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Abstract 
This paper introduces two adaptive paradigms that parallel-
ize search for solutions to constraint satisfaction problems. 
Both are intended for any sequential solver that uses conten-
tion-oriented variable-ordering heuristics and restart strate-
gies. Empirical results demonstrate that both paradigms im-
prove the search performance of an underlying sequential 
solver, and also solve challenging problems left open after 
recent solver competitions.    

Introduction 
As parallel processing resources become increasingly 
available, the challenge for modern sequential constraint 
solvers is how best to make use of them. This paper details 
extensive experiments that test a variety of reasonable par-
allelization approaches for an underlying sequential solver 
(henceforward, a solver). This work uses three sets of care-
fully curated benchmarks from a broad variety of problem 
classes, and explores several reasonable premises about 
how parallelization might proceed. The thesis of our work 
is that knowledge accrued during search can substantially 
enhance its parallelization. We introduce two new para-
digms that address knowledge sharing among processors: 
ELF and SPREAD. The principal result reported here is that, 
on particularly difficult problems, SPREAD outperforms all 
the tested alternatives, because it shares knowledge and 
balances processor workload adaptively.1 
 Both ELF and SPREAD make two assumptions about a 
solver. First, it must have a variable-ordering heuristic that 
prioritizes contention, variables whose constraints are more 
likely to cause wipeouts. (We used learned variable 
weights (Boussemart et al., 2004), but impact (Refalo, 
2004) would be an alternative.) Second, the solver extri-
cates search from early unproductive assignments with a 
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restart strategy (Gomes et al., 2000). Most modern sequen-
tial solvers satisfy both these conditions, and so this work 
is applicable to them.  

For multiple processors to share knowledge as they 
search on the same problem, they must either share 
memory or pass messages to one another. Here we focus 
on the latter, where a manager on one processor coordi-
nates messages among the other processors (the workers), 
under a popular parallel communication standard. Such a 
manager-worker framework can support knowledge shar-
ing in several ways. For example, workers could repeatedly 
interrupt their searches to check for messages, or a manag-
er with a deep knowledge of its workers’ behavior could 
choose an opportune moment to interrupt them. To pre-
serve the integrity of the underlying sequential solver, 
however, our paradigms instead reflect shared knowledge 
in the way the manager assigns tasks to the workers.  

ELF (ExpLorer and Followers) has a sequential solver 
(its explorer) search the full problem with restart on a des-
ignated processor, while its workers (followers) search 
without restart on subproblems identified based on feed-
back from the explorer. SPREAD (Search by Probing and 
REcursive Adaptive Domain-splitting) first races all its 
workers on the full problem with restart during a time-
limited phase. Then SPREAD’s manager partitions the full 
problem based on contention identified thus far, and dis-
tributes subproblems to the workers with resource limits 
based on the search effort during the race. If a subproblem 
is returned unsolved within that limit, the manager further 
partitions it, and re-distributes the resultant subproblems 
with a higher search limit. This naturally directs computa-
tional power to challenging subproblems. After back-
ground and related work in the next section, we introduce a 
generic partition mechanism, describe ELF and SPREAD, 
evaluate them empirically, and discuss their advantages 
and limitations.  
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Background and related work 
A constraint satisfaction problem (CSP) P = <X, D, C> is 
represented by a set of variables X = {X1,…, Xn}, each with 
an associated discrete domain D = {d1,…, dn}, and a set C 
of constraints that must be satisfied by any solution. Here, 
the solver does systematic backtracking that sequentially 
assigns values to variables and validates the consistency of 
each assignment. From the domains of as-yet-unassigned 
variables, propagation removes some values inconsistent 
with C and current assignments. This causes a wipeout 
when a domain becomes empty. A level-based constraint 
weight assigns higher weights to constraints that lead to 
wipeouts more frequently at the top of the search tree. Cru-
cial in ELF and SPREAD is a variable’s weight, the sum of 
the weights on the constraints in which it participates.   

