

Adaptive Parallelization for Constraint Satisfaction Search

Xi Yun1 and Susan L. Epstein1, 2

Department of Computer Science
1The Graduate Center and 2Hunter College of The City University of New York

New York, NY 10065 USA
xyun@gc.cuny.edu, susan.epstein@hunter.cuny.edu

Abstract
This paper introduces two adaptive paradigms that parallel-
ize search for solutions to constraint satisfaction problems.
Both are intended for any sequential solver that uses conten-
tion-oriented variable-ordering heuristics and restart strate-
gies. Empirical results demonstrate that both paradigms im-
prove the search performance of an underlying sequential
solver, and also solve challenging problems left open after
recent solver competitions.

Introduction
As parallel processing resources become increasingly
available, the challenge for modern sequential constraint
solvers is how best to make use of them. This paper details
extensive experiments that test a variety of reasonable par-
allelization approaches for an underlying sequential solver
(henceforward, a solver). This work uses three sets of care-
fully curated benchmarks from a broad variety of problem
classes, and explores several reasonable premises about
how parallelization might proceed. The thesis of our work
is that knowledge accrued during search can substantially
enhance its parallelization. We introduce two new para-
digms that address knowledge sharing among processors:
ELF and SPREAD. The principal result reported here is that,
on particularly difficult problems, SPREAD outperforms all
the tested alternatives, because it shares knowledge and
balances processor workload adaptively.1
 Both ELF and SPREAD make two assumptions about a
solver. First, it must have a variable-ordering heuristic that
prioritizes contention, variables whose constraints are more
likely to cause wipeouts. (We used learned variable
weights (Boussemart et al., 2004), but impact (Refalo,
2004) would be an alternative.) Second, the solver extri-
cates search from early unproductive assignments with a

Copyright ! 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

restart strategy (Gomes et al., 2000). Most modern sequen-
tial solvers satisfy both these conditions, and so this work
is applicable to them.

For multiple processors to share knowledge as they
search on the same problem, they must either share
memory or pass messages to one another. Here we focus
on the latter, where a manager on one processor coordi-
nates messages among the other processors (the workers),
under a popular parallel communication standard. Such a
manager-worker framework can support knowledge shar-
ing in several ways. For example, workers could repeatedly
interrupt their searches to check for messages, or a manag-
er with a deep knowledge of its workers’ behavior could
choose an opportune moment to interrupt them. To pre-
serve the integrity of the underlying sequential solver,
however, our paradigms instead reflect shared knowledge
in the way the manager assigns tasks to the workers.

ELF (ExpLorer and Followers) has a sequential solver
(its explorer) search the full problem with restart on a des-
ignated processor, while its workers (followers) search
without restart on subproblems identified based on feed-
back from the explorer. SPREAD (Search by Probing and
REcursive Adaptive Domain-splitting) first races all its
workers on the full problem with restart during a time-
limited phase. Then SPREAD’s manager partitions the full
problem based on contention identified thus far, and dis-
tributes subproblems to the workers with resource limits
based on the search effort during the race. If a subproblem
is returned unsolved within that limit, the manager further
partitions it, and re-distributes the resultant subproblems
with a higher search limit. This naturally directs computa-
tional power to challenging subproblems. After back-
ground and related work in the next section, we introduce a
generic partition mechanism, describe ELF and SPREAD,
evaluate them empirically, and discuss their advantages
and limitations.

145

Proceedings of the Fifth Annual Symposium on Combinatorial Search

Background and related work
A constraint satisfaction problem (CSP) P = <X, D, C> is
represented by a set of variables X = {X1,…, Xn}, each with
an associated discrete domain D = {d1,…, dn}, and a set C
of constraints that must be satisfied by any solution. Here,
the solver does systematic backtracking that sequentially
assigns values to variables and validates the consistency of
each assignment. From the domains of as-yet-unassigned
variables, propagation removes some values inconsistent
with C and current assignments. This causes a wipeout
when a domain becomes empty. A level-based constraint
weight assigns higher weights to constraints that lead to
wipeouts more frequently at the top of the search tree. Cru-
cial in ELF and SPREAD is a variable’s weight, the sum of
the weights on the constraints in which it participates.

As massive computing resources become increasingly
available, parallelization of search for solutions to CSPs
becomes increasingly attractive. Research has considered a
variety of platforms: a single node (Chu et al., 2009;
Martins et al., 2010), a cluster (Schubert et al., 2009; Xie
and Davenport, 2010), and a grid (Hyvärinen et al., 2011).
It has considered various parallel models as well, including
OpenMP (Chu et al., 2009; Martins et al., 2010; Michel et
al., 2007), and Message Passing Interface (MPI) (Xie and
Davenport, 2010; Zhang et al., 1996). MPI offers portabil-
ity for applications on many processors, and has become
the de facto standard for a variety of technological plat-
forms. Here we use MPI on a cluster with 64 processors
(unless otherwise specified), a number widely available on
modern computing clusters and powerful workstations.

