
Bidirectional A∗ Search with Additive Approximation Bounds

Michael N. Rice and Vassilis J. Tsotras
University of California, Riverside
{mrice,tsotras}@cs.ucr.edu

Abstract

In this paper, we present new theoretical and experimen-
tal results for bidirectional A∗ search. Unlike most pre-
vious research on this topic, our results do not require
assumptions of either consistent or balanced heuris-
tic functions for the search. Our theoretical work ex-
amines new results on the worst-case number of node
expansions for inconsistent heuristic functions with
bounded estimation errors. Additionally, we consider
several alternative termination criteria in order to more
quickly terminate the bidirectional search, and we pro-
vide worst-case approximation bounds for our sug-
gested criteria. We prove that our approximation bounds
are purely additive in nature (a general improvement
over previous multiplicative approximations). Experi-
mental evidence on large-scale road networks suggests
that the errors introduced are truly quite negligible in
practice, while the performance gains are significant.

1 Introduction
A∗ search (Hart, Nilsson, and Raphael 1968) is a classi-
cal graph-searching algorithm established in the late 1960s
for finding minimum-cost (i.e., “shortest”) paths. Since that
time, much additional theoretical and experimental work has
been focused on this algorithm and its useful properties,
due to its many practical applications for pathfinding in the
domains of robotics, game AI, transportation analysis, and
combinatorial optimization, to name a few.

In recent years, due to the increasingly-ubiquitous pres-
ence of personal navigation systems, additional focus has
also been given to efficiently solving shortest paths in large-
scale, real-world road networks. Many of the most recent
state-of-the-art techniques in this domain have involved
some variant of A∗ search, either as the main algorithmic
component (Goldberg and Harrelson 2005), or simply as one
of several complimentary algorithmic ingredients (Bauer et
al. 2008). One of the primary benefits of using A∗ search
within these contexts comes from the fact that, unlike most
other approaches, the A∗ lower-bounding technique often re-
mains valid even in dynamic or semi-dynamic scenarios, in
which the resulting shortest paths can change, depending on
the state of the graph (e.g., see (Delling and Wagner 2007))

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

or the incoming query parameters (e.g., see (Rice and Tso-
tras 2010)), respectively. However, most work in this partic-
ular domain to date has focused solely on the use of con-
sistent heuristic functions, as consistency has generally been
assumed to be a necessity for good performance.

In this work, we further extend the existing theory behind
the A∗ search algorithm. We present a new perspective on
the worst-case behavior of the A∗ search algorithm for in-
consistent heuristics, as well as several alternative termina-
tion criteria for speeding up bidirectional A∗ search in this
regard. We further demonstrate the power behind this theory
by presenting experimental results on one of the largest real-
world road networks: the road network of North America.

2 Background and Related Work

2.1 Preliminaries

Let G = (V,E) be a directed graph with node set V
and edge set E, such that n = |V | and m = |E|. Let
w : E → Z+ be a weight function mapping edges to pos-
itive integers. Let Ps,t = 〈v1, v2, . . . , vq〉 be any path in G
from some starting node s = v1 ∈ V to some terminal node
t = vq ∈ V , such that, for 1 ≤ i < q, (vi, vi+1) ∈ E.
When nodes s and t are implied, we shall refer to such a
path as simply P . We compute the weight of any path P

as w(P) =
∑q−1

i=1 w(vi, vi+1). We denote the s-t path with
minimum overall weight as the shortest path P ∗s,t, or simply
P ∗. We denote the shortest path “distance” from s to t as
d(s, t) = w(P ∗s,t). In general, d(s, t) 6= d(t, s) may be true.

Additionally, we say that a given algorithm guarantees an
(α, β)-approximate shortest path if the following inequal-
ity holds for the cost, µ, of the solution path returned by
the algorithm: µ ≤ α · d(s, t) + β. We utilize the concept
of (α, β)-approximation to universally classify the different
categories of approximation introduced by each algorithm
discussed within this paper. Using this classification, any op-
timal algorithm therefore guarantees a (1, 0)-approximation.
Any algorithm which guarantees an approximation of the
form (α, 0) for α > 1 is considered to have purely multi-
plicative error. Conversely, any algorithm which guarantees
an approximation of the form (1, β) for β > 0 is considered
to have purely additive error.

80

Proceedings of the Fifth Annual Symposium on Combinatorial Search

2.2 Unidirectional A∗ Search
The original concept of classical (unidirectional) A∗ search
was first formalized and presented in (Hart, Nilsson, and
Raphael 1968). Within the context of this seminal work,
the objective of the presented search algorithm is to find the
shortest path, P ∗, from some starting node, s, to some ter-
minal “goal” node, t, in a graph, G.

The search proceeds by assigning each reached node, v,
an f -value, computed as f(v) = g(v) + h(v), where g(v)
represents the current best-known path cost from s to v,
and h(v), defined as the heuristic function, represents an es-
timate on the shortest path distance from v to t. Initially,
g(v) =∞ for all v ∈ V . The algorithm begins by assigning
g(s) = 0 and inserting s into the node set called OPEN
(this set represents the “fringe” of the search). At each iter-
ation, the search then removes from OPEN any node, u,
with minimum f -value (computed as above) and adds this
node to the set called CLOSED.

After closing a node u, the algorithm proceeds to expand
node u as follows. For each outgoing edge, e = (u, v) ∈ E,
the search relaxes the edge, by checking whether g(v) >
g(u) +w(e) is true. If so, the algorithm updates the value to
g(v) = g(u) + w(e), and if v /∈ OPEN , then it is added to
OPEN for subsequent expansion (if v ∈ CLOSED, it is
removed from CLOSED before being added to OPEN).
This process continues until either OPEN becomes empty
or until node t is removed for expansion. In the former case,
this indicates that there is no valid path from s to t. In the
latter case, the shortest path cost from s to t is the value g(t).

