
Multimapping Abstractions and Hierarchical Heuristic Search

Bo Pang
Computing Science Department

University of Alberta
Edmonton, AB Canada T6G 2E8

(bpang@ualberta.ca)

Robert C. Holte
Computing Science Department

University of Alberta
Edmonton, AB Canada T6G 2E8

(holte@cs.ualberta.ca)

Abstract

In this paper we introduce a broadly applicable method,
called multimapping abstraction, that allows multiple heuris-
tic values for a state to be extracted from one abstract state
space. The key idea is to define an abstraction to be a mul-
timapping, i.e., a function that maps a state in the original
state space to a set of states in the abstract space. We per-
formed a large-scale experiment on several benchmark state
spaces to compare the memory requirements and runtime of
Hierarchical IDA* (HIDA*) using multimapping domain ab-
stractions to HIDA* with individual domain abstractions and
to HIDA* with multiple, independent domain abstractions.
Our results show that multimapping domain abstractions are
superior to both alternatives in terms of both memory usage
and runtime.

Introduction
An abstraction φ of a state space S is a mapping of the
states of S to the states of another state space T (the abstract
space) such that the distance between any pair of states in
S is greater than or equal to the distance between the cor-
responding states in T , i.e., d(s1, s2) ≥ d(φ(s1), φ(s2)),
where d(x, y) is the cost of a least-cost path from state x to
state y. h(s) = d(φ(s), φ(goal)) is therefore an admissible
heuristic for searching in S.1

Techniques have been developed that allow several
heuristic lookups to be done for a state using a sin-
gle abstraction φ. These techniques use special prop-
erties of the state space to define “symmetry” mappings
symi: S → S such that d(symi(s), goal), the cost to
reach the goal state from symi(s), is guaranteed to be
the same as d(s, goal). With this guarantee, h(symi(s))
never overestimates d(s, goal) and the heuristic hmax(s) =
max(h(s),maxi{h(symi(s))}) is admissible. Commonly
used sym functions are the geometric symmetries in puz-
zles such as the 15-puzzle, Rubik’s Cube, and TopSpin, and
the “dual state” function in permutation state spaces (Zahavi
et al. 2008). General symmetry mappings, based on auto-
morphisms (Domshlak, Katz, and Shleyfman 2012), could

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1The paper is written assuming there is just one goal state, but
multimapping abstractions apply equally well when there is a goal
condition, as long as the condition can be abstracted properly.

also be used for this purpose. Substantial speedup can result
from taking the maximum over multiple heuristic lookups in
a single abstract space (Zahavi et al. 2008).

The main drawback of these techniques is that they ap-
ply only to state spaces that contain symmetries. The
main contribution of the present paper is a general tech-
nique, called “multimapping abstraction”, allowing multiple
heuristic lookups in the same abstract space to be defined
for a broad range of state spaces including ones that do not
contain symmetries. The key idea is to define an abstrac-
tion to be a multimapping, i.e., a function that maps a state
in the original space to a set of states in the abstract space.
This technique was briefly introduced by us last year (Pang
and Holte 2011) but here we give a thorough discussion and
evaluation.

The use of multiple abstractions is well-known and the
heuristic h(s) = maxi{d(φi(s), φi(goal))} has been shown
to be highly beneficial (Holte et al. 2006) when the abstract
distances in each abstract space are pre-computed to create
a pattern database (PDB) (Culberson and Schaeffer 1996).
In hierarchical heuristic search, where abstract distances are
computed during search on an as-needed basis, the cost
of computing multiple abstract distances can outweigh the
benefits of having an improved heuristic value (Holte, Gra-
jkowski, and Tanner 2005). What differentiates multimap-
ping abstractions from the normal use of multiple abstrac-
tions is that in the latter each abstract space is entirely dis-
tinct (φi : S → Ti with Ti 6= Tj if i 6= j) whereas in our
method the abstractions of a state are all in the same abstract
space (φ(s) ⊆ T ).