 A portfolio-based parallelization method for CSP solv-
ers (Gomes and Selman, 1997; Huberman et al., 1997)
schedules a set of algorithms (its portfolio) on one or more
processors in an attempt to outperform any of its constitu-
ent algorithms. This approach can prove beneficial when
information is shared among processors, as when parallel
SAT solvers share clauses among processors (Hamadi and
Sais, 2009). Most portfolio-based methods for CSPs, how-

ever, do not share information (Bordeaux et al., 2009; Xu
et al., 2008; Yun and Epstein, 2012).

Another popular parallelization method is search space
splitting, which investigates different search subspaces on
different processors. For SAT instances, this method usual-
ly exploits a guiding path, a sequence of variables whose
assignment partitions the full search space (Zhang et al.,
1996). Formally, given a binary search tree for systematic
backtracking on a SAT instance, a guiding path from the
root (at level 1) to any node (at level k) is a sequence of k
states (<L1, !1>, …<Lk, !k>), where each state <Li, !i> rec-
ords the truth value Li assigned to the ith variable on the
path, and a boolean flag !i indicates whether both values
have been attempted (e.g., Figure 1(a)). An open node (! =
1) is one whose left subtree is still under exploration; oth-
erwise the node is closed (! = 0). Identification of a helpful
guiding path is non-trivial for SAT problems; variables that
often appear in learned clauses have proved effective (Chu
et al., 2009; Martins et al., 2010). Iterative partitioning
with clause learning, where subproblems’ search spaces
may not be mutually exclusive, can also be surprisingly ef-
ficient (Hyvärinen et al., 2011).

 With non-boolean domains, search space splitting for
CSPs is generally more complex. For a single processor,
extraction of networks (EN) iteratively splits the domains
of a set of variables in a predetermined order (Mehta et al.,
2009). Such a split on the ith variable, as in Figure 1(b),
produces two subproblems that differ only in the variable’s
domain; one has the same domain as the ith variable, and
the other has the remainder. EN can extract visited search
spaces to avoid duplicate search after restart.

 Other parallelization schemes include a SAT solver
that uses a portfolio phase followed by a splitting phase
(Martins et al., 2010) without re-partitioning the problem
as we do here. Additional related work includes problem
decomposition (Singer and Monnet, 2007) and collabora-
tive search (Segre et al., 2002; Vander-Swalmen et al.,
2009). Other workload-balancing approaches include work
stealing (Chu et al., 2009; Jurkowiak et al., 2001; Michel et
al., 2007; Schubert et al., 2009) and work sharing (Xie and
Davenport, 2010).

 (a) (b)
Fig. 1. (a) A guiding path with open nodes at X1, X3, and X4. (b)
Extraction of subproblem P2 from P1 (under variables X, Y, Z, in
that order) produces subproblems R1, R2, R3. Together the search
spaces for P2, R3, R2, and R1 partition the search space for P1.

Fig. 2. Bisection partitioning on X and Y creates a virtual binary
search tree with bit representations for the four subproblems.

146

Bisection partitioning
This section introduces iterative bisection partitioning, an
extension of the way that a guiding path splits a SAT prob-
lem and EN splits a CSP. A bisection partition (BP) on de-
cision variable X with domain d replaces X with two varia-
bles X" and X"" whose respective domains, d" and d"", parti-
tion d. To generate subproblems with search spaces of sim-
ilar sizes, we adopt an (almost) even partitioning:
d" = {v1,…,v#} and d"" = {v#+1,…, v|d|}, where # = #|d|/2$.
Given an ordered sequence of v decision variables, itera-
tive bisection partitioning (IBP) repeats BP on them to
generate 2v subproblems. Figure 2 illustrates how IBP on
variables X and Y in P1 generates the subproblems R1, R2,
R3, and R4. Intuitively, processing those subproblems on
different processors in parallel could improve overall
search performance on P1.

IBP is a version of EN that creates subproblems with so-
lution spaces of comparable sizes (for load balance) on
variables with high (contention-based) weights as defined
in the previous section. Moreover, since IBP splits any
search space much the way a guiding path splits {0,1} for
SAT problems, an IBP-generated subproblem can be repre-
sented by a guiding path <L1, !1>, …<Lk, !k>, where Li in-
dicates whether the ith decision variable Xi is associated
with d" (Li = 0) or with d"" (Li = 1). This simplified (bit
string) representation can reduce the communication effort
required to pass subproblems to workers.

ELF
Given problem P, ELF uses a manager on a dedicated pro-
cessor to race an explorer on a second processor against a
set of followers, each on its own processor. The explorer
uses a sequential solver to search for a solution to P. On
each restart, the explorer also reports to the manager its
most recent variable weights and restart resource cutoff (in
number of backtracks). Whenever all the followers are idle
(have completed their assigned subproblems), the manager
partitions P with IBP on the highest-weight variables, and
distributes the subproblems to the followers, along with the
explorer’s last reported resource cutoff and constraint
weights. Each follower then initializes the weights of the
variables in its new subproblem accordingly, and searches
under the cutoff as instructed by the manager.