The above algorithm will terminate with the correct short-
est path cost under certain conditions. Specifically, any
heuristic search algorithm which guarantees to find a short-
est path, if one exists, is considered admissible. Within the
context of A∗ search, the search is provably admissible if,
for all nodes v ∈ V , 0 ≤ h(v) ≤ d(v, t) holds true. That is,
as long as the heuristic function, h, never overestimates the
true cost to the destination, then the search is guaranteed to
terminate with a shortest path (Hart, Nilsson, and Raphael
1968). If this property does not hold true for one or more
nodes, then the search is considered inadmissible.

An even stronger claim exists for heuristic functions
which exhibit a property known as consistency. A heuris-
tic function, h, is considered consistent if, for all edges
(u, v) ∈ E, the property h(u) ≤ w(u, v) + h(v) holds true.
If this property does not hold for one or more edges, then the
heuristic function is considered inconsistent.

The property of consistency represents a form of trian-
gle inequality which guarantees that the computed f -values
of the closed nodes can only monotonically increase as the
search progresses. Under these conditions, any node will be
closed and expanded at most once during the search pro-
cess (Hart, Nilsson, and Raphael 1968). Therefore, consis-
tent heuristic functions guarantee to perform no more than
O(n) node expansions in the worst case.

On the other hand, when using inconsistent heuristic func-
tions, a node may need to be closed and re-opened several
times throughout the search. In particular, A∗ search with in-
consistent heuristics may require up to O(2n) possible node
expansions in the worst case (Martelli 1977).

However, more recent revelations have been made in re-
gards to the true impact of inconsistent heuristic functions
on the overall efficiency of the search, for most practical
real-world cases. Specifically, it has been recently demon-
strated in (Zhang et al. 2009) that this exponential growth
of the search space can only occur for degenerate cases in
which the edge weights grow exponentially with the graph
size. For graphs whose edge weights are independent of the
size of the graph (i.e., the maximum edge weight is bounded
by some constant), A∗ search using inconsistent heuristic
functions will require no more than O(n2) node expansions
(Zhang et al. 2009).

2.3 Bidirectional A∗ Search
The original A∗ concept was later further extended to bidi-
rectional A∗ search in (Pohl 1969), where two separate uni-
directional A∗ searches are carried out simultaneously from
both nodes s and t. A forward A∗ search is carried out from
node s (toward goal node t) and a backward1 A∗ search is
carried out from node t (toward goal node s).

To keep track of two simultaneous A∗ searches, sepa-
rate OPEN /CLOSED sets are needed for both search
directions. Let these sets be OPENf /CLOSEDf and
OPENb/CLOSEDb for the forward and backward search,
respectively. Similarly, each search direction must make use
of its own distinct heuristic function, given that each direc-
tion is searching towards a different goal node. We denote
the heuristic search functions as hf and hb for the forward
and backward search directions, respectively. In the context
of bidirectional A∗ search, hf (v) behaves as before by pro-
viding a lower-bound estimate on the cost d(v, t), whereas
hb(v) provides a lower-bound estimate on the cost d(s, v).
For forward search, the f -values are computed as ff (v) =
gf (v)+hf (v). For backward search, fb(v) = gb(v)+hb(v).

In general, the bidirectional algorithm proceeds by iter-
atively switching between each search direction according
to some predefined alternating strategy (e.g., choosing the
search direction to expand as the direction with the mini-
mum f -value in its open set or simply alternating between
search directions). Any alternating strategy will guarantee
optimality, given a valid termination criterion (Pohl 1969).

The termination criterion suggested in (Pohl 1969) is
based on the shortest path distance, µ, seen thus far in the
search. Initially, the bidirectional algorithm sets µ = ∞.
Whenever the search in a given direction closes a node v,
such that v has already been closed in the opposite search
direction, then the algorithm sets µ = min{µ, gf (v) +
gb(v)}. If the search algorithm is terminated as soon as
max(kf , kb) ≥ µ, where kf = min{ff (v) | v ∈ OPENf}
and kb = min{fb(v) | v ∈ OPENb}, this guarantees to
terminate with an optimal shortest path (Pohl 1969). The op-
timality for this termination criterion holds for any admissi-
ble heuristic functions, hf and hb (even inconsistent ones,
as long as node re-opening is allowed).

1A backward search in a directed graph G = (V,E) is the
equivalent of performing a standard (i.e., forward) search in the
graph G′ = (V,E′), where E′ = {(v, u) | (u, v) ∈ E}.

81

2.4 Related Work
Despite the correctness of the proposed termination criterion
for bidirectional A∗ search, experimental results from (Pohl
1969) suggested that this bidirectional variant of A∗ search
can still often be even less efficient than the classical unidi-
rectional A∗ search from (Hart, Nilsson, and Raphael 1968).

Theoretical and empirical results from (Kaindl and Kainz
1997) suggest that this problem manifests itself as a condi-
tion of the termination criterion presented earlier, forcing the
search to continue for too long in both directions once they
have met, resulting in duplicate work per search direction.

Additional optimizations to the bidirectional A∗ search al-
gorithm from (Pohl 1969) were suggested in (Kwa 1989),
in which the optimized algorithm attempts to aggressively
prune nodes from both search directions where possible
(e.g., by pruning a node, v, when f(v) ≥ µ, or by avoid-
ing expansion from v when it has already been closed in the
opposing direction). Such optimizations help to reduce the
redundant search overhead of the opposing directions. How-
ever, some of the proposed optimizations are only possible
when using consistent heuristic functions.