The difference between a multimapping and the use of
multiple, independent abstractions is illustated with the 5-
pancake puzzle in Figure 1. We wish to estimate the dis-
tance from the state s = 〈3, 4, 2, 5, 1〉 (at the bottom of the
figure) to the goal state g = 〈1, 2, 3, 4, 5〉 (at the top of the
figure). The two abstractions, φ1 and φ2, both map to the
abstract space in which states contain three 1s and two 2s;
all such states are reachable from one another using the pan-
cake puzzle operators. If treated as multiple independent ab-
stractions, h(s) would be computed using each abstraction
separately (the dotted lines in the figure) and the maximum
taken (4 in this example). If treated as a multimapping, we
would have φ(s) = {φ1(s), φ2(s)} and the heuristic func-

72

Proceedings of the Fifth Annual Symposium on Combinatorial Search



Figure 1: Pancake puzzle with two domain abstractions. φ1
maps constants 1, 2, and 3 to 1, and maps 4 and 5 to 2. φ2
maps 3, 4, and 5 to 1, and maps 1 and 2 to 2. Rectangles are
states in the original space, ovals are abstract states. Dotted
lines are distances between states based on the same abstrac-
tion, thin solid lines are distances between states based on
different abstractions.

tion would be defined as

h(s) = max
s′∈φ(s)

min
g′∈φ(g)

d(s′, g′)

Hence, all four distances between the abstract states in the
figure would be taken into account (the solid diagonal lines
as well as the dotted lines), producing the value 3, the max-
imum of min(4, 3) and min(2, 3).

Given the same set of abstractions, multimapping cannot
produce a heuristic value larger than would be produced by
using them independently. The potential advantage of mul-
timapping is computational. If the abstract states generated
by different abstractions are reachable from each other, the
memory and time needed for computing the heuristic could
be substantially smaller for multimapping than for multiple
abstractions. For example, if the heuristic is stored as a PDB,
multimapping would build just one PDB whereas the mul-
tiple abstraction approach would build and store multiple
copies of the PDB. Similar memory and time savings are
expected in the hierarchical heuristic search setting (Holte,
Grajkowski, and Tanner 2005), because all the abstractions
would share the same cache, as opposed to each having its
own cache.

Compared to using a single abstraction mapping, mul-
timapping has the advantage that in computing h(s) it takes
the maximum abstract distance to goal over all the states
in φ(s). This advantage might be offset by having a set of
abstract goal states over which distance is minimized. In
this paper we present three ways of reducing the negative
effect due to this minimization. An additional disadvantage
of multimapping compared to a single abstraction mapping
is that computing the heuristic is slower with multimapping
because it computes more than one abstraction of a state and
abstract distance to goal.

We chose to evaluate multimapping abstraction in the hi-
erarchical heuristic search setting. Our experiments show
that Hierarchical IDA* with multimapping abstractions
solves problems using less time and less memory than it

does with a single abstraction or with multiple, independent
abstractions.

Multimapping Abstractions
A multimapping from S to T is a function, φ, that maps
each s ∈ S to a subset of T . If S and T are state spaces,
multimapping φ is an abstraction if, for every s ∈ S, φ(s)
is not the empty set and the following holds for all pairs of
states s, g ∈ S:

∀s′ ∈ φ(s) : min
g′∈φ(g)

d(s′, g′) ≤ d(s, g).

This definition of abstraction guarantees the admissibil-
ity of h(s) for multimappings, as defined in the Introduc-
tion. Note that we do not require every abstract goal state
to be reachable from every abstract state: admissibility is
still guaranteed even if d(s′, g′) = ∞ for some s′ ∈ φ(s)
and g′ ∈ φ(g). If exactly one g′ ∈ φ(g) is reachable from
each s′ ∈ φ(s), multimapping abstraction is equivalent to
using multiple, independent abstractions. When several, or
all, of the g′ are reachable from each s′ the two methods are
different.

Lemma 1 If φ is a multimapping abstraction of state space
S then the heuristic h based on φ is consistent.

Proof. Let s and t be any two states in S and g the goal
state in S. We need to prove that h(s) ≤ d(s, t) + h(t).
The key ideas behind the proof are illustrated in Figure 2.
Let s′ ∈ φ(s) and g′s ∈ φ(g) be such that h(s) = d(s′, g′s)
(i.e., these are the abstract states that define the max and
the min, respectively, in the calculation of h(s)). Let t′ ∈
φ(t) be such that d(s′, t′) ≤ d(s, t). The existence of t′ is
guaranteed by how we defined multimapping abstractions.
Finally let g′t ∈ argming′∈φ(g)d(t′, g′). From the definition
of g′s we have:

h(s) = d(s′, g′s) ≤ d(s′, g′t)

By the triangle inequality we get:

≤ d(s′, t′) + d(t′, g′t)

From the definition of t′ we get:

≤ d(s, t) + d(t′, g′t)

Finally, from the definition of h(t) we get:

≤ d(s, t) + h(t) �

Figure 2: Key ideas in the proof that h(s) is consistent.
t′ and g′t are chosen so that the inequalities shown hold.
h(s) ≤ d(s, t) + h(t) follows immediately from these in-
equalities and the triangle inequality.

