helmert, Röger, and Karpas 2011) and
PbP (Gerevini, Saetti, and Vallati 2009) are some interest-
ing examples. The first one is a sequential portfolio of
domain-independent planners. There are two main versions
of FDSS, one for optimal planning and another one for satis-
ficing planning. FDSS was configured using a set of training

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

problems from all the past International Planning Competi-
tions (those celebrated between 1998 and 2008)1 and a set of
planning algorithms. The algorithm employs a hill-climbing
search algorithm in the space of portfolios. The search starts
from an initial portfolio which assigns zero seconds to ev-
ery planning algorithm. At each iteration, it generates a set
of possible successors (which are, in turn, new portfolios)
to the current portfolio. Each successor is generated by in-
creasing the allotted time of one planner by a small ratio
of the total time. The best successor is selected as the cur-
rent portfolio for the next iteration. Once the total time has
been reached, the algorithm halts and the configuration of
the portfolio is the best successor found so far.

The PbP planner is a portfolio-based planner with macro-
actions, which automatically configures a sequential port-
folio of domain-independent planners. The configuration
relies on some knowledge about the performance of the
planners in the portfolio for a specific domain and the ob-
served utility of automatically generated sets of macro-
actions. Nevertheless, PbP can be used without this addi-
tional knowledge. Thus, the portfolio schedules all planners
by a round-robin strategy and it assigns the same time slot
to the planners after being randomly sorted. When PbP uses
domain-specific knowledge, it only selects a cluster of plan-
ners (which are sorted by performance) for configuring the
portfolio. On the other hand, macro-actions sets are not al-
ways considered. Instead, they are taken into account only if
they improve the performance of the planner for the domain
at hand.

The most common approach to assess the performance of
a new sequential portfolio consists of comparing its score
with the score achieved by all entrants of the last IPC. We
claim that this comparison is not enough as a metric to eval-
uate the performance of new portfolios because it does not
show how far the portfolio is from the optimal configuration
achievable for this particular set of planning tasks. Thus, we
propose a general method based on Mixed-Integer Program-
ming (MIP) to configure the optimal static sequential port-
folio for some training data —i.e., problems and planners.
The portfolio computed this way actually defines a baseline
for the particular training data set considered. Using this
baseline, the performance of any planner can be analyzed.

1http://ipc.icaps-conference.org

65

Proceedings of the Fifth Annual Symposium on Combinatorial Search

To exemplify our technique, we have applied this approach
to the sequential optimization (seq-opt) track of the Seventh
International Planning Competition —IPC 2011.

Additionally, we have studied the utility of different prob-
lems to investigate whether it is necessary to configure a
portfolio with data sets as large as possible or if, on the con-
trary, only a few should be considered. To carry out this
analysis we have used the previous example, which config-
ures the optimal static sequential portfolio for the planning
tasks in the seq-opt track of the IPC 2011.

This document is organized as follows: first in Section 2,
we define the concept of the static sequential portfolio. In
Section 3 we show the motivations of our work and we de-
scribe our contributions. In Section 4 we describe the MIP
model. Next, we show the experimental results of our ap-
proach over the planning tasks of the seq-opt track of the
IPC 2011. Finally, in Section 6 we present our conclusions
and introduce future work.

Portfolio Framework
In this work, we focus on static sequential portfolios for clas-
sical Automated Planning. A static sequential portfolio can
be defined as a configuration of planners, where each one
has been assigned a slice of time. Formally, a static sequen-
tial portfolio is a sorted set C of pairs ci = 〈p, t〉, where:

• p is a planner, defined as a tuple (A,H,P) where
A is a non-empty set of search algorithms (A∗, Hill-
Climbing, . . .), H is a non-empty set of heuristics
(Merge&Shrink (Helmert, Haslum, and Hoffmann 2007),
Delete-Relaxation (Hoffmann 2003), . . .) and P is the
policy which chooses which search algorithm ai ∈ A and
heuristic hi ∈ H shall be used.

• Finally, t is the time allotted to planner p.

This sort of portfolios are termed as sequential since it is
assumed that all planners are executed sequentially, i.e., it is
never allowed to invoke more than one planner at the same
time.

Motivation
Currently, the field of sequential portfolios is a hot topic.
There are many open issues, like the anytime nature for sat-
isfying planning, the order of the execution sequence, etc.
We focus on studying how to evaluate the performance of
planners and subsequently on analyzing the utility2 of train-
ing problems to configure sequential portfolios.