An alternative bidirectional A∗ algorithm is presented in
(Ikeda et al. 1994). This requires an adjustment of the update
procedure for µ as follows. After closing a node u in the for-
ward direction, when attempting to relax any edge (u, v), if
node v has already been closed in the backward direction,
then set µ = min{µ, gf (u) + w(u, v) + gb(v)}. Similar
logic holds for updating µ in the backward search direction.
Using this update procedure, the authors prove that, by using
a set of balanced2 and consistent heuristic functions h′f and
h′b such that, for all nodes v ∈ V , h′f (v) + h′b(v) = c (for
some constant, c), then the search may terminate as soon as
the first node has been closed in both directions. This ap-
proach guarantees to find the shortest path, if one exists.
The authors further demonstrate a simple approach for de-
riving such balanced heuristic functions by using h′f (v) =

(hf (v) − hb(v))/2 and h′b(v) = (hb(v) − hf (v))/2 =
−h′f (v), where hf and hb are arbitrarily-defined consistent
functions (again, note the requirement of consistency).

In recent years, the experimental algorithms community
has seen much progress in the way of establishing highly-
efficient shortest path algorithms through the use of offline
preprocessing algorithms. One of the most prominent of
these approaches to incorporate A∗ search techniques is that
of the ALT algorithm (Goldberg and Harrelson 2005). ALT
involves preprocessing which selects a small subset of so-
called landmark nodes, L ⊆ V , typically such that |L| �
|V |. For each landmark, l ∈ L, the preprocessing step com-
putes the shortest path costs from and to all other nodes, v, in
the graph: d(v, l) and d(l, v), respectively. After preprocess-
ing, a bidirectional A∗ search based primarily on the one pre-
sented in (Ikeda et al. 1994) is then carried out using heuris-
tic functions derived from the preprocessed landmark costs:

2Such functions have also been commonly referred to as con-
sistent heuristic functions in (Goldberg and Harrelson 2005). How-
ever, this conflicts with the original use of the term consistency in
this context. Therefore, we have adopted the term balanced from
(Pijls and Post 2009) to describe this property.

hf (v) = max
∀l∈L′

{max{d(v, l)−d(t, l), d(l, t)−d(l, v)}} and

hb(v) = max
∀l∈L′

{max{d(s, l) − d(v, l), d(l, v) − d(l, s)}},
where L′ ⊆ L is a landmark subset chosen at query time.

Other, similar preprocessing techniques have since incor-
porated variants of this ALT technique into their methodol-
ogy as well (e.g., (Bauer et al. 2008; Geisberger, Kobitzsch,
and Sanders 2010; Geisberger et al. 2012)), due primarily
to the general flexibility of A∗ search within these domains.
However, to date, very little related research has been fo-
cused on using alternate A∗ techniques other than ALT or
on using techniques which might instead support the use of
inconsistent functions.

As yet another alternative for dealing with the issues
of A∗ search efficiency, approximate solutions have also
been developed. One well-known variant on the classical
A∗ technique is the so-called weighted A∗ search algorithm
(Pohl 1969), in which the f -values are instead computed
as f(v) = g(v) + α · h(v), for some α ≥ 1. This addi-
tional weighting parameter allows for placing greater em-
phasis on the heuristic function value throughout the search,
typically leading to much faster convergence to a valid (al-
though possibly sub-optimal) solution path. Such weighted
search is guaranteed to produce an (α, 0)-approximate short-
est path (i.e., it has purely-multiplicative error). This ap-
proach can also be easily extended to bidirectional weighted
A∗ search (Köll and Kaindl 1993), giving similar approxi-
mation bounds.

Another approximation result from (Harris 1974) is the
first to demonstrate a purely-additive error for unidirectional
A∗ search in which the heuristic function can overestimate
the true shortest path cost by as much as some error, β. For
such inadmissible heuristics, unidirectional A∗ search guar-
antees a (1, β)-approximate shortest path.

Much research has also been devoted to the impact of
heuristic function estimation error on the size of the result-
ing search space (Pohl 1969; Chenoweth and Davis 1991;
Dinh, Russell, and Su 2007; Helmert and Röger 2008). How-
ever, this work focuses primarily on bounding only the num-
ber of nodes that can be reached by the search based on
this error, and does not consider the number of times each
reached node can be expanded for inconsistent heuristics.

2.5 Our Contributions
In this work, we present both theoretical and experimental
results that provide the following contributions:

• We present an alternative perspective on the worst-
case number of node expansions when using admissi-
ble, inconsistent heuristic functions by proving a pseudo-
polynomial upper bound related to the underestimation er-
ror, ε, of the heuristic function(s). Specifically, we demon-
strate an upper bound of O(nε) node expansions, further
justifying the effectiveness of accurate, but inconsistent
heuristics, and improving upon the result from (Zhang et
al. 2009) for certain classes of inconsistent heuristics.

• We present several alternative termination criteria for
bidirectional A∗ search, the best of which guarantee
(1, ε)-approximate shortest paths.

82

• We examine a straightforward preprocessing approach for
constructing inconsistent heuristic functions for which we
can readily prove bounds on the resulting underestimation
errors, and whose results in practice show very small av-
erage estimation errors.

• We present an experimental analysis of this preprocessed
heuristic function, using our newly-proposed termination
criteria. A comparison of the results against the well-
known ALT method shows that our new method can result
in significantly faster query times when using the same
memory overhead, while yielding little to no error.