73



The definition of h(s) for multimappings is inherently
asymmetric, even if distances in S are symmetric (d(s, g) =
d(g, s) for all s, g ∈ S). For example, suppose φ maps s to
two abstract states, s′1 and s′2, and maps g to just one abstract
state, g′. If g is the goal, then the heuristic estimate of the
distance between s and g will be max(d(s′1, g

′), d(s′2, g
′)),

but if s is the goal then the heuristic estimate of the same
distance will be min(d(s′1, g

′), d(s′2, g
′)). A similar phe-

nonemon occurs with dual lookups: if sd is the dual of state
s and g is the goal, we are guaranteed d(sd, g) = d(s, g)
and yet it frequently happens that h(s) 6= h(sd) (Zahavi et
al. 2008). This can be exploited by computing both heuristic
values and taking the maximum but we did not do this in our
experiments.

Ways to Define Multimapping Abstractions

One way to define a multimapping abstraction φ is
to use an ordinary abstraction ψ together with a
set of symmetry functions (as defined in the In-
troduction), sym1, ..., symn−1, and define φ(s) =
{ψ(s), ψ(sym1(s)), ..., ψ(symn−1(s))}. n is called φ’s
mapping factor. This is what has been described in the past
as multiple lookups in a single PDB.

A second way to create a multimapping is to use the state-
set abstraction method we presented last year (Pang and
Holte 2011). This method applies to state spaces in which
there are multiple occurrences of the same constant in the
representation of a state. The idea is to replace some of the
occurrences of each constant by a special kind of symbol
(see last year’s paper for details). Because there are dif-
ferent ways of choosing which occurrences are replaced,
this naturally produces a multimapping. For example, if a
state contains three 1s and two 2s (examples of such states
can be seen in Figure 1) there are six ways to replace two
of the 1s and one of the 2s by special symbols x, y, and
z: state 〈1, 2, 1, 2, 1〉, for example, would be mapped to
〈x, y, z, 2, 1〉, 〈x, 2, 1, y, z〉, 〈1, x, y, 2, z〉 etc.

A third way to define a multimapping abstraction φ
is to use a set of ordinary abstractions, φ1, ..., φn, that
all map to the same abstract space and define φ(s) =
{φ1(s), ..., φn(s)}. Again, n is called φ’s mapping factor.
This is the method illustrated in Figure 1 and which we will
use to define multimappings in the rest of the paper.

Minimizing the Effect of Minimizing

The biggest weakness of multimapping compared to either
using a single abstraction or using multiple, independent ab-
stractions, is the fact that in computing h(s) it minimizes
over the set of states in φ(g). This is necessary to guarantee
admissibility but can weaken the heuristic so much that it
is inferior to a heuristic based on a single abstraction map-
ping. In this section we will look at three ways to reduce the
harmful effect of this minimization: (1) choosing an appro-
priate mapping factor n, (2) Goal Aggregation (minimizing
the distance between the states in φ(g)), and (3) Remapping
(to prevent goal “creep” in hierarchical search).

Choosing a Mapping Factor
The mapping factor n affects the quality of the heuristic pro-
duced by a multimapping in two ways. In computing h(s)
a maximum is taken over all the states in φ(s) so increas-
ing the number of such states, i.e., the mapping factor, will
increase the maximum, all other things being equal. At the
same time however, a minimum is being taken over all the
states in φ(g) so increasing the mapping factor will make
the minimum smaller. It is hard to predict which of these
effects will dominate in general, but very large mapping fac-
tors will certainly produce poor heuristics. This situation is
analogous to the effect of increasing the number of PDBs
while keeping the total memory usage constant when max-
imizing over multiple PDBs (Holte et al. 2006). Increasing
the number of PDBs will increase the maximum, all other
things being equal, but in order to keep memory use con-
stant, increasing the number of PDBs means each PDB must
be smaller, which tends to decrease the values over which
the maximum is taken.

To illustrate the effect on the heuristic when the map-
ping factor is increased, we ran a small experiment on the
8-puzzle. Before describing the experiment, let us review
the notions of domain abstraction and granularity. We rep-
resent an 8-puzzle state using 9 constants, one for each of
the 8 tiles and one for the blank. A “domain abstraction” is
a mapping of these constants to a smaller set of constants.
For example, φ3 in Table 1 (bottom row) maps the blank to
0 and maps all the tiles to 1. Applied to an 8-puzzle state,
this produces an abstract state in which one position in the
puzzle is 0 and the rest are 1s. The “granularity” of this do-
main abstraction is 〈8, 1〉 because 8 constants are mapped to
one abstract constant and 1 to the other. In general a gran-
ularity is a vector of non-increasing values 〈k1, k2, ...〉 with
ki indicating how many constants in the original domain are
mapped to the ith abstract constant. When the total number
of constants in the original state space is clear from context,
the 1s in the granularity vector can be omitted. For example,
for the 8-puzzle, granularity 〈6, 1, 1, 1〉 would be written as
〈6〉.