Usually, the performance of new planners (and among
them, sequential portfolios) is assessed by facing them up
with the planning tasks of the last IPC. But this compari-
son does not show how good a portfolio is. It only shows
whether the portfolio behaves either better or worse than en-
trants of the last IPC in that particular set of planning tasks.
Even if it is better than the winner, this measure does not

2We consider the utility of training problems to be the knowl-
edge provided to configure high-performance portfolios as dis-
cussed next.

provide any information on the relative quality of the port-
folio. We propose instead to define the best possible sequen-
tial portfolio for a set of problems with an approach based on
Mixed-Integer Programming so that all planners (including
portfolios) can be compared against the same baseline.

Basically, to evaluate a solver (which can be either a new
single planner or a sequential portfolio of new or existing
planners), we propose to define the best possible sequential
portfolio for a particular set of problems and to invoke it
over the same set of problems. If a solver reaches a score
higher than the best possible portfolio, the solver can be said
to be an improvement, otherwise the quality of the solver
can be proven to behave either worse or equally than just a
linear combination of existing planners. Thus, it would not
be judged as a real improvement over the current state of the
art.

With the aim of configuring sequential portfolios most
approaches are based on two sets of training data: one for
planners, and another for training problems. Usually, the
first one is a small set of heterogeneous and modern planners
(e.g., PbP incorporates seven planners and the optimal ver-
sion of FDSS considers eleven planners), though in some ap-
proaches new solvers are built to configure the portfolio; the
second one is often a large set of training problems from past
IPCs (as a matter of fact, FDSS used a total of 1163 train-
ing instances from the IPCs ranging from 1998 to 2008).
Clearly, the selection of these instances is very relevant to
the resulting quality of the portfolio. However, there is nei-
ther an algorithm to find the best training problem set nor a
definition of what the best training problem set is. In this
paper, we address these issues.

Furthermore, we would like to analyze the following
question: is it necessary to process large sets of planning
tasks to configure a portfolio? In other words, do all prob-
lems provide the same information or utility? According
to our intuition, a good training problem set should contain
only a few training instances with high utility. In this re-
gard, we propose a classification of problems into three cat-
egories sorted by difficulty. The first one contains problems
of high difficulty. These are expected to have no utility be-
cause no planner is able to solve them. The second category,
labeled as medium difficulty, is composed of problems that
are solved only by a few planners. As will be shown later,
these problems are the most useful ones. The third category
contains problems with limited utility, because most plan-
ners solve them all.

Mixed-Integer Programming model

MIP is the best choice for our purpose for three reasons.
First, the search of the optimal static sequential portfolio
from a set of training data (planners and problems) can be
modeled as a MIP task. Second, this technique ensures op-
timal solutions. Third, MIP is fast, efficient and it eases the
creation and modification of constraints, which brings flexi-
bility. In the end, a linear combination of existing planners is
a reasonable threshold for judging whether a new portfolio
results in an improvement or not.

66

We have used GLPK3 for solving the MIP task introduced
in this section. This package supports the GNU MathProg
modeling language4, which divides our model into four sec-
tions: Parameters, Variables, Objective function and a num-
ber of Constraints.

The training data set contains a set S of planners (|S| =
n) and a set I of training instances (|I| = m). The param-
eters store the input data that is generated by processing the
output of the execution of every planner p ∈ S with every
instance problem i ∈ I . In particular, the following param-
eters have been defined in the MIP model:

• q(p, i). Normalized plan quality found by the planner p ∈
S for the training problem i ∈ I . If the planner p does
not solve the problem i, the value of plan quality is set to
zero.

• r(p, i). Normalized time spent by the planner p ∈ S to
solve the training problem i ∈ I . If the problem i is
not solved by the planner p in a given time, the param-
eter value will be set to the allotted time limit to solve the
training problem i by the planner p.

• m(p, i). Normalized maximum memory used by the plan-
ner p ∈ S to solve the training problem i ∈ I .

As in every MIP problem, decision variables are defined
to get the outcome of the problem. In this model, the follow-
ing have been defined:

• solved bypi. While the same problem can be solved by an
arbitrary number of planners only one is considered to be
part of the portfolio discarding all the others as discussed
below. To this end, this variable reports whether the plan
found by the planner p ∈ S for the training problem i ∈ I
is considered to configure the sequential portfolio or not.
Therefore, it is a binary variable that takes values in the
set {0, 1}.