As massive computing resources become increasingly 
available, parallelization of search for solutions to CSPs 
becomes increasingly attractive. Research has considered a 
variety of platforms: a single node (Chu et al., 2009; 
Martins et al., 2010), a cluster (Schubert et al., 2009; Xie 
and Davenport, 2010), and a grid (Hyvärinen et al., 2011). 
It has considered various parallel models as well, including 
OpenMP (Chu et al., 2009; Martins et al., 2010; Michel et 
al., 2007), and Message Passing Interface (MPI) (Xie and 
Davenport, 2010; Zhang et al., 1996). MPI offers portabil-
ity for applications on many processors, and has become 
the de facto standard for a variety of technological plat-
forms. Here we use MPI on a cluster with 64 processors 
(unless otherwise specified), a number widely available on 
modern computing clusters and powerful workstations.   

 A portfolio-based parallelization method for CSP solv-
ers (Gomes and Selman, 1997; Huberman et al., 1997) 
schedules a set of algorithms (its portfolio) on one or more 
processors in an attempt to outperform any of its constitu-
ent algorithms. This approach can prove beneficial when 
information is shared among processors, as when parallel 
SAT solvers share clauses among processors (Hamadi and 
Sais, 2009). Most portfolio-based methods for CSPs, how-

ever, do not share information (Bordeaux et al., 2009; Xu 
et al., 2008; Yun and Epstein, 2012).  

Another popular parallelization method is search space 
splitting, which investigates different search subspaces on 
different processors. For SAT instances, this method usual-
ly exploits a guiding path, a sequence of variables whose 
assignment partitions the full search space (Zhang et al., 
1996). Formally, given a binary search tree for systematic 
backtracking on a SAT instance, a guiding path from the 
root (at level 1) to any node (at level k) is a sequence of k 
states (<L1, !1>, …<Lk, !k>), where each state <Li, !i> rec-
ords the truth value Li assigned to the ith variable on the 
path, and a boolean flag !i indicates whether both values 
have been attempted (e.g., Figure 1(a)). An open node (! = 
1) is one whose left subtree is still under exploration; oth-
erwise the node is closed (! = 0). Identification of a helpful 
guiding path is non-trivial for SAT problems; variables that 
often appear in learned clauses have proved effective (Chu 
et al., 2009; Martins et al., 2010). Iterative partitioning 
with clause learning, where subproblems’ search spaces 
may not be mutually exclusive, can also be surprisingly ef-
ficient (Hyvärinen et al., 2011).  

 With non-boolean domains, search space splitting for 
CSPs is generally more complex. For a single processor, 
extraction of networks (EN) iteratively splits the domains 
of a set of variables in a predetermined order (Mehta et al., 
2009). Such a split on the ith variable, as in Figure 1(b), 
produces two subproblems that differ only in the variable’s 
domain; one has the same domain as the ith variable, and 
the other has the remainder. EN can extract visited search 
spaces to avoid duplicate search after restart. 

  Other parallelization schemes include a SAT solver 
that uses a portfolio phase followed by a splitting phase 
(Martins et al., 2010) without re-partitioning the problem 
as we do here. Additional related work includes problem 
decomposition (Singer and Monnet, 2007) and collabora-
tive search (Segre et al., 2002; Vander-Swalmen et al., 
2009). Other workload-balancing approaches include work 
stealing (Chu et al., 2009; Jurkowiak et al., 2001; Michel et 
al., 2007; Schubert et al., 2009) and work sharing (Xie and 
Davenport, 2010). 

 
                     (a)                                              (b) 
Fig. 1. (a) A guiding path with open nodes at X1, X3, and X4. (b) 
Extraction of subproblem P2 from P1 (under variables X, Y, Z, in 
that order) produces subproblems R1, R2, R3. Together the search 
spaces for P2, R3, R2, and R1 partition the search space for P1. 