3 Theoretical Results
We first begin with some theoretical results on unidirectional
A∗ search which can then be further applied to bidirectional
A∗ search. All subsequent proofs assume only admissibil-
ity of the chosen heuristic function(s). For the purposes of
our discussion of unidirectional A∗ search, we shall assume
that our heuristic function is ε-bounded, as defined by the
following ε inequality:

d(v, t)− ε ≤ h(v) ≤ d(v, t)

Lemma 1. (Hart, Nilsson, and Raphael 1968) For any node
v ∈ OPEN and any optimal path P ∗s,v in G, ∃ v′ ∈ P ∗s,v
such that v′ ∈ OPEN and g(v′) = d(s, v′).
Corollary 1. (Hart, Nilsson, and Raphael 1968) At any point
before termination, ∃ v′ ∈ P ∗s,t such that v′ ∈ OPEN and
f(v′) ≤ d(s, t).
Lemma 2. If the heuristic function, h, is ε-bounded, then
∀ v ∈ CLOSED, g(v) ≤ d(s, v) + ε.

Proof. Since, by definition, the value g(v) can only decrease
during a given A∗ search, it suffices to consider the value of
g(v) the first time any node, v, is chosen from OPEN to be
added to CLOSED. Suppose that g(v) > d(s, v) + ε. This
gives us the following inequality:

f(v) = g(v) + h(v) > d(s, v) + h(v) + ε (1)
≥ d(s, v) + d(v, t) (2)
≥ d(s, t) (3)

≥ f(v′) (4)

Inequality (1) holds by the initial assumption above, (2)
holds by the ε inequality, (3) holds by the triangle inequal-
ity, and (4) follows from Corollary 1 for some v′ ∈ OPEN .
Since f(v) > f(v′), this contradicts the fact that v was cho-
sen fromOPEN to be added toCLOSED (because the al-
gorithm always chooses a node with minimum f -value from
OPEN). Thus, v ∈ CLOSED ⇒ g(v) ≤ d(s, v) + ε.

Theorem 1. Any A∗ search algorithm using an ε-bounded
heuristic function, h, will expand no more thanO(nε) nodes
during the search.

Proof. In order for a node to be expanded, it must first be
added to the CLOSED set. By Lemma 2, we have that for
any node v ∈ CLOSED, g(v) ≤ d(s, v) + ε must be true.

As noted previously, g(v) can only decrease during the
search. Let γ be the greatest common divisor of all edge

weights in the graph. Since all path costs in the graph must
be a multiple of γ, any time we re-open a node for subse-
quent re-expansion, we must therefore decrease g(v) by at
least γ (Zhang et al. 2009). Because g(v) ≤ d(s, v)+ε, then
we can only expand any node v at most dε/γe times. Since
γ ≥ 1, we therefore expand at most O(nε) nodes.

Assuming non-negative, admissible heuristic functions,
then the largest possible error for any heuristic function on
a search must therefore be upper-bounded by the diame-
ter of the graph, ∆(G) = max{d(s, t) | s, t ∈ V }. For
w = max{w(u, v) | (u, v) ∈ E}, it is easy to see that
ε ≤ ∆(G) ≤ w(n − 1). If the value of w is independent of
the size of the graph (i.e., it is bounded by some constant),
then this gives us a worst-case number of node expansions of
O(n2), which is identical to the previous work of (Zhang et
al. 2009) under similar conditions. However, for ε ∈ o(n),
the worst-case number of node expansions improves even
further. For example, for ε ∈ O(1), the number of node
expansions is O(n), which is asymptotically equivalent to
using a consistent heuristic function.

We note that all previous claims for unidirectional A∗
search also apply directly to both search directions in a bidi-
rectional A∗ search, for the remainder of this discussion.
Lemma 3. Let P be the shortest path seen thus far in a bidi-
rectional A∗ search. Let w(P) = µ. Let kf = min{ff (v) |
v ∈ OPENf} and kb = min{fb(v) | v ∈ OPENb}.
If max(kf , kb) ≥ µ − β, then P is a (1, β)-approximate
shortest path.

Proof. Let max(kf , kb) = kf (a symmetric argument holds
if max(kf , kb) = kb). By Corollary 1, we have that there
exists a node v′ ∈ OPENf which lies on the shortest path
from s to t with ff (v′) ≤ d(s, t). Therefore, we have the
following inequality:

µ− β ≤ max(kf , kb)

⇒ µ ≤ max(kf , kb) + β

≤ ff (v′) + β

≤ d(s, t) + β

This lemma implies that one can apply any arbitrary addi-
tive error, β, to their search criteria by using this inequality
as a valid termination criterion. The larger the value of β, the
sooner the bidirectionalA∗ search can terminate (albeit with
higher possible additive error). We shall use this property to
prove approximation bounds on several different termination
criteria presented later on in the paper.

Now, suppose that we are using heuristic functions hf and
hb with provably-bounded estimation errors of εf and εb,
respectively. That is, for all nodes, v ∈ V , the following
inequalities hold:

d(v, t)− εf ≤ hf (v) ≤ d(v, t)
d(s, v)− εb ≤ hb(v) ≤ d(s, v)

For the remainder of the discussion, we shall assume that
both heuristic functions are bounded by the same value: ε =
εf = εb. However, for εf 6= εb, let ε = max{εf , εb}.

83

We also enhance the original bidirectional A∗ logic
slightly as follows. Instead of just updating the value of µ
whenever we reach a node v ∈ CLOSEDf ∩ CLOSEDb,
we additionally try to update µ any time we relax edge
(u, v) in the search and node u has been closed in one di-
rection (e.g., u ∈ CLOSEDf) whereas node v has been
closed in the other (e.g., v ∈ CLOSEDb). Here we set
µ = min{µ, gf (u)+w(u, v)+gb(v)}. This is similar to the
update procedure used by (Ikeda et al. 1994). It guarantees
that µ represents a lower bound on all possible connecting
paths seen thus far and helps to minimize the value of µ as
much as possible, given our alternative termination criteria
presented below.
Theorem 2. Any bidirectional A∗ search algorithm using
ε-bounded heuristic functions, hf and hb, which terminates
after finding the first node v ∈ CLOSEDf ∩ CLOSEDb

guarantees a (1,min{2ε, d(s, t)})-approximate shortest
path, and this bound is tight.