• qualityi. Plan quality found by the sequential portfolio
for the training problem i ∈ I .

• timep. It is the output variable, which shows the allocated
time to each planner p ∈ S in the sequential portfolio.

• memory. Maximum memory used by the sequential
portfolio.

With the purpose of defining the objective function of
the MIP task, we have considered time, memory and plan
quality for every training instance and every planner in the
training data set. Time and memory are computed as the
time spent and the memory used by a particular planner to
solve a specific problem, divided by the time and memory
bounds. Note that because values are normalized, the objec-
tive function is no referred to any particular bounds of time
and memory. Likewise, we compute the plan quality in the
range [0, 1] for each training instance. If the portfolio does
not solve an instance, the plan quality of this problem is set
to zero. Otherwise, the plan quality of a solved instance is
computed as the lowest (i.e., better) solution cost found by

3http://www.gnu.org/software/glpk/
4www.cs.unb.ca/ bremner/docs/glpk/gmpl.pdf

any planner in the training data set, divided by the best solu-
tion found by the portfolio. Hence, the objective function is
defined as:

maximize : w1(
∑m

i=0 qualityi)
+ w2(1−

∑n
p=0 timep)

+ w3(1−memory)

While the function used for evaluating planners that took
part in the last two IPCs only focuses on plan quality, we
propose an objective function that makes it possible to bal-
ance maximizing the score achieved by the portfolio (i.e., the
number of problems solved or, equivalently, the coverage in
the case of the sequential optimization track), the time spent
and/or the memory used with different weights w1, w2 and
w3. Thus, using the objective function shown above it is
possible to maximize the quality of the obtained solutions,
as well as the performance of the sequential portfolio mea-
sured in time and memory consumption. For instance, with
w1 = 1, w2 = 0 and w3 = 0, only the overall score is opti-
mized. However, if we increase w2 and/or w3, a sequential
portfolio is obtained that achieves the optimal score while it
improves the time spent and/or memory used by the portfo-
lio.

We have defined a set of constraints in the MIP model.
Constraints (1) and (2) set the time and memory bounds to
solve each training instance:

n∑
p=0

timep <= 1 (1)

memory <= 1 (2)

The MIP task analyzes plan quality, time and memory
used by all planners for all training problems. For each of
these problems, the task should select at most one planner to
solve it. To avoid selecting two or more planners to solve the
same instance, constraint (3) is used. It limits the number of
planners that are considered to solve each training problem:

n∑
p=0

solved bypi <= 1,∀i ∈ I (3)

The constraints discussed next compute the sum of all
time bounds allotted to all planners in the portfolio (4), the
total score achieved by the portfolio (5) and the maximum
memory used to solve a training problem (6):

timep >= solved bypi × r(p, i),∀i ∈ I, ∀p ∈ S (4)

qualityi =

n∑
p=0

solved bypi × q(p, i),∀i ∈ I (5)

memory >= solved bypi ×m(p, i),∀i ∈ I, ∀p ∈ S (6)

Experimental setup and results
In order to define a baseline for the sequential optimization
track of the last IPC, we have applied our MIP model over

67

all problems I and planners S considered there. This track
consists of 14 domains5 with 20 problems each. In total,
there were 280 planning tasks.

When considering all the planners S that took part in the
sequential optimization track of the IPC 2011, the portfo-
lios have been removed from the selection and their solvers
have been added instead. In particular, the two variants
of Fast-Downward Stone Soup were discarded and the fol-
lowing solvers added as shown in Table 1: two versions
of merge-and-shrink and the A∗ search algorithm with the
blind heuristic.

Planner Authors Source
Blind Silvia Richter, et al. FDSS-2 planner
BJOLP Erez Karpas, et al. IPC 2011
CPT4 Vincent Vidal IPC 2011
FD Autotune Chris Fawcett, et al. IPC 2011
Fork Init Michael Katz, et al. IPC 2011
Gamer Peter Kissmann, et al. IPC 2011
IFork Init Michael Katz, et al. IPC 2011
LM-cut Malte Helmert, et al. IPC 2011
LMFork Michael Katz, et al. IPC 2011
M&S-bisim 1 Raz Nissim, et al. FDSS-1 planner
M&S-bisim 2 Raz Nissim, et al. FDSS-1 planner
Selective Max Erez Karpas, et al. IPC 2011

Table 1: List of optimal planners used.