Intuitively, ELF discretizes search by multiple rounds of
restarts, during which the explorer and the followers race
to find a solution, while the manager and the followers ex-
ploit the explorer’s reports to split the search space and to
search. The race terminates when the explorer finds a solu-
tion, a follower finds a solution, or the followers together
prove all the subproblems unsatisfiable. We emphasize,
however, that relatively equal search space sizes do not at
all promise relatively equal search effort.

ELF’s architecture is similar to collaborative search by
nagging, a scalable fault-tolerant scheme for distributed
search (Segre et al., 2002). Nagging has a manager that
performs a standard search algorithm (as ELF‘s explorer
does) and one or more naggers (i.e., assistants) that exe-
cute the same algorithm on transformed problems or sub-
problems. The most significant difference between ELF and
nagging is that, with restart, ELF executes search space
splitting on dynamically changing search trees, but nagging
uses an algorithm portfolio to transform the problem (e.g.,
reorder the unassigned variables) in a static search tree. A
nagger can also force the manager to backtrack if the nag-
ger proves its subproblem unsatisfiable more quickly.

 ELF’s manager could partition the problem several ways;
we use IBP because it is convenient and uniform for finite
domains. Rather than force the followers to check repeat-
edly for messages, the manager waits until they are all idle.
Because there is no guarantee that every subproblem will
be equally difficult (i.e., consume backtracks at an equal
rate), some workers may become idle earlier. To provide
followers with the explorer’s most current information,
ELF’s manager uses a discount factor to reduce the explor-
er’s reported resource cutoff before passing it on to the fol-
lowers. A somewhat lower resource allocation makes it
more likely that the followers will finish before the explor-
er’s next restart.

This synchronization of the explorer with the followers
can be imperfect. An alternative would have the manager
accumulate the explorer’s information in MPI message
buffers and proceed asynchronously, with workers subject
to different weights and cutoffs. As the weights stabilize
and the cutoff becomes large, this could prove a better
choice. As reported here, however, some of ELF’s workers
are likely to wait for their next assignment until the others
are finished. That relatively weak ability to balance work-
load motivated the development of SPREAD.

SPREAD
Under a manager-worker framework, SPREAD combines
and extends two effective methods from SAT to parallelize
search for CSPs: an algorithm portfolio with search space
splitting (Martins et al., 2010), and iterative partitioning
(Hyvärinen et al., 2011). Given CSP P with portfolio re-
source limit l and restart schedule policy, SPREAD tries to
solve P under l during a portfolio phase (Algorithm 1), and
then uses recursive splitting with IBP (RS-IBP) to exploit
information from that phase during a splitting phase under
policy (Algorithm 3). Algorithm 2 controls the w workers.
Algorithm portfolio phase. In Algorithm 1, the manager
sends each worker the signal 0 to initiate a portfolio phase
(line 2). On receipt of that message, each worker attempts
to solve P within search limit l with a different random

147

seed, a kind of weak algorithm portfolio. If a worker suc-
ceeds (i.e., finds a solution or proves P unsatisfiable), it re-
ports that immediately and terminates the MPI environ-
ment, including execution on all other workers (Algorithm
2, line 6). Otherwise, the worker has exhausted l, and re-
ports to the manager the variable weights it has learned and
how many backtracks it used (Algorithm 2, line 7). Finally,
the manager averages across all workers the variable
weights and backtrack counts, and passes them on to the
search space splitting phase (Algorithm 1, lines 6-7).
Splitting phase. Intuitively, RS-IBP attempts to balance
the workload assigned to multiple processors when a CSP
is partitioned (Algorithm 3). RS-IBP maintains a queue Q
of subproblems to search (each as a bit string for the parti-
tion that gave rise to it), with their corresponding backtrack
limits in queue L. RS-IBP determines the number v of ini-
tial decision variables based on w (here, the smallest num-
ber such that 2v % 2w, line 1). It then chooses the v varia-
bles with the highest average weights learned for P during
the portfolio phase. The manager partitions P on those var-
iables, tracks the resultant subproblems and their respective
backtrack limits (lines 3-4), and then distributes subprob-
lems to workers with backtrack limits and variable weights
(line 6). Task distribution (line 6) notifies the worker on

processor i with signal 1 that it is about to send a subprob-
lem, and then dequeues and sends the first subproblem on
Q with its corresponding weights and backtrack limit from
L. The manager then awaits its workers’ feedback.

In this phase too, a worker has three possible behaviors.
It reports any detected solution to the manager and termi-
nates the MPI environment (Algorithm 2, line 12); it re-
ports that its subproblem is unsatisfiable with message 0
(line 13); or it reports that it has exhausted its resources
and returns its subproblem with message 1 (line 14). When
a subproblem is returned and Q has fewer than 2v subprob-
lems, the manager re-partitions the returned subproblem
on $ additional decision variables, and enqueues the result-
ant subproblems and resource limits (Algorithm 3, lines
14-18). Otherwise, the manager re-enqueues the subprob-
lem without repartitioning (Algorithm 3, lines 20-22). As
they become available, the manager also distributes sub-
problems to any idle workers (Algorithm 3, lines 11 and
23-25). RS-IBP terminates when some worker finds a solu-
tion, or when all subproblems are proved unsatisfiable.