Proof. For the purposes of our discussion, we shall assume
that the node v is pulled from OPENf when this termina-
tion criterion is first satisfied (a similar argument holds for
the case where it is pulled fromOPENb). First, we note that
the following properties hold by definition of our proposed
algorithm:

max(kf , kb) ≥ gf (v) + hf (v) (5)
gf (v) + gb(v) ≥ µ (6)

Property (5) is guaranteed by our selection which chooses
the node v with the smallest value ff (v) = gf (v) + hf (v)
from OPENf , and (6) is guaranteed by the fact that µ de-
fines a lower bound on all connecting paths seen thus far.

First, we prove a (1, d(s, t))-approximation (note that this
also implies at worst a multiplicative (2, 0)-approximation
bound). This follows from property (6) above and Corollary
1, which guarantees that µ ≤ gf (v) + gb(v) ≤ ff (v) +
fb(v) ≤ d(s, t) + d(s, t). However, this may indeed be fur-
ther improved upon, depending on the value of ε. To demon-
strate this, consider the following inequality:

max(kf , kb) ≥ gf (v) + hf (v) (7)
≥ µ− gb(v) + hf (v) (8)
≥ µ− (d(v, t) + ε) + hf (v) (9)
≥ µ− (d(v, t) + ε) + (d(v, t)− ε) (10)
= µ− d(v, t)− ε+ d(v, t)− ε (11)
= µ− 2ε (12)

Inequality (7) holds by property (5) above, (8) holds by
property (6) above, (9) follows from Lemma 2 for back-
ward search, and (10) holds by the ε inequality. By Lemma
3, we have that max(kf , kb) ≥ µ− 2ε guarantees a (1, 2ε)-
approximate shortest path.

We further demonstrate that this approximation bound is
tight for this particular termination criterion by providing
a simple example where the error is exactly 2ε = d(s, t).
Consider the graph presented in Figure 1. In this graph,
all nodes are labeled with their respective hf and hb func-
tion values. For each node, except for node v, the heuristic

u

{3x, x}
w

{x, 3x}

v

{0, 0}

s

{4x, 0}
t

{0, 4x}

x x x x

4x 4x

Figure 1: In the sample graph presented above, each edge, e,
is labeled with its weight, w(e), and each node, v, is labeled
as {hf (v), hb(v)}.

functions return a perfect estimate of the shortest path costs
in both directions. For node v, the heuristic functions un-
derestimate their respective shortest path costs by exactly
ε = 2x. For this graph, we have that d(s, t) = 4x. How-
ever, assuming we break ties when choosing the minimum
f -value node by preferring nodes with higher g values, as
is typical, a bidirectional A∗ search which terminates using
the above criterion will find a path P = 〈s, v, t〉, such that
w(P) = 8x = d(s, t) + 4x = d(s, t) + 2ε.

For the remainder of the discussion, we shall
omit the min{•, d(s, t)} notation for brevity (e.g.,
(1,min{2ε, d(s, t)}) will be written as simply (1, 2ε)),
as the multiplicative (2, 0) bound will be implied for all
remaining criteria (it is similarly straightforward to prove).

While the above termination criterion guarantees a
(1, 2ε)-approximate shortest path, we can improve this ap-
proximation even further, if we know the value of ε, by using
some simple properties of our ε-bounded heuristic functions.
The additional logic is as follows. When choosing a node
u ∈ OPENf for expansion, we first relax all edges (u, v)
to see if we can improve upon the value gf (v). If we do not
improve gf (v), then we continue as before. However, if we
do improve gf (v), we first check to see whether the inequal-
ity gf (v) − hb(v) ≤ ε is true. If not, we may skip the node
v (i.e., do not add it to OPENf), since gf (v) − hb(v) > ε
implies that gf (v) > hb(v)+ε ≥ d(s, v) by the ε inequality,
and thus the current path through node u cannot be a short-
est path from s to v. A similar argument holds for expanding
nodes in the backward search direction. We shall call this
procedure ε-skipping. As a corollary, we note that any node
which subsequently belongs to either the open or closed sets
of either search direction must satisfy this inequality; other-
wise, it would have never been added to the open set for that
respective search direction.

Theorem 3. Using ε-skipping, any bidirectional A∗ search
algorithm which terminates after finding the first node v ∈
CLOSEDf ∩CLOSEDb guarantees a (1, ε)-approximate
shortest path.

Proof. As in Theorem 2, we shall assume that the node v
is pulled from OPENf when this termination criterion is
first satisfied. First, we note that, in addition to properties (5)
and (6) from Theorem 2, the following additional property

84

is satisfied explicitly by our ε-skipping method (since v ∈
CLOSEDb):

gb(v)− hf (v) ≤ ε (13)

These properties, taken together, allow us to derive the fol-
lowing inequality:

max(kf , kb) ≥ gf (v) + hf (v) (14)
≥ µ− gb(v) + hf (v) (15)
= µ− (gb(v)− hf (v)) (16)
≥ µ− ε (17)

Inequalities (14) and (15) are the same as (7) and (8), re-
spectively, and (17) follows from (13) above. By Lemma
3, we have that max(kf , kb) ≥ µ − ε guarantees a (1, ε)-
approximate shortest path.