In this experiment we generated all 280 of the 〈3, 3, 2, 1〉
domain abstractions of the 8-puzzle that map the blank to
a different constant than any tile. For each mapping fac-
tor n > 1 we generated a multimapping by choosing n of
these domain abstractions uniformly at random. We evalu-
ated the resulting heuristic by counting the average number
of 8-puzzle nodes expanded in solving 500 test problems
(randomly generated solvable start states). We repeated this
280 times for each value of n > 1. For n = 1 we evalu-
ated each of the 280 domain abstractions individually. The

original blank 1 2 3 4 5 6 7 8
φ0 0 1 2 3 3 3 4 4 4
φ1 0 1 2 3 3 3 3 3 3
φ2 0 1 2 2 2 2 2 2 2
φ3 0 1 1 1 1 1 1 1 1

Table 1: Domain abstractions of the 8-puzzle.

74



n 1 2 3 4 5 24
avg. 3700 1824 1545 1610 1699 4101
std. 495 513 273 276 307 609

Table 2: Nodes Expanded for various mapping factors.

original 1 2 3 4 5 6 7 8 9
φ1 1 1 1 1 2 3 4 5 6
φ2 2 1 1 1 1 3 4 5 6
φ3 3 2 1 1 1 1 4 5 6

Table 3: Abstractions based on Goal Aggregation.

average results and standard deviations, truncated to integer
values, are shown in Table 2.

The entry for n = 1 shows the average performance if
no multimapping is done, i.e., if we just use one domain
abstraction to define the heuristic. Using a multimapping
based on n = 2 domain abstractions reduces the number of
nodes expanded by 50%. The number of nodes expanded
decreases again when one more domain abstraction is added
(n = 3) but begins to increase after that. With n = 24,
the number of nodes expanded is worse than using a single
abstraction.

Although this experiment involves just one state space
and tiny abstract spaces, we believe the general lesson to
be drawn is that multimapping will be most effective when
the mapping factor is quite small. In our experiments, we
use n = 3.

Goal Aggregation
The second technique to reduce the harmful effect of mini-
mizing over all the states in φ(g) is to choose φ so that the
maximum distance, ∆, between states in φ(g) is as small as
possible. We call this Goal Aggregation. It is expected to
be effective because ∆ is an upper bound on the “harm” that
can be done by taking the minimum: for any abstract state
s′,

max
g′∈φ(g)

d(s′, g′) ≤ ∆ + min
g′∈φ(g)

d(s′, g′).

For example, φ1(g) and φ2(g) in Figure 1 are just 1 move
apart (reversing one of them produces the other) and there-
fore the minimum distance to these goal states must be
within 1 of the distance to either one of them—it was not
a coincidence that h(s) using multimapping in this exam-
ple was only 1 smaller than h(s) using multiple independent
abstractions.

In hierarchical heuristic search, mapping the goal to ab-
stract states that are near one another is expected to have a
second benefit: after very few searches at the abstract level
the entire space around all the goal states will be fully ex-
plored and stored in cache, thereby speeding up subsequent
searches and possibly reducing the number of cache entries
as well.

Example 1 As an example of how to construct a set of n do-
main abstractions based on Goal Aggregation consider the
9-Pancake puzzle with a goal state of 〈1, 2, 3, 4, 5, 6, 7, 8, 9〉
and a mapping factor of n = 3. The first abstraction,

φ1, is picked arbitrarily and applied to the goal state
to produce state s′1. Using φ1 from Table 3, s′1 would
be 〈1, 1, 1, 1, 2, 3, 4, 5, 6〉. Next, pick any two operators
and apply them separately to s′1 to produce two adja-
cent abstract states, e.g., s′2 = 〈2, 1, 1, 1, 1, 3, 4, 5, 6〉 and
s′3 = 〈3, 2, 1, 1, 1, 1, 4, 5, 6〉. Each of these abstract states
uniquely defines an abstraction, φ2 and φ3 in Table 3, that
will map the goal to them (e.g., φ2(goal) = s′2).