 
Fig. 2. Bisection partitioning on X and Y creates a virtual binary 
search tree with bit representations for the four subproblems. 
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Bisection partitioning 
This section introduces iterative bisection partitioning, an 
extension of the way that a guiding path splits a SAT prob-
lem and EN splits a CSP. A bisection partition (BP) on de-
cision variable X with domain d replaces X with two varia-
bles X" and X"" whose respective domains, d" and d"", parti-
tion d. To generate subproblems with search spaces of sim-
ilar sizes, we adopt an (almost) even partitioning: 
d" = {v1,…,v#} and d""  = {v#+1,…, v|d|}, where # = #|d|/2$. 
Given an ordered sequence of v decision variables, itera-
tive bisection partitioning (IBP) repeats BP on them to 
generate 2v subproblems. Figure 2 illustrates how IBP on 
variables X and Y in P1 generates the subproblems R1, R2, 
R3, and R4. Intuitively, processing those subproblems on 
different processors in parallel could improve overall 
search performance on P1.  

IBP is a version of EN that creates subproblems with so-
lution spaces of comparable sizes (for load balance) on 
variables with high (contention-based) weights as defined 
in the previous section. Moreover, since IBP splits any 
search space much the way a guiding path splits {0,1} for 
SAT problems, an IBP-generated subproblem can be repre-
sented by a guiding path <L1, !1>, …<Lk, !k>, where Li in-
dicates whether the ith decision variable Xi is associated 
with d" (Li = 0) or with d"" (Li = 1). This simplified (bit 
string) representation can reduce the communication effort 
required to pass subproblems to workers. 

ELF 
Given problem P, ELF uses a manager on a dedicated pro-
cessor to race an explorer on a second processor against a 
set of followers, each on its own processor. The explorer 
uses a sequential solver to search for a solution to P. On 
each restart, the explorer also reports to the manager its 
most recent variable weights and restart resource cutoff (in 
number of backtracks). Whenever all the followers are idle 
(have completed their assigned subproblems), the manager 
partitions P with IBP on the highest-weight variables, and 
distributes the subproblems to the followers, along with the 
explorer’s last reported resource cutoff and constraint 
weights. Each follower then initializes the weights of the 
variables in its new subproblem accordingly, and searches 
under the cutoff as instructed by the manager.  

Intuitively, ELF discretizes search by multiple rounds of 
restarts, during which the explorer and the followers race 
to find a solution, while the manager and the followers ex-
ploit the explorer’s reports to split the search space and to 
search. The race terminates when the explorer finds a solu-
tion, a follower finds a solution, or the followers together 
prove all the subproblems unsatisfiable. We emphasize, 
however, that relatively equal search space sizes do not at 
all promise relatively equal search effort. 

ELF’s architecture is similar to collaborative search by 
nagging, a scalable fault-tolerant scheme for distributed 
search (Segre et al., 2002). Nagging has a manager that 
performs a standard search algorithm (as ELF‘s explorer 
does) and one or more naggers (i.e., assistants) that exe-
cute the same algorithm on transformed problems or sub-
problems. The most significant difference between ELF and 
nagging is that, with restart, ELF executes search space 
splitting on dynamically changing search trees, but nagging 
uses an algorithm portfolio to transform the problem (e.g., 
reorder the unassigned variables) in a static search tree. A 
nagger can also force the manager to backtrack if the nag-
ger proves its subproblem unsatisfiable more quickly. 

 ELF’s manager could partition the problem several ways; 
we use IBP because it is convenient and uniform for finite 
domains. Rather than force the followers to check repeat-
edly for messages, the manager waits until they are all idle. 
Because there is no guarantee that every subproblem will 
be equally difficult (i.e., consume backtracks at an equal 
rate), some workers may become idle earlier. To provide 
followers with the explorer’s most current information, 
ELF’s manager uses a discount factor to reduce the explor-
er’s reported resource cutoff before passing it on to the fol-
lowers. A somewhat lower resource allocation makes it 
more likely that the followers will finish before the explor-
er’s next restart.  

This synchronization of the explorer with the followers 
can be imperfect. An alternative would have the manager 
accumulate the explorer’s information in MPI message 
buffers and proceed asynchronously, with workers subject 
to different weights and cutoffs. As the weights stabilize 
and the cutoff becomes large, this could prove a better 
choice. As reported here, however, some of ELF’s workers 
are likely to wait for their next assignment until the others 
are finished. That relatively weak ability to balance work-
load motivated the development of SPREAD. 