As a simple exercise, one can easily verify that if we ap-
ply the concept of ε-skipping to the problem presented in
Figure 1, the new algorithm would now terminate with the
true shortest path from s to t for this particular example.

It is noteworthy to mention that the proof outlined above
assumes that the search algorithm has a priori knowledge of
the value of ε (to enforce ε-skipping). While this proves use-
ful in establishing effective skipping criteria, we may not al-
ways know the true value of ε in advance. For such cases, we
demonstrate yet another termination criterion which guar-
antees a (1, ε)-approximate shortest path without requiring
explicit knowledge of the error bound, ε.
Theorem 4. Terminating any bidirectional A∗ search algo-
rithm as soon as kf +kb ≥ µ+hf (s) will guarantee a (1, ε)-
approximate shortest path when using ε-bounded heuristic
functions hf and hb.

Proof.

kf + kb ≥ µ+ hf (s)

≥ µ+ d(s, t)− ε (by ε inequality)
⇒ kf + kb − d(s, t) ≥ µ− ε

By Corollary 1, kf ≤ d(s, t) and kb ≤ d(s, t), and thus
kf − d(s, t) ≤ 0 and kb − d(s, t) ≤ 0, which gives us:

max(kf , kb) ≥ kf + kb − d(s, t) ≥ µ− ε

Again, by Lemma 3, we have a guaranteed (1, ε)-
approximate shortest path.

4 Region-to-Region (R2R) Preprocessing
Given the theoretical results presented thus far regarding ε-
bounded heuristic functions, we now must demonstrate a
practical approach for deriving an admissible (but incon-
sistent) heuristic function for which we can readily prove
the resulting error bounds. We may establish such a heuris-
tic function by preprocessing the input graph as follows.
Similar heuristic functions have previously been established
in (Felner and Sturtevant 2009) and (Maue, Sanders, and
Matijevic 2006). However, (Felner and Sturtevant 2009) is
applied only to undirected, unweighted graphs and (Maue,
Sanders, and Matijevic 2006) is not applied to A∗ search.

We start by partitioning the graph into a set of k disjoint
regions R = {R1, R2, . . . , Rk}, where, for 1 ≤ i ≤ k,
Ri ⊆ V . Given a partitioning, we say that d(Ri, Rj) =
min{d(vi, vj) | vi ∈ Ri, vj ∈ Rj} represents the short-
est path distance between the closest nodes from any two
regions, Ri and Rj . For 1 ≤ i ≤ k, let δ(Ri) =
max{d(s, t)|s, t ∈ Ri} represent the diameter of regionRi.
Let δ(R) = max

1≤i≤k
{δ(Ri)} be the maximum partition diam-

eter. Let r : V → R be a function mapping nodes to their
associated regions. After partitioning the graph, we there-
fore calculate a k × k cost matrix, C, such that each entry
Ci,j = d(Ri, Rj).
Lemma 4. For all s, t ∈ V , d(s, t) ≤ d(r(s), r(t))+2δ(R).

Proof. By definition, there must exist nodes vs ∈ r(s) and
vt ∈ r(t) where d(vs, vt) = d(r(s), r(t)). This gives us the
following inequality:

d(s, t) ≤ d(s, vs) + d(vs, vt) + d(vt, t)

= d(s, vs) + d(r(s), r(t)) + d(vt, t)

≤ δ(r(s)) + d(r(s), r(t)) + δ(r(t))

≤ d(r(s), r(t)) + 2δ(R)

Corollary 2. Bidirectional heuristic functions hf (v) =
d(r(v), r(t)) and hb(v) = d(r(s), r(v)) have bounded er-
ror ε = 2δ(R).

This corollary suggests that the maximum ε value for a
given partitioning is proportional to the largest diameter re-
gion in the partition. Therefore, if one can minimize the av-
erage or maximum diameter of the partitioning, one can ef-
fectively minimize the resulting error and thus the resulting
search complexity. This problem is more commonly known
as Minimum-Diameter Partitioning and it is known to be
NP-hard. In this paper, we shall not focus on minimizing
the maximum partition diameter, as this is outside the scope
of this work. In the next section, we present experimental
results using a straightforward partitioning technique for es-
tablishing our heuristic functions, described as follows.

Given a target number of regions, k, we begin by select-
ing a subset of k nodes, V ′ = {v′1, v′2, . . . , v′k}, uniformly
at random. We then add a temporary super-source node, s′,
to the graph, along with temporary edges (s′, v′i), for all
1 ≤ i ≤ k, each with cost equal to zero. We then perform a
single, shortest path search from the super-source node, s′,
until all nodes in the graph have been added to the short-
est path tree. For each node, v, there exists exactly one an-
cestor node from V ′ on the shortest path from s′ to v. All
nodes which share the same ancestor node thus make up a
single partition, or region. In practice, this simple approach
typically results in tightly-clustered regions, centered around
each node v′i ∈ V ′.

After partitioning the graph, we must next compute the
cost matrix, C, representing the shortest path between each
region, as described earlier. To achieve this, we now use a
similar process to that performed during the original graph
partitioning. For each region,Ri, of the graph, we temporar-
ily add a super-source node, s′i, to the graph, along with

85

temporary edges (s′i, vi) for all nodes vi ∈ Ri, each with
cost equal to zero. We then perform a shortest path search
from s′i, as before. Afterwards, for all 1 ≤ j ≤ k, we set
Ci,j = d(Ri, Rj) = min

∀vj∈Rj

{d(s′i, vj)}. This process is re-

peated for all regions.