To generate the input data to our MIP model, we have
executed every planner p ∈ S with every instance problem
i ∈ I under the same conditions of the seq-opt track of the
IPC 2011, this is, allowing each planner to solve every plan-
ning task with a time bound equal to 1800 seconds and a
memory bound equal to 6 GB of memory. From all gener-
ated data, we have only considered the runtime r(p, i), the
maximum memory used m(p, i), and whether the problem
has been solved or not q(p, i).

The score defined in the seq-opt track of the IPC 2011
only considers the number of solved problems. However, we
also want to optimize the time spent by the sequential portfo-
lio, while solving the higher number of problems. Since we
cannot know in advance the best configuration of the weights
w1, w2 and w3, we have run a number of tests with different
configurations and have picked up the best one.

The results are shown in Table 2. Good values for our
target are w1 = 1, w2 = 0.04 and w3 = 0. This configu-
ration solves 200 instances and spends less time than other
configurations that also solve 200 problems. Therefore, we
have selected these weights to configure the optimal static
sequential portfolio for the seq-opt of the IPC 2011, which
is shown in Table 3.

Note that the MIP model used here does not specify any
particular order to execute the planners. It only assigns an
execution time to each planner, which is either zero or a pos-
itive amount of time. The definition of the execution se-

5These domains are: barman, elevators, floortile, nomystery,
openstacks, parcprinter, parking, pegsol, scanalyzer, sokoban, tidy-
bot, transport, visitall and woodworking.

quence is arbitrary and it is based just on the order in which
the planners were initially specified. However, given that the
optimal track of the IPC only considers coverage, the order
does not affect the result.

The portfolio shown in Table 3 is the best static sequen-
tial portfolio w.r.t coverage. Furthermore, the time spent for
solving the problems set has been optimized as well. How-
ever, since we have not tried all the feasible values of the
weights w1, w2 and w3, we do not know whether there is
another linear combination of planners that solves the same
number of problems spending less time. In order to check if
there is such a combination, we have performed the follow-
ing experiment:6

• Solve the MIP task setting w1 = 1, w2 = 0 and w3 = 0.

• Let Q be the resulting value of the objective function for
the found configuration.

• Add
∑m

i=0 qualityi ≥ Q − 0.001 to the constraint set of
the MIP model. It means the model can then only generate
solutions that have a quality of at least Q (-0.001 is used
for rounding errors).

• Solve the MIP task setting w1 = 0, w2 = 1 and w3 = 0.

• Let T be the resulting value of the objective function for
the found configuration.

• Add 1 −
∑n

p=0 timep ≥ T − 0.001 to the constraint set
of the MIP model.

• Solve the MIP task setting w1 = 0, w2 = 0 and w3 = 1.

In the end, the portfolio that resulted from this method is
exactly the same one generated by the original MIP model
with w1 = 1, w1 = 0.04 and w3 = 0.

FDSS solved 185 problems in the last IPC and this result
is very likely to be used in the future to decide whether a
new portfolio is better or not. However, as already claimed,
it does not show how far the portfolio is from the optimal
configuration for this particular set of planning tasks. In-
stead, we propose to use the number of problems solved by
a linear combination of the entrants of the IPC 2011 as the
score to beat in practice. This results from the consideration
that all planners in the last IPC are state-of-the-art planners
and that a linear combination of their performance is a rea-
sonable estimator of the expected performance of state-of-
the-art planners. In other words, solving less than 200 prob-
lems is not judged as a significant improvement since this
number of problems can be solved in practice with a linear
combination of existing planners.

Empirical analysis of the utility of training
problems to configure sequential portfolios
Once the optimal static sequential portfolio for the seq-opt
track of the IPC 2011 has been configured, we turn now our
attention to the utility of training problems. To perform this
task we have defined twelve sets of training problems, where
each one contains instances from the seq-opt track of the IPC
2011 that were solved by a maximum number of planners.

6We thank a reviewer of a previous version of the paper for
suggesting it.