SPREAD 
Under a manager-worker framework, SPREAD combines 
and extends two effective methods from SAT to parallelize 
search for CSPs: an algorithm portfolio with search space 
splitting (Martins et al., 2010), and iterative partitioning 
(Hyvärinen et al., 2011). Given CSP P with portfolio re-
source limit l and restart schedule policy, SPREAD tries to 
solve P under l during a portfolio phase (Algorithm 1), and 
then uses recursive splitting with IBP (RS-IBP) to exploit 
information from that phase during a splitting phase under 
policy (Algorithm 3). Algorithm 2 controls the w workers.  
Algorithm portfolio phase. In Algorithm 1, the manager 
sends each worker the signal 0 to initiate a portfolio phase 
(line 2). On receipt of that message, each worker attempts 
to solve P within search limit l with a different random 
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seed, a kind of weak algorithm portfolio. If a worker suc-
ceeds (i.e., finds a solution or proves P unsatisfiable), it re-
ports that immediately and terminates the MPI environ-
ment, including execution on all other workers (Algorithm 
2, line 6). Otherwise, the worker has exhausted l, and re-
ports to the manager the variable weights it has learned and 
how many backtracks it used (Algorithm 2, line 7). Finally, 
the manager averages across all workers the variable 
weights and backtrack counts, and passes them on to the 
search space splitting phase (Algorithm 1, lines 6-7).  
Splitting phase. Intuitively, RS-IBP attempts to balance 
the workload assigned to multiple processors when a CSP 
is partitioned (Algorithm 3). RS-IBP maintains a queue Q 
of subproblems to search (each as a bit string for the parti-
tion that gave rise to it), with their corresponding backtrack 
limits in queue L. RS-IBP determines the number v of ini-
tial decision variables based on w (here, the smallest num-
ber such that 2v % 2w, line 1). It then chooses the v varia-
bles with the highest average weights learned for P during 
the portfolio phase. The manager partitions P on those var-
iables, tracks the resultant subproblems and their respective 
backtrack limits (lines 3-4), and then distributes subprob-
lems to workers with backtrack limits and variable weights 
(line 6). Task distribution (line 6) notifies the worker on 

processor i with signal 1 that it is about to send a subprob-
lem, and then dequeues and sends the first subproblem on 
Q with its corresponding weights and backtrack limit from 
L. The manager then awaits its workers’ feedback.  

In this phase too, a worker has three possible behaviors. 
It reports any detected solution to the manager and termi-
nates the MPI environment (Algorithm 2, line 12); it re-
ports that its subproblem is unsatisfiable with message 0 
(line 13); or it reports that it has exhausted its resources 
and returns its subproblem with message 1 (line 14). When 
a subproblem is returned and Q has fewer than 2v subprob-
lems, the manager re-partitions the returned subproblem 
on $ additional decision variables, and enqueues the result-
ant subproblems and resource limits (Algorithm 3, lines 
14-18). Otherwise, the manager re-enqueues the subprob-
lem without repartitioning (Algorithm 3, lines 20-22). As 
they become available, the manager also distributes sub-
problems to any idle workers (Algorithm 3, lines 11 and 
23-25). RS-IBP terminates when some worker finds a solu-
tion, or when all subproblems are proved unsatisfiable.  

When eventually distributed, an unresolved subproblem 
that returned to the queue intact will almost certainly begin 
with a different random seed, and may therefore have a 
very different search experience. $ is chosen so as to bound 

Algorithm 2: Worker  
Input: P, l, policy 
Output: solution of P 
  1: while true do 
  2:    MPI.Recv(signal, 0) 
  3:    if signal = -1 then break   // worker terminates 
  4:    if signal = 0 then      // for portfolio phase 
  5:    if solve(P, l, policy, rand_seed) then  
  6:      Output solution (or UNSAT) and abort MPI 
  7:     else MPI.Send(<send_weights, bt_num>, 0) 
  8:    else           // for splitting phase 
  9:     MPI.Recv(<PS, rec_limit, rec_weights>, p) 
10:     Initialize PS’s variable weights with rec_weights 
11:     if solve(PS, rec_limit, policy) then  
12:      if SAT then output solution and abort MPI 
13:      else MPI.Send(<0, PS>, 0) 
14:     else MPI.Send(<1, PS>, 0) 
 