When eventually distributed, an unresolved subproblem
that returned to the queue intact will almost certainly begin
with a different random seed, and may therefore have a
very different search experience. $ is chosen so as to bound

Algorithm 2: Worker
Input: P, l, policy
Output: solution of P
 1: while true do
 2: MPI.Recv(signal, 0)
 3: if signal = -1 then break // worker terminates
 4: if signal = 0 then // for portfolio phase
 5: if solve(P, l, policy, rand_seed) then
 6: Output solution (or UNSAT) and abort MPI
 7: else MPI.Send(<send_weights, bt_num>, 0)
 8: else // for splitting phase
 9: MPI.Recv(<PS, rec_limit, rec_weights>, p)
10: Initialize PS’s variable weights with rec_weights
11: if solve(PS, rec_limit, policy) then
12: if SAT then output solution and abort MPI
13: else MPI.Send(<0, PS>, 0)
14: else MPI.Send(<1, PS>, 0)

Algorithm 1: Portfolio (Manager)
Input: P, policy
Output: variable weights and backtrack counts
 1: tmp_weights & 0, bt_num & 0, signal & 0
 2: for i = 1 to w do MPI.Send(signal, i)
 3: while i > 0 do
 4: MPI.Recv(<tmp_weights, bt_num>)
 5: i & i - 1
 6: Compute weights and base by average based on all
 received tmp_weights and bt_num
 7: return <weights, base>

Algorithm 3: RS-IBP (Manager)
Input: P, weights, base, policy
Output: solution of P
 1: v & get_decision_var_num(w)
 2: decision_vars & choose(v, P, weights)
 3: for PS in BP(P, decision_vars) do Q.push(PS)
 4: for i = 1 to 2v do L.push(base)
 5: gen_count & Q.size(), fb_count & 0, signal & 1
 6: for i = 1 to w do task_allocate(i)
 7: while fb_count < gen_count do
 8: MPI.Recv(<fb, PS >, p)
 9: fb_count & fb_count + 1
10: if fb = 0 then
11: if !Q.empty() then task_allocate(p)
12: else
13: if Q.size() < 2v then
14: decision_vars & choose($, PS, weights)
15: for Pi

S in BP(PS, decision_vars) do
16: Q.push(Pi

S)
17: L.push(get_limit(Pi

S, base))
18: gen_count & gen_count + 1
19: else
20: Q.push (PS)
21: L.push(get_limit(PS, base))
22: gen_count & gen_count + 1
23: for i = 1 to w do
24: if worker i is idle and !Q.empty() do
25: task_allocate(i)
26: Send signal -1 to all processors

148

the RS-IBP queue length by 2v + 2v-1–1 for v initial deci-
sion variables. Nonetheless, IBP’s relatively short bit
strings would in practice allow large queues. Indeed, in the
work reported next, the average number of generated prob-
lems in every problem sets was always under 200.

Experimental design and results
All experiments ran on a Cray XE6m. Each of its 160 dual-
socket compute nodes contains two 8-core AMD Magny-
Cours processors running at 2.3 GHz. (Here, a processor
corresponds to a core of the Cray.) The solver was Mistral-
1.331 (C++ source code, (Competition, 2008)), chosen for
its compatibility with MPI on the Cray. This allows us to
assemble sets of difficult problems and to evaluate the per-
formance improvement by SPREAD. Note that, on a Cray
XE6m, Mistral compiled under the GCC compiler (Mis-
tral-GCC) runs 2 to 3 times faster than under the CC com-
piler (Mistral-CC). This gives the Mistral-GCC benchmark
a considerable advantage over all our parallel solvers,
which require the CC compiler for MPI.

 Our experiments evaluate parallel approaches on three
sets of difficult problems. From the repository of over 7000
problems in the two most recent CSP solver competitions
(Competition, 2009; Competition, 2008), we selected 51
representative classes. (See Figure 3.) They cover a broad
variety of CSPs, including binary and non-binary problems,
both real-world and artificial. To avoid bias toward classes
with many problems, we stratified selection by class to re-
flect any pre-specified subclasses and naming conventions,
and chose a subset from each class in proportion to the
original class sizes. This resulted in 1765 CSPs in 51 clas-
ses of 7 to 65 problems each. Next, we solved each of the
1765 problems with Mistral-GCC, eliminated any that Mis-
tral-GCC could solve in less than a minute (1398 in all),
and then partitioned those remaining into two sets. The
hard set is the 119 CSPs that Mistral-GCC could solve
within 1 to 30 minutes each, running sequentially on the
Cray. The harder set is the 248 CSPs that remained. Final-
ly, the challenge set is the 133 competition problems never
solved by any solver within 30 minutes during the same
competitions, and not already present in the harder set.