68

w1 w2 w3 Solved problems Time Memory
1.00 0.00 0.00 200 1800 5696.67
1.00 0.04 0.00 200 1705 5696.67
1.00 0.04 0.20 171 829 619.76
1.00 0.04 0.40 169 825 482.60
1.00 0.04 0.60 169 825 482.60
1.00 0.04 0.80 161 339 319.29
1.00 0.04 1.00 161 339 319.29
1.00 0.08 0.00 199 1563 5696.67
1.00 0.08 0.20 179 537 826.90
1.00 0.08 0.40 165 360 482.60
1.00 0.08 0.60 165 360 482.60
1.00 0.08 0.80 161 339 319.29
1.00 0.20 0.00 186 548 5380.70
1.00 0.20 0.20 166 265 778.61
1.00 0.20 0.40 163 345 385.74
1.00 0.20 0.60 161 338 319.29
1.00 0.20 0.80 161 338 319.29
0.80 0.00 0.00 200 1800 5696.67
0.80 0.04 0.00 199 1563 5696.67
0.80 0.04 0.20 171 829 619.76
0.80 0.04 0.40 169 825 482.60
0.80 0.04 0.60 161 339 319.29
0.80 0.04 0.80 161 339 319.29
0.80 0.04 1.00 161 339 319.29
0.80 0.08 0.00 186 548 5318.52
0.80 0.08 0.20 167 364 619.76
0.80 0.08 0.40 163 349 381.86
0.80 0.08 0.60 161 339 319.29
0.80 0.08 0.80 161 339 319.29
0.80 0.20 0.00 183 463 5380.70
0.80 0.20 0.20 165 234 778.61
0.80 0.20 0.40 157 190 381.86
0.80 0.20 0.60 155 179 319.29
0.80 0.20 0.80 152 180 247.56
0.60 0.00 0.00 200 1800 5696.67
0.60 0.04 0.00 199 1563 5696.67
0.60 0.04 0.20 165 360 482.60
0.60 0.04 0.40 161 339 319.29
0.60 0.04 0.60 161 339 319.29
0.60 0.04 0.80 161 339 319.29
0.60 0.04 1.00 161 339 319.29
0.60 0.08 0.00 186 548 5318.52
0.60 0.08 0.20 165 360 482.60
0.60 0.08 0.40 161 339 319.29
0.60 0.08 0.60 161 339 319.29
0.60 0.08 0.80 161 339 319.29
0.60 0.20 0.00 177 334 5305.70
0.60 0.20 0.20 157 190 381.86
0.60 0.20 0.40 155 179 319.29
0.60 0.20 0.60 152 180 247.56
0.60 0.20 0.80 152 180 247.56

Table 2: Results of our model for different configurations.
For each configuration, the table shows the number of solved
problems, the time spent (seconds) and memory used (MB)
by the resulting sequential portfolio.

Planner Allotted time (s)
CPT4 1
LM-cut 55
M&S-bisim 1 138
M&S-bisim 2 170
IFork Init 104
Gamer 1237
Total Time 1705

Table 3: Configuration of optimal sequential portfolio.

The first set is composed of all problems that were solved
by at most one planner. The second set consists of all plan-
ning tasks that were solved by at most two planners, and so
on. We have defined twelve sets because there were pre-
cisely twelve solvers after removing portfolios and adding
their solvers instead as explained above. Figure 1 shows the
problem distribution for the twelve sets of training problems.

Figure 1: Problems distribution for the twelve sets of train-
ing instances.

We have executed our MIP model with each of the twelve
training problem sets. The results are shown in Table 4.
From the table, it results that the same performance (mea-
sured in coverage, time and memory) is achieved for all the
sequential portfolios obtained using all sets of training prob-
lems but the first one (which consists just of those problems
that were solved by at most one planner). The resulting se-
quential portfolio is shown in Table 5. Therefore, the min-
imum set of training problems necessary to configure the
optimal portfolio for the competition contains only 27 prob-
lems (those which were solved by at most two planners).
According to our previous classification, the first category
consists of those problems solved by at most one planner;
the second category consists of those solved by at most two
planners and the third category is made of those planning
tasks that were solved by three or more planners. This fact
empirically confirms our initial intuition: not all training
problems have the same utility and the best set of training
problems should contain only a few instances with a high

69

utility.