For each state space there is a limit on how small ∆ can
be. We have seen that ∆ = 1 is possible for the pancake puz-
zle. This is not possible for the 8-puzzle for any abstraction
that keeps enough information to allow the exact location of
the blank to be determined because distinct states that have
the blank in the same location are at least four moves from
one another, so ∆ must be 4 or more. ∆ = 4 still makes the
states “close” to one another, relatively speaking, since the
average distance to the goal state in a 〈3, 3〉 abstraction of
the 8-puzzle is 16. In the Blocks World our goal state has all
the blocks in one stack. Our Blocks World has a hand to pick
up and put down blocks, so 8 moves are required to reach a
different state with a single stack (the top two blocks have to
swap positions) so ∆ must be 8 or more. If the mapping fac-
tor is 3, ∆ must be at least 12 because the top three blocks
need to be re-arranged to generate a third state with all the
blocks in one stack. With 8 blocks and a 〈3, 3〉 abstraction,
the average distance to goal is 24.7, so ∆ = 12 is too large
for Goal Aggregation to be useful.

Remapping
In hierarchical heuristic search there is a sequence of in-
creasingly abstract spaces, T0, T1, ..., TL starting with the
original state space T0 = S (the “base level”), with each
space connected to the next by some sort of abstraction map-
ping. φi denotes the abstraction that maps Ti to Ti+1. As
usual, exact distances in space Ti+1 are used as a heuristic
to guide search in Ti.

Assume that φ0 is a multimapping with a mapping factor
of n. If φ1 is also a multimapping with a mapping factor
of n there could be as many as n2 goal states in T2, with
the consequence that the heuristic for guiding search in T1 is
very weak. To avoid this proliferation of abstract goal states,
we use normal abstraction mappings, not multimappings, for
all φi except φ0. That way there will be at most n goal states
at each level.

This does not entirely solve the problem because, as dis-
cussed above, a critical factor is the distance between the
different goal states relative to the average distance between
states. Since the latter is decreasing as we move up the ab-
straction hierarchy, it is important for the distance between
goal states to decrease at least as quickly. In early exper-
iments we did nothing to control this and found that the
heuristics became very weak very quickly, especially in the
larger state spaces.

Our solution, called “Remapping”, is to choose φ1 so that
there is only one goal state in T2. In other words, we choose
φ1 so that φ1(g′) = φ1(g′′) for all g′, g′′ ∈ φ0(g). For ex-
ample, suppose in the pancake puzzle that φ0 has a mapping
factor of n = 2 and that the two domain abstractions that

75



define φ0, φ01 and φ02, agree on how to map all the pancakes
except pancakes 1, 2, and 3. φ01 maps pancakes 1 and 2 to 1′

and maps pancake 3 to 2′, whereas φ02 maps pancake 1 to 1′

and maps pancakes 2 and 3 to 2′. φ0 maps the one goal state
in T0 to two goal states in T1. To ensure that there is just
one goal state in T2, it suffices to choose any φ1 that maps
constants 1′ and 2′ to the same constant.

Goal Aggregation and Remapping interact with one an-
other, because the former dictates what the abstract goal
states shall be and the latter dictates how those will be
mapped to the next higher level. Used together, the gran-
ularity of φ2 is entirely determined by Goal Aggregation’s
choices. This can be problematic if a particular granularity
for T2 is required, as in our experiments.

Example 2 If Remapping is applied to the three abstract
goal states that Goal Aggregation produces in Example 1, it
must map constants 1, 2, and 3 to the same constant, which
produces a granularity of at least 〈6〉. If we required that
level to have a granularity of 〈5〉 we would need to abandon
one of the two techniques or choose a different φ1 for the
Goal Aggregation process.

Experiment Design
The aim of our experiments is to compare multimapping ab-
stractions with single abstraction mappings and with mul-
tiple, independent abstractions in a hierarchical search set-
ting. We use domain abstractions and the Hierarchical IDA*
(HIDA*) search algorithm (Holte, Grajkowski, and Tanner
2005). We use MM-HIDA*, DA-HIDA*, and MA-HIDA*
to refer to HIDA* when it is used with multimapping ab-
stractions, single domain abstractions, and multiple, inde-
pendent abstractions, respectively. The abstraction hierar-
chies used for each version of HIDA* are illustrated in Fig-
ure 3. For DA-HIDA*, every abstract level consists of only
one abstract space and each state, at every level, maps to just
one state at the next higher level. For MA-HIDA*, each ab-
stract level consists of three separate abstract spaces; each
state in the original space is mapped to one abstract state in
each space at the first level of abstraction, and each abstract
state, at every level, is mapped to just one abstract state at
the next higher level. For MM-HIDA*, there is just one ab-
stract space at each level; each state in the original space is
mapped to n = 3 abstract states in the first level of abstrac-
tion, and each abstract state, at every level, is mapped to just
one abstract state at the next higher level.