In addition to ELF, SPREAD, and Mistral, we tested:

• NR (Naïve Random), a naïve random algorithm portfolio
that races 63 copies of Mistral with random seeds.
• NV (Naïve Variable), an algorithm portfolio that races 63
copies of Mistral, each of which randomly selects and or-
ders the first 3 variables it assigns (but not their values)
and retains them on every restart (Bordeaux et al., 2009).
• PP (Parallel Portfolio), an algorithm portfolio that races
in parallel 63 combinations of heuristics and restart strate-
gies. Candidate heuristics were impact, dom/wldeg,
dom/wdeg, and impact/wdeg, as implemented in Mistral.
Candidate restart policies were Luby-k, arithmetic, geomet-
ric, and dynamic. Luby-k used k backtracks per unit, k '
{128, 256, 512, 1024, 2048, 4096} (Luby et al., 1993). Ge-
ometric used restart limit x(n) = 100pn at step n, where p =
1.3, 1.5 or 2.0; arithmetic on step n used x(n) = 16000n,
8000n, 1000n2, or 500n2. Dynamic adaptively determined
whether to execute geometric restart with exponent 1.3, 1.5,
or 2.0 based on the problem formulation (e.g., number of
predicates), and restarted on the minimum of 1000 and
number of variables.
• RP (Random Partitioning) splits on 7 randomly-chosen
decision variables, and assigns those 128 subproblems to
63 workers. (Some workers may process more than one.)
We also tested NWSPREAD (No-Weight SPREAD), an ablat-
ed version of SPREAD that choses decision variables at ran-
dom, rather than by variable weights

All runs used a 30-minute per problem time limit.
SPREAD used 64 processors (including one for the manag-
er); ELF used 64 for its followers plus 2 for its explorer and
manager, a slight advantage. ELF used geometric restart
with base 100 and discount factor 0.8. SPREAD’s portfolio
phase was 100 seconds (unless otherwise specified) with
dynamic restart. Backtrack limits for the first subproblems
(generated in Algorithm3, line 3) used the base from the
portfolio phase. When a subproblem was further parti-
tioned on $ more decision variables, the backtrack limit
was multiplied by (1.5)$. On all approaches, we report the
median of 3 runs, as in recent parallel SAT solver competi-
tions (SAT competition).

Figure 4 compares SPREAD’s runtime to the others for
the hard problem set. Although a few instances went un-
solved under SPREAD, it clearly outperformed most of the
others, including the faster sequential version of Mistral,
and PP (with its different combinations of search strate-
gies). SPREAD solved 43.70% of these problems within 100
- 200 seconds, the time when SPREAD’s splitting phase on
critical decision variables has just begun, while PP tries a
complementary algorithm portfolio instead. This is a clear
demonstration that the portfolio phase informs IBP. More-
over, NWSPREAD’s pure search space splitting without that
knowledge was dramatically inferior; it could not solve
75.63% of the hard problems. In contrast, even NR had
solved 17.65% problems within the first 100 seconds.
NWSPREAD was therefore excluded from subsequent test-

Fig. 3. For problem set construction, number of problems in each
of 51 CSP classes after stratified selection.

al
ls
qu
ar
es

al
ls
qu
ar
es
U
ns
at

bd
dS
m
al
l

bd
dL
ar
ge BH bi
bd

bi
bd
Va
rio
us
K

bm
c

bq
w
h_
gl
b_
15

bq
w
h_
gl
b_
18

bq
w
h_
15

bq
w
h_
18

Q
C
P

Q
W
H

co
lo
r

le
xH
er
al
d

le
xP
uz
zl
e

le
xV
g

og
dH

er
al
d

og
dP
uz
zl
e

og
dV
g

uk
H
er
al
k

uk
Pu
zz
le

uk
Vg

w
or
ds
H
er
al
d

w
or
ds
Pu
zz
le

w
or
ds
Vg

dr
iv
er

fa
pp

fa
pp
11
-1
5

ge
om

G
ol
om

b
ha
ys
ta
ck

jo
bS
ho
p

su
pe
r-j
ob
Sh
op

js
-ta
illa
rd

su
pe
r-j
s

la
ng
fo
rd

os
-ta
illa
rd

su
pe
r-o
s

m
od
ifi
ed
R
en
au
lt

pr
im
e

ra
nd

rlf
ap
Sc
en
s1
1

rlf
ap
Sc
en
s

rlf
ap
Sc
en
sM

od
rlf
ap
G
ra
ph
s

rlf
ap
G
ra
ph
sM

od
qu
ee
ns
Kn
ig
ht

ts
p-
20

ts
p-
25

N
um

be
r

0

10

20

30

40

50

60

70

149

ing, as were both versions of Mistral alone.
Figure 5 evaluates the remaining approaches on the

harder problem set. Within 1800 seconds, SPREAD solved
56 problems (44 satisfiable), 16 more (a 40.00% improve-
ment) than the best benchmark method PP (which solved
40), and 31 more (a 124.00% improvement) than the worst,
NV (which solved 25). As one would expect, SPREAD be-
haved early on much like the portfolio-based methods NR
and PP; it solved 10 (all satisfiable) within 100 seconds,
that is, in its portfolio phase. SPREAD also consistently
solved more problems that required more time, 18 of them
(11 satisfiable) in the last 800 seconds.