5 Experimental Results
In this section, we present an experimental evaluation of the
algorithms discussed so far.

5.1 Test Environment and Test Dataset
All experiments were carried out on a 64-bit server machine
running Linux CentOS 5.3 with 2 quad-core CPUs clocked
at 2.53 GHz with 18 GB RAM (although only one core was
used per experiment). All programs were written in C++ and
compiled using gcc version 4.1.2 with optimization level 3.

Shortest path queries were performed on one of the
largest available real-world road networks: the North Amer-
ican3 road network, with a total of 21, 133, 774 nodes and
52, 523, 592 edges. The edge weight function used for this
dataset is based on the edge travel times, in minutes. This
dataset was derived from NAVTEQ transportation data prod-
ucts, under their permission.

5.2 Preprocessing Results
The results of the preprocessing phase for both ALT and our
R2R technique are presented in Table 1. For ALT with k
landmarks, the preprocessing time is roughly proportional
to the computation of 2k shortest path trees (since we must
compute shortest paths to and from each landmark). This re-
quires O(kn) memory overhead to store the resulting land-
mark costs, and thus k must be chosen relatively small to
achieve reasonable memory limits. For the R2R method with
k regions, the preprocessing time is roughly proportional to
computing only k + 1 shortest path trees (one for partition-
ing, and one from each region to all others). However, in
contrast to ALT, R2R requires onlyO(k2+n) memory over-
head, so we can afford to choose a much larger value of k
for R2R than we can for ALT, in general, to achieve simi-
lar levels of memory overhead. For these experiments, we
have chosen k = 10,000 (50,000) for R2R and k = 4 (64) for
ALT, which gives similar memory overhead from the result-
ing preprocessed data, albeit at the expense of much higher
preprocessing times for the much larger values of k for R2R.
Average partition diameters for the resulting 10k and 50k
partitionings were 87 and 39 minutes, respectively.

Table 1: Preprocessing on the North American graph.
Preprocessing

Time Space
Algorithm [H:M] [GB]
ALT-4 0:02 0.62
R2R-10k 27:00 0.45
ALT-64 0:58 10.08
R2R-50k 139:00 9.39

3This includes only the US and Canada.

5.3 Query Performance
We present the results of the query experiments in Table
2. All query performance results are averaged over 10,000
source-target pairs, chosen uniformly at random. For these
results, we compare our new R2R method directly against
the ALT method, as well as the standard, bidirectional Dijk-
stra search for a baseline comparison. For our R2R method,
we consider results from both (U)nidirectional A∗ search
and (B)idirectional A∗ search. For the bidirectional R2R
approach, we further test three different termination crite-
ria: the original (M)ax criterion (from (Pohl 1969)), the
(I)ntersection criterion (from Theorem 3), and the (S)um cri-
terion (from Theorem 4).

Table 2: Query Experiments on the North American graph.
Queries

Time Expanded Reopened
Algorithm [ms] Nodes Nodes (α,β)
Dijkstra 3,513.29 6,938,720 0 (1, 0)
ALT-4 810.99 964,922 0 (1, 0)
R2R-10k-U 325.36 694,427 160,974 (1, 0)
R2R-10k-B-M 554.69 981,107 277,959 (1, 0)
R2R-10k-B-I 53.18 162,744 37,654 (1, ε)
R2R-10k-B-S 91.55 270,312 65,583 (1, ε)
ALT-64 74.68 91,967 0 (1, 0)
R2R-50k-U 108.09 219,255 32,393 (1, 0)
R2R-50k-B-M 143.66 288,824 49,751 (1, 0)
R2R-50k-B-I 14.82 47,625 6,404 (1, ε)
R2R-50k-B-S 23.00 73,840 10,140 (1, ε)

As expected, both methods clearly outperform the stan-
dard Dijkstra approach. Even for the lowest-memory config-
urations, the unidirectional R2R-10k-U method outperforms
Dijkstra by an order of magnitude. Furthermore, R2R-10k-
U outperforms the (bidirectional) ALT-4 method by nearly
a factor of 2.5. However, for the highest-memory configura-
tions, ALT-64 slightly outperforms R2R-50k-U.

As mentioned in the Related Work section, it is notewor-
thy that, using the original termination criterion for bidirec-
tional A∗ search, our experiments show that both R2R-10k-
B-M and R2R-50k-B-M perform even worse than their uni-
directional counterparts. However, in contrast, both of our
newly-proposed bidirectional termination criteria greatly
improve upon the unidirectional variant, with the Intersec-
tion criterion performing the best overall, resulting in speed
improvements by a factor of 15 and 5 over ALT for the
lowest- and highest-memory configurations, respectively.

Of further interest is the fact that, despite these high levels
of performance improvement over ALT, the Intersection cri-
terion expands only a factor of 6 and 2 fewer nodes than ALT
for the lowest- and highest-memory configurations, respec-
tively. So why the much higher performance improvements
over ALT? This comes primarily from the fact that the R2R
heuristic function requires only two memory accesses (one
to identify a node’s region and one to lookup the cost ma-
trix entry for that region to the target region), whereas ALT
can require multiple memory accesses, due to the lookup of
multiple landmark costs, as well as multiple arithmetic op-
erations (to compute the differences in landmark costs). In-

86

Table 3: Approximation Errors on the North American graph.
Error

Avg. Relative Avg. Absolute Max Relative Max Absolute
Algorithm Error (%) Error (minutes) Error (%) Error (minutes)
R2R-10k-B-I 0.44% 2.98 35.21% 108.77
R2R-10k-B-S < 0.01% < 0.01 4.75% 8.98
R2R-50k-B-I 0.15% 0.99 24.40% 34.59
R2R-50k-B-S < 0.01% < 0.01 1.20% 1.14

tuitively, this supports the expectation that not only does the
accuracy of the heuristic play an important role in perfor-
mance, but also the computational complexity of evaluating
the heuristic as well. In this regard, R2R excels over ALT.