Algorithm 1: Portfolio (Manager)                            
Input: P, policy 
Output: variable weights and backtrack counts 
  1: tmp_weights & 0, bt_num & 0, signal & 0 
  2: for i = 1 to w do MPI.Send(signal, i) 
  3: while i > 0 do  
  4:   MPI.Recv(<tmp_weights, bt_num>) 
  5:  i & i - 1 
  6: Compute weights and base by average based on all  
       received tmp_weights and bt_num 
  7: return <weights, base> 
 

Algorithm 3: RS-IBP (Manager)  
Input: P, weights, base, policy 
Output: solution of P 
  1: v & get_decision_var_num(w) 
  2: decision_vars & choose(v, P, weights)    
  3: for PS in BP(P, decision_vars) do Q.push(PS)  
  4: for i = 1 to 2v do L.push(base) 
  5: gen_count & Q.size(), fb_count & 0, signal & 1  
  6: for i = 1 to w do task_allocate(i)      
  7: while fb_count < gen_count do       
  8:   MPI.Recv(<fb, PS >, p)             
  9:   fb_count & fb_count + 1     
10:   if fb = 0 then    
11:    if !Q.empty() then task_allocate(p)  
12:   else     
13:    if Q.size() < 2v then 
14:     decision_vars & choose($, PS, weights) 
15:     for Pi

S  in BP(PS, decision_vars) do 
16:      Q.push(Pi

S) 
17:      L.push(get_limit(Pi

S, base)) 
18:      gen_count & gen_count + 1 
19:    else  
20:     Q.push (PS) 
21:     L.push(get_limit(PS, base)) 
22:    gen_count & gen_count + 1 
23:    for i = 1 to w do   
24:     if worker i is idle and !Q.empty() do  
25:      task_allocate(i) 
26: Send signal -1 to all processors 
 

148



the RS-IBP queue length by 2v + 2v-1–1 for v initial deci-
sion variables. Nonetheless, IBP’s relatively short bit 
strings would in practice allow large queues. Indeed, in the 
work reported next, the average number of generated prob-
lems in every problem sets was always under 200.  

Experimental design and results 
All experiments ran on a Cray XE6m. Each of its 160 dual-
socket compute nodes contains two 8-core AMD Magny-
Cours processors running at 2.3 GHz. (Here, a processor 
corresponds to a core of the Cray.) The solver was Mistral-
1.331 (C++ source code, (Competition, 2008)), chosen for 
its compatibility with MPI on the Cray. This allows us to 
assemble sets of difficult problems and to evaluate the per-
formance improvement by SPREAD. Note that, on a Cray 
XE6m, Mistral compiled under the GCC compiler (Mis-
tral-GCC) runs 2 to 3 times faster than under the CC com-
piler (Mistral-CC). This gives the Mistral-GCC benchmark 
a considerable advantage over all our parallel solvers, 
which require the CC compiler for MPI. 

  Our experiments evaluate parallel approaches on three 
sets of difficult problems. From the repository of over 7000 
problems in the two most recent CSP solver competitions 
(Competition, 2009; Competition, 2008), we selected 51 
representative classes. (See Figure 3.) They cover a broad 
variety of CSPs, including binary and non-binary problems, 
both real-world and artificial. To avoid bias toward classes 
with many problems, we stratified selection by class to re-
flect any pre-specified subclasses and naming conventions, 
and chose a subset from each class in proportion to the 
original class sizes. This resulted in 1765 CSPs in 51 clas-
ses of 7 to 65 problems each. Next, we solved each of the 
1765 problems with Mistral-GCC, eliminated any that Mis-
tral-GCC could solve in less than a minute (1398 in all), 
and then partitioned those remaining into two sets. The 
hard set is the 119 CSPs that Mistral-GCC could solve 
within 1 to 30 minutes each, running sequentially on the 
Cray. The harder set is the 248 CSPs that remained. Final-
ly, the challenge set is the 133 competition problems never 
solved by any solver within 30 minutes during the same 
competitions, and not already present in the harder set.  