Table 1 compares ELF, SPREAD, and the four methods
from Figure 5 on 32 problems from the challenge set, those
solved by at least one method. (None was solved during a
portfolio phase.) Here we report on two versions of
SPREAD, that differ only in their portfolio phase times: a
10-second SPREAD-10-pf, and the 100-second SPREAD-
100-pf used in the remainder of this paper. SPREAD signifi-
cantly outperformed the other parallelization methods,
even though we had hand tuned ELF’s explorer to do well
on this set (geometric restart with base 100, factor 1.3333,
and discount factor 0.8). Although SPREAD did best with
rand problems, it also solved varied problems from such

classes as langford, crossword, and queenAttacking.
To investigate resource usage, let the idle ratio of the ith

worker be the fraction of overall runtime that it was idle on
a problem. On problems solved during its partitioning
phase, SPREAD’s average idle ratio (across its processors in
3 runs) rose as high as 0.8251 on hard, 0.8793 on harder,
and 0.5015 on challenge problems, probably due to high
backtrack limits on extremely unbalanced search trees.
Overall, however, SPREAD still often managed an idle ratio
under 0.1: on 56.92% of the hard problems, 69.92% of the
harder problems, and 75.00% of the challenge problems.

Finally, Figure 6 plots, as a median with cutoff 1800 se-
conds, SPREAD’s runtimes to solve a difficult unsatisfiable
instance on different numbers of processors. Similar im-
provements were also observed on satisfiable problems,
where search performance typically has greater variance.

Discussion and conclusions
ELF and SPREAD have several advantages. In the search for
a single solution, they are complete, and make no assump-
tion about domains or constraint types; as long as their
solver can address a problem, they can too. Both represent
search space splitting as a queue of bit strings that repre-

Fig. 4 On the hard problem set, solution time for SPREAD (on the x-axis) to other methods (on the y-axis). Points above the diagonal are
CSPs that SPREAD completed more quickly; points along the top line are those the competitor failed to solve within the time limit.

Fig. 5. On the harder problem set, cumulative solved problems
across 1800 seconds for SPREAD, ELF, and other methods.

Fig. 6. Over 10 runs, medians of SPREAD on rlfapScene11-f1.

0 500 1500

0
50
0

15
00

EL
F

0 500 1500

0
50
0

15
00

M
is
tra
l-G

C
C

0 500 1500

0
50
0

15
00

M
is
tra
l-C

C

0 500 1500

0
50
0

15
00

N
R

0 500 1500

0
50
0

15
00

PP

0 500 1500

0
50
0

15
00

N
V

0 500 1500

0
50
0

15
00

R
P

0 500 1500

0
50
0

15
00

N
W
SP

R
EA

D

0 10 20 30 40 50 60

0
50

0
10

00
15

00

Cumulative number of solved problems

R
un

tim
e

SPREAD
PP
RP
NR
ELF
NV

Number of processors

R
un

tim
e

16 32 64 128 256

10
10

0
10

00

150

sent subproblems, which is easy to implement and conven-
ient to pass in MPI. In addition, both permit the program-
mer to ignore the implementation details of any underlying
sequential solver, and thereby simplify parallelization.
Several factors account for SPREAD’s ability to outperform
ELF on the harder problems and the challenge problems.
ELF makes its followers wait for one another before they
restart, and requires them to restart simultaneously and
fairly often. This leaves ELF relatively less time to search
extensively. In contrast, SPREAD’s workers wait only for
new subproblems, not for one another. Moreover, SPREAD
allocates greater resources to its workers for what are ex-
pected to be more difficult subproblems, while ELF assigns
resources to subproblems uniformly.

There are several possible explanations for the differ-
ences between SPREAD-10-pf and SPREAD-100-pf. Alt-
hough SPREAD’s search is influenced by the variables it
splits on and their order, its portfolio-phase search limit al-
so has a strong effect. Because the splitting-phase search
limit is proportional to the number of backtracks in the
portfolio phase, and because restarts in the portfolio phase

are geometric, the longer portfolio phase in SPREAD-100-pf
is more likely to produce higher resource limits during the
splitting phase and possibly more idle time. Nonetheless,
SPREAD-100-pf has additional portfolio time, which could
produce more reliable weights. On the other hand, if
weights do not provide good guidance, SPREAD-10-pf can
devote that additional 90 seconds to subproblem search.
Were the splitting-phase search limit infinite, SPREAD
would partition only once and would probably benefit from
a longer portfolio phase, but could also be modified to
search for all solutions.

Of course, a parallelization scheme can interrupt and
repartition long-running tasks, or steal partial workloads
for idle workers from busy ones. Because MPI delivers in-
formation by handshake, however, with SPREAD we chose
to spare workers from repeated checks for restart messages
and new problems from the manager. This reduces inter-
processor communication and naturally embeds restart into
a non-shared memory environment. SPREAD can thereby
maintain a simple protocol readily applicable to a modern
sequential solver without incisive modification of the solv-

Table 1: Runtimes for different parallelization strategies on the challenge problem set. Best results in boldface.