5.4 Solution Quality
In Table 3, we present the approximation errors achieved
by our two (1, ε)-approximate termination criteria for both
the 10k and 50k region partitionings (all other algorithms
from Table 2 are omitted, as they compute optimal solu-
tions). This includes both the average and maximum rela-
tive errors (as the percentage difference from the true short-
est path costs), as well as the average and maximum abso-
lute errors (as the absolute difference from the true short-
est path costs). Both methods easily achieve < 1% relative
error and < 3 minutes absolute error, on average, for both
partition sizes. For the faster Intersection criterion, despite
good average solution quality, it has worst-case absolute er-
rors of nearly 2 hours for the 10k partitioning and half an
hour for the 50k partitioning. However, with only slightly
slower query times, the Sum termination criterion is able to
achieve near-optimal approximation results with the worst-
case absolute error being < 9 minutes from the true shortest
path for the 10k partitioning. This improves to < 2 minutes
worst-case absolute error for the 50k partitioning.

6 Conclusion
We have presented a new theoretical outlook on the ef-
ficiency of A∗ search when using inconsistent heuristic
functions with bounded estimation error. Experimental ev-
idence further supports this theory, suggesting that incon-
sistent heuristic functions can sometimes outperform con-
sistent heuristic functions in practice. The hope is that this
work will serve as a catalyst to broaden the scope of ongoing
research related to A∗ search techniques with inconsistent
heuristic functions in the context of bidirectional search.

7 Acknowledgements
This work was partially supported by NSF IIS-1144158 and
IIS-0803410. We also thank the reviewers for their feedback.

References
Bauer, R.; Delling, D.; Sanders, P.; Schieferdecker, D.; Schultes, D.;
and Wagner, D. 2008. Combining Hierarchical and Goal-Directed
Speed-Up Techniques for Dijkstra’s Algorithm. In WEA, 303–318.
Chenoweth, S. V., and Davis, H. W. 1991. High-Performance A*
Search Using Rapidly Growing Heuristics. In Mylopoulos, J., and
Reiter, R., eds., IJCAI, 198–203. Morgan Kaufmann.

Delling, D., and Wagner, D. 2007. Landmark-Based Routing in
Dynamic Graphs. In WEA, 52–65.
Dinh, H. T.; Russell, A.; and Su, Y. 2007. On the Value of Good
Advice: The Complexity of A* Search with Accurate Heuristics. In
AAAI, 1140–1145. AAAI Press.
Felner, A., and Sturtevant, N. R. 2009. Abstraction-Based Heuris-
tics with True Distance Computations. In SARA.
Geisberger, R.; Rice, M. N.; Sanders, P.; and Tsotras, V. J. 2012.
Route Planning with Flexible Edge Restrictions. J. Exp. Algorith-
mics 17(1):1.2:1.1–1.2:1.20.
Geisberger, R.; Kobitzsch, M.; and Sanders, P. 2010. Route Plan-
ning with Flexible Objective Functions. In ALENEX, 124–137.
Goldberg, A. V., and Harrelson, C. 2005. Computing the Shortest
Path: A* Search Meets Graph Theory. In SODA, 156–165. SIAM.
Harris, L. R. 1974. The Heuristic Search Under Conditions of Error.
Artif. Intell. 5(3):217–234.
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A Formal Basis
for the Heuristic Determination of Minimum Cost Paths. In IEEE
Transactions on System Science and Cybernetics, volume 4.
Helmert, M., and Röger, G. 2008. How Good is Almost Perfect? In
Fox, D., and Gomes, C. P., eds., AAAI, 944–949. AAAI Press.
Ikeda, T.; Hsu, M.-Y.; Imai, H.; Nishimura, S.; Shimoura, H.;
Hashimoto, T.; Tenmoku, K.; and Mitoh, K. 1994. A Fast Algorithm
for Finding Better Routes by AI Search Techniques. In Proceed-
ings of the Vehicle Navigation and Information Systems Conference
(VNSI’94), 291–296. ACM Press.
Kaindl, H., and Kainz, G. 1997. Bidirectional Heuristic Search
Reconsidered. J. Artif. Intell. Res. (JAIR) 7:283–317.
Köll, A. L., and Kaindl, H. 1993. Bidirectional Best-First Search
with Bounded Error: Summary of Results. In IJCAI, 217–223.
Kwa, J. B. H. 1989. BS*: An Admissible Bidirectional Staged
Heuristic Search Algorithm. Artif. Intell. 38(1):95–109.
Martelli, A. 1977. On the Complexity of Admissible Search Algo-
rithms. Artif. Intell. 8(1):1–13.
Maue, J.; Sanders, P.; and Matijevic, D. 2006. Goal Directed Short-
est Path Queries Using Precomputed Cluster Distances. In WEA,
316–327.
Pijls, W., and Post, H. 2009. A New Bidirectional Search Algorithm
with Shortened Postprocessing. European Journal of Operational
Research 198(2):363–369.
Pohl, I. 1969. Bidirectional Heuristic Search in Path Problems.
Ph.D. Dissertation, Stanford University.
Rice, M. N., and Tsotras, V. J. 2010. Graph Indexing of Road Net-
works for Shortest Path Queries with Label Restrictions. PVLDB
4(2):69–80.
Zhang, Z.; Sturtevant, N. R.; Holte, R. C.; Schaeffer, J.; and Felner,
A. 2009. A* Search with Inconsistent Heuristics. In IJCAI, 634–
639.

87