Our experiments were run on a computer with two AMD
Opteron 250 (2.4GHz) CPUs and 8GB of memory. We used
four problem domains: the sliding-tile puzzle, the Pancake
puzzle, Topspin, and the Blocks World with a hand and dis-
tinct table positions, a variant of the Blocks World in which
there are a fixed number of positions on the table (3 in our
experiments) that are distinguishable from each other, so
that having all the blocks in a stack in position 1 is not the
same state as having them all in a stack in position 2.

We use two sizes of each problem domain. The smaller
size allows a large number of abstraction hierarchies of each
type to be compared, giving us a very accurate picture of
the range of possible behaviours of the different abstraction

Figure 3: Abstraction hierarchies for the HIDA* variants.

techniques. The larger size allows us to test, in a limited
manner, whether the observations made in the small versions
continue to hold as the state spaces scale up in size.

Experiments with Small State Spaces
The smaller state spaces used in this experiment were the
3 × 3 sliding-tile puzzle (8-puzzle), the 9-Pancake puzzle,
(10,4)-Topspin (10 tokens and a turnstile of width 4), and
the (8,3)-Blocks World (8 blocks, 3 distinct table positions).
The abstraction hierarchies always had four levels and the
first-level (φ0) abstractions all had a granularity of 〈3, 3〉.2
A typical 〈3, 3〉 domain abstraction of the 8-puzzle is φ0 in
Table 1.

The mapping to the second abstract level (φ1) was cre-
ated by mapping the two abstract constants that had 3 things
mapped to them by φ0 to the same abstract constant and
leaving the other abstract constants unique, for a granular-
ity of 〈6〉; see φ1 in Table 1. The mapping to the third ab-
stract level (φ2) adds one additional constant to the group of
six that are indistinguishable at the second level (granularity
〈7〉), and the mapping to the fourth and final level (φ3) adds
one more constant to this group (granularity 〈8〉).

For the 8-puzzle we used all 280 of the 〈3, 3〉 domain ab-
stractions that do not map the blank and a tile together. For
the other domains we used the analogous abstractions.3 For
DA-HIDA*, each abstraction was used on its own. For MM-
HIDA* on the 8-puzzle, Pancake puzzle, and Topspin, we
used each of these abstractions together with two abstrac-
tions of the same granularity determined by Goal Aggrega-
tion. If the combination of Goal Aggregation and Remap-
ping produced a second level of abstraction that did not
have granularity 〈6〉 (the granularity of DA-HIDA*’s sec-
ond level) we did not include it in our experiments. Thus
there are fewer abstraction hierarchies in our experiments
for MM-HIDA* than for the other methods (100 for the 8-
puzzle, 68 for the 9-Pancake puzzle, and just 13 for (10,4)-
Topspin). For MM-HIDA* on the Blocks World, we created
280 sets of domain abstractions by repeating the following
process 280 times: (1) choose 6 blocks at random; (2) cre-
ate three domain abstractions by separating the 6 blocks into

2In the standard encoding of TopSpin token 0 is regarded as
being fixed in the leftmost position so there are only 9 tokens of
consequence in (10,4)-Topspin.

3There are 840 such abstractions for the 9-Pancake puzzle, 280
for the other domains.

76



Figure 4: Average number of nodes expanded at the base level. The y-axis in (d) is on a log scale.

two groups of three at random in three different ways. This
process guarantees that the first-level abstractions have gran-
ularity 〈3, 3〉 and that the second-level abstraction has gran-
ularity 〈6〉 when Remapping is applied. For MA-HIDA* on
all the state spaces, we used the same first-level abstractions
as MM-HIDA*. These performed uniformly better, in terms
of CPU time, than choosing sets of three domain abstrac-
tions at random.

For each state space, we used 500 random, solvable start
states as test cases. Each version of HIDA* was run with
each abstraction hierarchy. We measured the average mem-
ory used by HIDA* (number of cache entries at all levels
of the hierarchy), and the average CPU time (in seconds)
needed to solve the test cases. We also measured the aver-
age number of nodes expanded at the base level as an in-
dication of the effectiveness of the heuristic defined by the
first level of abstraction. The results are shown in Figures 4
to 6 using box plots. For each state space there are three
box plots, one for each type of abstraction (DA on the left,
MM in the middle, MA on the right). The box for a given ab-
straction method contains exactly half the abstraction hierar-
chies used for that method; the horizontal line inside the box
shows the median performance and the bottom and top of
the box represent the 75th and 25th percentiles respectively
(lower is better in all these figures). The vertical line below
the box extends to the best performance or to 1.5 times the
interquartile range (1.5×IQR), whichever is larger. If there
are results beyond 1.5 × IQR, they are plotted as individ-
ual points. The vertical line and points above the box are
analogous, but for the performances in the bottom quartile.