Problem Name Satisfi-
able? NR NV PP RP ELF SPREAD-

10-pf
SPREAD-
100-pf

crossword-m1-words-21-10 yes 520.47 - - 721.84 - - 846.01
crossword-m1c-ogd-vg10-13_ext no - - - - - 744.89 583.22
crossword-m1c-ogd-vg10-14_ext no - - - - - 1302.41 402.33
crossword-m1c-ogd-vg12-12_ext no - - - - - 461.62 586.02
crossword-m1c-uk-vg11-12_ext no - - - - - - 1081.71
frb53-24-2-mgd_ext yes - - - 1240.12 361.06 749.33 329.85
frb53-24-5_ext yes - - 748.17 331.19 281.01 63.04 255.86
frb56-25-2-mgd_ext yes - - - - 470.45 661.94 822.12
langford-2-14 no 485.81 187.39 401.30
langford-3-16 no 567.92 659.73 446.50
queenAttacking-8 yes - 1065.19 - - - - -
rand-3-24-24-76-632-17_ext yes - - - 358.80 430.53 240.02 326.82
rand-3-24-24-76-632-fcd-47_ext yes 823.91 988.58 693.89 207.30
rand-3-24-24-76-632-fcd-50_ext yes - - - 692.31 410.21 59.71 168.40
rand-3-28-28-93-632-16_ext yes - - - - 1453.55 1551.52 -
rand-3-28-28-93-632-23_ext yes - - - - 1077.27 551.02 758.57
rand-3-28-28-93-632-25_ext yes - - - - - 448.20 464.58
rand-3-28-28-93-632-3_ext yes - - - - - 1306.23 648.04
rand-3-28-28-93-632-30_ext yes - - - - - 893.93 1061.22
rand-3-28-28-93-632-35_ext no - - - - - 1186.84 1321.97
rand-3-28-28-93-632-37_ext yes - - - - - - 238.10
rand-3-28-28-93-632-8_ext no - - - - - 1126.08 -
rand-3-28-28-93-632-fcd-16_ext yes - - - - - 1531.64 530.76
rand-3-28-28-93-632-fcd-20_ext yes - - - 24.79 428.46 299.64 314.52
rand-3-28-28-93-632-fcd-21_ext yes - - - - - 1322.25 -
rand-3-28-28-93-632-fcd-24_ext yes - - - - - 1122.49 -
rand-3-28-28-93-632-fcd-27_ext yes - - - - - - 1349.44
rand-3-28-28-93-632-fcd-31_ext yes - - - - - 700.22 211.54
rand-3-28-28-93-632-fcd-35_ext yes - - - - - 494.40 616.61
rand-3-28-28-93-632-fcd-40_ext yes - - - - 202.85 137.29 219.16
rand-3-28-28-93-632-fcd-42_ext yes - - 1618.35 - 120.04 144.94 124.55
rand-3-28-28-93-632-fcd-46_ext yes - - - 1410.23 199.73 168.30 159.21

151

er’s own search algorithm.
 To split a search space, ELF and SPREAD use IBP, which
has no knowledge about problem domains. One could,
however, exploit domain characteristics, for example, par-
tition a critical variable’s large domain into more subprob-
lems, rather than bisect it, or group particular values into
split domains rather than simply split at the median. In
contrast, for extremely small domains (e.g., binary in SAT),
parity constraints could lead to more balanced and effec-
tive partitioning than IBP (Bordeaux et al., 2009).

RS-IBP must first fail on a subproblem to partition it;
that first effort on it is wasted. Moreover, because RS-IBP
initially depends on data from the portfolio phase, it can be
misled. For example, in the queens-knights (QK) problems,
the knight variables are the true contention, but weights
initially prefer the queen variables. SPREAD’s portfolio
phase is similarly misled, so RS-IBP partitions on queen
variables, and the results prove unsatisfactory. Indeed, in a
test run, SPREAD with a portfolio time of 10 seconds failed
on all five QK problems in the hard problem set. A longer
(100-second) portfolio phase, however, provided more ac-
curate weights, and SPREAD managed to solve 2 of them.

Both ELF and SPREAD are adaptive; ELF learns weights
and cutoffs for its workers from its explorer, while SPREAD
iteratively partitions hard subproblems. Under RS-IBP,
however, SPREAD gradually allocates more computing cy-
cles to the hard parts of a problem, and thereby balances
workload assignments for processors better. Current work
includes a dynamically-chosen duration for the portfolio
phase, and investigation of methods that maintain the deci-
sion path and change only the variables that further parti-
tion a returned subproblem. Future work will also combine
adaptive decision variable selection with nogood learning.