Max. Planners Solved problems Time Memory
1 16/18 1499 6144.00
2 24/27 1705 5696.67
3 26/29 1705 5696.67
4 36/39 1705 5696.67
5 49/52 1705 5696.67
6 55/58 1705 5696.67
7 58/61 1705 5696.67
8 72/75 1705 5696.67
9 88/91 1705 5696.67

10 100/103 1705 5696.67
11 175/178 1705 5696.67
12 200/203 1705 5696.67

Table 4: Results of our model using the twelve sets of train-
ing problems. For each set, identified by the maximum
number of planners that solve its instances, the table shows
the ratio between number of solved problems and size of
the problem set, the time spent (seconds) and memory used
(MB) by the obtained sequential portfolio.

Planner Allotted time (s)
First training set Remaining sets

CPT4 1 1
LM-cut 0 55
M&S-bisim 1 0 138
M&S-bisim 2 157 170
IFork Init 104 104
Gamer 1237 1237

Table 5: Sequential portfolios obtained using the twelve sets
of training problems.

Furthermore, we have performed an additional experi-
ment to double check this result. It consists of repeating
the experiments of Fast-Downward Stone Soup for the se-
quential optimization track applying the MIP task over all
planning tasks defined in the IPC 2008. This way, we can
compare the performance of FDSS with the portfolio ob-
tained (which behaves as a baseline portfolio planner) and
analyze the difference of solved problems between them.

We have executed the MIP model with all the planners
considered in the design of FDSS. Table 6 lists all of them.
On the other hand, instead of using all the 1163 instances
from the IPCs in the range covering the period from 1998
to 2008 (as it was done to configure FDSS) we have consid-
ered only the 240 planning tasks chosen at the IPC 20087.
Besides, we have considered two different configurations of
weights w1, w2 and w3.

The first configuration of weights (w1 = 1, w2 = w3 =
0) focuses only on maximizing the number of solved prob-
lems, while the second one (w1 = 1, w2 = 0.04, w3 = 0)

7In this edition of the International Planning Competition there
were 8 domains with 30 planning tasks each resulting in a total
number of 240 planning tasks.

Planner Authors
Blind Silvia Richter, et al.
BJOLP Erez Karpas, et al.
h1 landmarks Erez Karpas, et al.
hmax landmarks Malte Helmert, et al.
LM-cut Malte Helmert, et al.
M&S-bisim 1 Raz Nissim, et al.
M&S-bisim 2 Raz Nissim, et al.
M&S-LFPA 10000 Malte Helmert, et al.
M&S-LFPA 50000 Malte Helmert, et al.
M&S-LFPA 100000 Malte Helmert, et al.
RHW landmarks Erez Karpas, et al.

Table 6: Training planner set used by Fast Downward Stone
Soup.

optimizes the time spent by the sequential portfolio while
preserving the same coverage. Since the resulting portfo-
lio might use less than the available time bound of the IPC
(1800 seconds) we show the configuration of two different
portfolios (denoted as Portfolio1 and Portfolio2) for each
combination of weights: the solution found by the MIP task
(original solution) and the same portfolio where the remain-
ing time is uniformly distributed among all planners chosen
by the MIP task —modified solution. Tables 7 and 8 show
both configurations.

Planner Allotted time (s)
Original solution Modified solution

Blind 11 31
BJOLP 5 25
H1 5 25
Hmax 29 49
LM-cut 1046 1066
M&S-bisim 1 126 146
M&S-bisim 2 434 454
Total time 1656 1796

Table 7: Sequential portfolio obtained using w1 = 1, w2 =
0 and w3 = 0.

Planner Allotted time (s)
Original solution Modified solution

LM-cut 1046 1110
M&S-bisim 1 126 190
M&S-bisim 2 434 498
Total time 1606 1798

Table 8: Sequential portfolio obtained using w1 = 1, w2 =
0.04 and w3 = 0.

Finally, we have experimented with the resulting portfo-
lio of these configurations with all the planning tasks of the
sequential optimization track of the IPC 2011. The results
are shown in Table 9. Both portfolios solve the same num-
ber of problems as FDSS-1, as shown in Table 10. Again,

70

these results endorse the idea that it is not necessary to use
a large number of problems to train a portfolio. Instead, a
smaller number of more informative problems can be used.
Presumably, the time necessary to solve the MIP task (which
is only a few seconds for the configurations tried) is signif-
icantly smaller than the time necessary to traverse the state-
space of portfolio configurations with a hill-climbing search
algorithm as in the case of FDSS. Remarkably, the planners
selected for Portfolio2 are the same than those picked in the
configuration of FDSS-1 without bjolp. This is not surpris-
ing, however, since bjolp was ranked eight in the last IPC.