Results in all four state spaces show exactly the same
trends. Figure 4 shows that the heuristics created by mul-
timapping abstractions are far superior to the heuristics cre-
ated by a single domain abstraction and inferior to the
heuristics created by multiple, independent abstractions. If
pattern databases were being used, these results indicate that
search would be faster with heuristics defined by multiple
abstractions than with heuristics defined by multimapping
since the number of nodes expanded at the base level is
strongly correlated with CPU time when PDBs are used.
The advantage of multimapping over multiple PDBs in this
setting is that it requires n times less memory and prepro-
cessing time if the same n abstractions are used.

However, in the hierarchical search setting the number of
nodes expanded at the base level does not entirely dictate

CPU time because the cost to search in the abstract levels
can be substantial. In Figure 5 we see that MM-HIDA*
is 2–3.5 times faster than MA-HIDA* and somewhat faster
than DA-HIDA*. Memory usage follows the same pattern
(Figure 6): MM-HIDA* uses considerably less memory than
MA-HIDA* and slightly less than DA-HIDA*. In terms of
both CPU time and memory, MM-HIDA* is the best of the
three methods.

Experiments With Large State Spaces
Our final experiments are with large versions of the problem
domains: the normal 4 × 4 sliding-tile puzzle (15-puzzle)
and the “glued tile” variant in which tile 9 (second column,
second row from the bottom) cannot be moved from its goal
location, the 14-Pancake Puzzle, (15,4)-Topspin, and the
(12,3)-Blocks World. We used 100 random, solvable start
states as test cases; for the 15-puzzle these were the stan-
dard test cases (Korf 1985). For each state space, we hand-
generated 5 “reasonable” abstraction hierarchies for each ab-
straction method (DA, MM, and MA). The granularity of
the abstraction hierarchies for DA-HIDA* and MM-HIDA*
were identical at all levels. The granularity of the first-level
abstraction was 〈6, 2〉 for the 15-Puzzle, 14-Pancake puz-
zle, and (15,4)-Topspin, and 〈5〉 for the (12,3)-Blocks world.
Each successive level reduced the number of abstract con-
stants by one. The uppermost abstract level had just one
abstract constant except for the 15-puzzle where it had two,
“blank” and “not blank”. For MM-HIDA* we always used
Remapping and we also used Goal Aggregation except on
the Blocks World. MA-HIDA* used the same abstractions
as MM-HIDA* except on the 15-puzzle where it was neces-
sary to use a coarser-grained first-level abstraction, 〈8, 3〉, to
fit in memory. Since the number of abstractions is small and
non-random, the purpose of this experiment is to test if the
conclusions drawn on the small state spaces apply equally
well to reasonable, hand-crafted abstractions of larger state
spaces.

Tables 4 to 8 present the average number of nodes ex-
panded at the base level, the average CPU time (in seconds)
and average memory needed (number of cache entries at all
levels) for each abstraction hierarchy tested. The first col-
umn indicates with a check mark the type of abstraction
used in each row. The rows are sorted by average CPU time.
The conclusions drawn from the experiments on the smaller

77



Figure 5: Average CPU time (seconds).

Figure 6: Average memory used (number of cache entries).

DA MM MA Nodes CPU(s) Mem (×107)
X 3,669,519 768.2 2.784
X 1,667,888 782.0 2.758
X 7,945,182 798.1 2.802

X 20,571,539 806.4 2.758
X 5,545,817 914.6 2.687
X 24,547,168 1,029.4 2.753

X 2,910,399 1,040.6 4.430
X 552,289 1,224.7 3.673

X 54,322,104 1,253.1 4.453
X 906,147 1,344.0 4.297
X 789,905 1,360.4 4.295
X 1,007,468 1,557.2 5.092
X 926,771 1,616.2 4.435

X 1,178,024 1,681.8 5.978
X 16,793,560 1,909.7 5.834

Table 4: Results for the 15-Puzzle.

state spaces are confirmed here. MM-HIDA* is the fastest
method in all domains except the Blocks World, where it is
slower than the two fastest DA-HIDA*s but still occupies 3
of the top 6 positions. MA-HIDA* is much slower than the
fastest method even though it expands far fewer nodes at the
base level than the other methods. Also as before, memory
usage is highly correlated with CPU time.