Meanwhile, SPREAD provides a well-tested and promis-
ing paradigm for parallel search on CSPs. SPREAD is com-
patible with the widely-used MPI communication standard
and requires no alteration of its underlying solver. SPREAD
combines and extends methods for workload partitioning
and balancing from SAT to CSP solution. This paper con-
firms its ability to conveniently and efficiently parallelize a
modern sequential CSP solver.

Acknowledgements
This work was supported by the National Science Founda-
tion under IIS-0811437, CNS-0958379 and CNS-0855217,
and CUNY’s High Performance Computing Center.

References
Bordeaux, L., Y. Hamadi and H. Samulowitz 2009. Experiments
with massively parallel constraint solving. In Proc. of IJCAI, 443-
448. Pasadena, California, USA, Morgan Kaufmann.
Boussemart, F., F. Hemery, C. Lecoutre and L. Sais 2004.
Boosting systematic search by weighting constraints. In Proc. of

ECAI, 146-149. IOS Press.
Chu, G., C. Schulte and P. J. Stuckey 2009. Confidence-based
Work Stealing in Parallel Constraint Programming. In Proc. of
CP, 226-241.
CSC'09. 2009. http://www.cril.univ-artois.fr/CSC09/.
CPAI'08. 2008. http://www.cril.univ-artois.fr/CPAI08/.
Gomes, C. and B. Selman 1997. Algorithm portfolio design:
theory vs. practice. In Proc. of UAI, 190-197. Morgan Kaufmann.
Gomes, C., B. Selman, N. Crato and H. Kautz 2000. Heavy-tailed
phenomena in satisfiablity and constraint satisfaction problems.
Journal of Automated Reasoning 24: 67-100.
Hamadi, Y. and L. Sais 2009. ManySAT: a parallel SAT solver.
Journal on Satisfiability, Boolean Modeling and Computation 6:
245-262.
Huberman, B., R. Lukose and T. Hogg 1997. An economics
approach to hard computational problems. Science 256: 51-54.
Hyvärinen, A. E. J., T. Junttila and I. Niemelä 2011. Grid-based
SAT solving with iterative partitioning and clause learning. In
Proc. of CP, Perugia, Italy, Springer.
Jurkowiak, B., C. M. Li and G. Utard 2001. Parallelizing Satz
Using Dynamic Workload Balancing. In Proc. of SAT, 205-211.
Luby, M., A. Sinclair and D. Zuckerman 1993. Optimal speedup
of Las Vegas algorithms. In Proc. of Second Israel Symposium on
the Theory of Computing and Systems, 173-180.
Martins, R., V. Manquinho and I. Lynce 2010. Improving Search
Space Splitting for Parallel SAT Solving. In Proc. of ICTAI, 336-
343. Arras, France.
Mehta, D., B. O'Sullivan, L. Quesada and N. Wilson 2009.
Search space extraction. In Proc. of CP, 608-622. Lisbon,
Portugal, Springer.
Michel, L., A. See and P. V. Hentenryck 2007. Parallelizing
Constraint Programs Transparently. In Proc. of CP, 514-528.
Moskewicz, M. W., C. F. Madigan, Y. Zhao, L. Zhang and S.
Malik 2001. Chaff: Engineering an Ef!cient SAT Solver. In Proc.
of 38th Design Automation Conference (DAC '01), 530-535.
Refalo, P. 2004. Impact-Based Search Strategies for Constraint
Programming. In Proc. of CP, 557-571. Springer.
SAT Competition: http://www.satcompetition.org.
Schubert, T., M. D. T. Lewis and B. Becker 2009. PaMiraXT:
Parallel SAT Solving with Threads and Message Passing. Journal
of Satisfiability, Boolean Modeling and Computation 6: 203-222.
Segre, A. M., S. Forman, G. Resta and A. Wildenberg 2002.
Nagging: A scalable fault-tolerant paradigm for distributed
search. Artificial Intelligence 140(1-2): 71-106.
Singer, D. and A. Monnet 2007. Jack-SAT: a new parallel scheme
to solve the satisfiability problem (SAT) based on join-and-check.
In Proc. of 7th International Conference on Parallel Processing
and Applied Mathematics (PPAM), 249-258. Springer-Verlag.
Vander-Swalmen, P., G. Dequen and M. Krajecki 2009. A
Collaborative Approach for Multi-Threaded SAT Solving.
International Journal of Parallel Programming 37(3): 324-342.
Xie, F. and A. Davenport 2010. Massively parallel constraint
programming for supercom- puters: Challenges and initial results.
In Proc. of CP-AI-OR, 334-338.
Xu, L., F. Hutter, H. H. Hoos and K. Leyton-Brown 2008.
SATzilla: portfolio-based algorithm selection for SAT. Journal of
Artificial Intelligence Research 32(1): 565-606.
Yun, X. and S. Epstein 2012. Learning Algorithm Portfolios for
Parallel Execution. In Proc. of LION, Paris.
Zhang, H., M. P. Bonacina, M. Paola, Bonacina and J. Hsiang
1996. PSATO: a Distributed Propositional Prover and Its
Application to Quasigroup Problems. Journal of Symbolic
Computation 21: 543-560.

152