Portfolio Solved problems
Original solution Modified solution

Portfolio1 183 185
Portfolio2 183 185

Table 9: Score of Portfolio1 and Portfolio2 for IPC 2011
seq-opt track.

Portfolio Solved problems
FDSS-1 185
FDSS-2 182

Table 10: Score of FDSS-1 and FDSS-2 for IPC 2011 seq-
opt track.

Conclusions and future work
We have presented a general method based on Mixed-Integer
Programming to define the baseline for a specific set of prob-
lems, against which the real performance of planners can be
measured. We have applied this method over all problems
of the sequential optimization track of the IPC 2011 and
we have shown that the real challenge consists of generat-
ing portfolios/planners that are capable of solving more than
200 problems when being trained with this data set. The rea-
son is that any portfolio solving less problems falls below
the results achievable by a linear combination of state-of-
the-art planners. In the future, we encourage researchers to
show real progress by configuring their portfolios with the
planning tasks available in the last IPC and to compare the
performance on the same set of problems with the baseline
derived here.

In addition to this prior work, we have performed an em-
pirical analysis to study whether all training problems have
the same utility to configure sequential portfolios or not.
The results show that, according to intuition, not all prob-
lems have the same utility. We have derived exactly the
same configuration when running the MIP task with either
27 problems or 280 problems. The key observation is that
the problems to use are only solved by a reduced number of
planners —two in our experiments. Besides, when conduct-
ing the same experiment with the planning tasks of the IPC
2008 it turned out that the same number of problems solved
by the winner of the IPC 2011 was achieved presumably far
faster. As a side effect, the technique discussed herein is an

alternative to one of the most popular approaches to auto-
matically configuring portfolios.

In the future we will perform a theoretical analysis based
on sensitivity analysis of training problems to determine the
accuracy of this assumption.

Additionally, we will try to analyze the utility of sequen-
tial portfolios for different time bounds. Commonly, the se-
quential portfolios have been tested using always the same
bounds in effect in the International Planning Competition
(1800 seconds and 6 Gb or memory to solve each problem).
Some sequential portfolios have shown high performance
using this time limit. But if these sequential portfolios are
executed with a different time bound, their performance is
just unknown. In particular, we are interested in finding out
whether it is possible or not to derive sequential portfolios
that solve at least as many instances as all entrants in the
same amount of time or even less.

Finally, we want to study the order of the execution se-
quence for the optimal static sequential portfolio. We have
obtained a randomly sorted sequential portfolio that solves
200 problems of the IPC 2011 seq-opt track. To solve each
of these problems, the portfolio spends at most 1705 sec-
onds. This runtime depends on the execution sequence.
Therefore, we will analyze whether there is an order of the
execution sequence for spending, on average, the minimum
execution time.

Acknowledgments
This work has been supported by the INNPACTO program
from the Spanish government associated to the MICINN
project IPT-370000-2010-8 and different Spanish research
grants through projects TIN2008-06701-C03-03, TIN2011-
27652-C03-02, TIN2010-08861-E and TRA2009 0080.

References
Gerevini, A.; Saetti, A.; and Vallati, M. 2009. An auto-
matically configurable portfolio-based planner with macro-
actions: Pbp. In Proceedings of the 19th International Con-
ference on Automated Planning and Scheduling, (ICAPS
2009). AAAI.
Helmert, M.; Haslum, P.; and Hoffmann, J. 2007. Flexi-
ble abstraction heuristics for optimal sequential planning. In
Proceedings of the Seventeenth International Conference on
Automated Planning and Scheduling, 176–183.
Helmert, M.; Röger, G.; and Karpas, E. 2011. Fast down-
ward stone soup: A baseline for building planner portfolios.
In ICAPS 2011 Workshop on Planning and Learning 28–35.
Hoffmann, J. 2003. The metric-ff planning system: Trans-
lating ”ignoring delete lists” to numeric state variables.
Journal of Artificial Intelligence Research 20:291–341.
Howe, A. E., and Dahlman, E. 2002. A critical assessment
of benchmark comparison in planning. J. Artif. Intell. Res.
(JAIR) 17:1–3.
Roberts, M., and Howe, A. E. 2009. Learning from planner
performance. Artif. Intell. 173(5-6):536–561.

71