Conclusions
We have introduced multimapping abstractions and proven
that they produce admissible, consistent heuristics. We have
described three different ways of defining multimapping ab-

DA MM MA Nodes CPU(s) Mem (×106)
X 78,519 54.2 2.176

X 1,172,133 58.4 2.143
X 3,104,027 60.3 1.529
X 3,777,306 65.4 2.163

X 4,247,013 73.8 2.287
X 345,574 73.9 2.474

X 9,108,588 74.2 2.087
X 23,194,543 98.5 2.144
X 20,474,809 103.5 1.469

X 12,363,685 104.2 2.189
X 29,862 112.8 4.196
X 1,405,176 114.3 3.269
X 1,502,349 115.2 4.307
X 4,333,375 131.3 4.430
X 108,947 134.9 4.687

Table 5: Results for the Glued 15-puzzle.

stractions in practice and examined one in depth—multiple
domain abstractions that all map to the same abstract space.
We proposed three methods for overcoming the main po-
tential weakness of multimapping abstractions: (1) using a
small mapping factor, (2) Goal Aggregation, and (3) Remap-
ping. Our experiments showed that HIDA* with multimap-
ping abstractions solved problems using less time and less
memory than HIDA* with one domain abstraction or with
multiple, independent domain abstractions.

78



DA MM MA Nodes CPU(s) Mem (×106)
X 587,931 284.6 7.646
X 454,853 293.3 7.976
X 480,962 304.8 7.934
X 217,028 312.2 7.887
X 206,675 322.1 7.758

X 1,369,956 397.9 8.892
X 1,176,908 401.2 8.778
X 2,861,843 507.0 11.745

X 118,043 525.1 13.870
X 1,818,312 531.6 11.780

X 114,719 535.1 14.197
X 79,196 540.1 13.837
X 46,751 565.3 13.849
X 102,077 593.6 14.350

X 1,253,427 635.1 11.963

Table 6: Results for the 14-Pancake Puzzle.

DA MM MA Nodes CPU(s) Mem (×106)
X 11,870 143.5 5.390
X 12,312 147.6 5.433
X 12,471 150.7 5.387
X 12,849 153.8 5.328
X 13,498 160.8 5.456

X 47,907 183.3 6.649
X 52,970 186.8 6.676
X 47,905 197.2 6.604
X 43,576 199.5 6.720
X 47,959 217.5 6.651

X 3,506 279.7 9.838
X 3,541 286.0 9.783
X 3,338 300.5 9.874
X 3,458 301.5 9.783
X 3,759 309.8 10.018

Table 7: Results for (15,4)-TopSpin.

DA MM MA Nodes CPU(s) Mem (×106)
X 43,896 77.4 2.062
X 589,399 106.4 2.464

X 6,202,221 123.1 2.117
X 2,109 126.3 3.506

X 1,065,182 131.8 3.514
X 3,138,661 138.1 3.033

X 6,310,237 143.7 2.930
X 6,271,341 147.6 3.531

X 7,647,763 166.4 2.538
X 22,149 187.4 4.441

X 18,038,164 194.9 3.510
X 5,214 204.1 5.295

X 13,099,419 218.9 3.648
X 46,776 222.8 6.567
X 48,895 229.3 6.690

Table 8: Results for the (12,3)-Blocks World.

Acknowledgements
We gratefully acknowledge the financial support of the Nat-
ural Sciences and Engineering Research Council.

References
Culberson, J. C., and Schaeffer, J. 1996. Searching with pat-
tern databases. In Proceedings of the Canadian Conference
on Artificial Intelligence, volume 1081 of LNAI, 402–416.
Springer.
Domshlak, C.; Katz, M.; and Shleyfman, A. 2012. En-
hanced symmetry breaking in cost-optimal planning as for-
ward search. In Proc. 22nd International Conference on Au-
tomated Planning and Scheduling (ICAPS 2012).
Holte, R. C.; Felner, A.; Newton, J.; Meshulam, R.; and
Furcy, D. 2006. Maximizing over multiple pattern databases
speeds up heuristic search. Artificial Intelligence 170(16-
17):1123–1136.
Holte, R. C.; Grajkowski, J.; and Tanner, B. 2005. Hier-
archical heuristic search revisited. In Proc. 6th Intl. Sym-
posium on Abstraction, Reformulation and Approximation
(SARA 2005), volume 3607 of LNAI, 121–133.
Korf, R. E. 1985. Depth-first iterative-deepening: An opti-
mal admissible tree search. Artificial Intelligence 27(1):97–
109.
Pang, B., and Holte, R. C. 2011. State-set search. In Sym-
posium on Combinatorial Search (SoCS).
Zahavi, U.; Felner, A.; Holte, R. C.; and Schaeffer, J. 2008.
Duality in permutation state spaces and the dual search al-
gorithm. Artificial Intelligence 172(4-5):514–540.

79