In addition to ELF, SPREAD, and Mistral, we tested: 

• NR (Naïve Random), a naïve random algorithm portfolio 
that races 63 copies of Mistral with random seeds. 
• NV (Naïve Variable), an algorithm portfolio that races 63 
copies of Mistral, each of which randomly selects and or-
ders the first 3 variables it assigns (but not their values) 
and retains them on every restart (Bordeaux et al., 2009). 
• PP (Parallel Portfolio), an algorithm portfolio that races 
in parallel 63 combinations of heuristics and restart strate-
gies. Candidate heuristics were impact, dom/wldeg, 
dom/wdeg, and impact/wdeg, as implemented in Mistral. 
Candidate restart policies were Luby-k, arithmetic, geomet-
ric, and dynamic. Luby-k used k backtracks per unit, k ' 
{128, 256, 512, 1024, 2048, 4096} (Luby et al., 1993). Ge-
ometric used restart limit x(n) = 100pn at step n, where p = 
1.3, 1.5 or 2.0; arithmetic on step n used x(n) = 16000n, 
8000n, 1000n2, or 500n2. Dynamic adaptively determined 
whether to execute geometric restart with exponent 1.3, 1.5, 
or 2.0 based on the problem formulation (e.g., number of 
predicates), and restarted on the minimum of 1000 and 
number of variables. 
• RP (Random Partitioning) splits on 7 randomly-chosen 
decision variables, and assigns those 128 subproblems to 
63 workers. (Some workers may process more than one.) 
We also tested NWSPREAD (No-Weight SPREAD), an ablat-
ed version of SPREAD that choses decision variables at ran-
dom, rather than by variable weights  

All runs used a 30-minute per problem time limit. 
SPREAD used 64 processors (including one for the manag-
er); ELF used 64 for its followers plus 2 for its explorer and 
manager, a slight advantage. ELF used geometric restart 
with base 100 and discount factor 0.8. SPREAD’s portfolio 
phase was 100 seconds (unless otherwise specified) with 
dynamic restart. Backtrack limits for the first subproblems 
(generated in Algorithm3, line 3) used the base from the 
portfolio phase. When a subproblem was further parti-
tioned on $ more decision variables, the backtrack limit 
was multiplied by (1.5)$. On all approaches, we report the 
median of 3 runs, as in recent parallel SAT solver competi-
tions (SAT competition).  

Figure 4 compares SPREAD’s runtime to the others for 
the hard problem set. Although a few instances went un-
solved under SPREAD, it clearly outperformed most of the 
others, including the faster sequential version of Mistral, 
and PP (with its different combinations of search strate-
gies). SPREAD solved 43.70% of these problems within 100 
- 200 seconds, the time when SPREAD’s splitting phase on 
critical decision variables has just begun, while PP tries a 
complementary algorithm portfolio instead. This is a clear 
demonstration that the portfolio phase informs IBP. More-
over, NWSPREAD’s pure search space splitting without that 
knowledge was dramatically inferior; it could not solve 
75.63% of the hard problems. In contrast, even NR had 
solved 17.65% problems within the first 100 seconds. 
NWSPREAD was therefore excluded from subsequent test-

 
Fig. 3. For problem set construction, number of problems in each 
of 51 CSP classes after stratified selection. 
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ing, as were both versions of Mistral alone.  
Figure 5 evaluates the remaining approaches on the 

harder problem set. Within 1800 seconds, SPREAD solved 
56 problems (44 satisfiable), 16 more (a 40.00% improve-
ment) than the best benchmark method PP (which solved 
40), and 31 more (a 124.00% improvement) than the worst, 
NV (which solved 25). As one would expect, SPREAD be-
haved early on much like the portfolio-based methods NR 
and PP; it solved 10 (all satisfiable) within 100 seconds, 
that is, in its portfolio phase. SPREAD also consistently 
solved more problems that required more time, 18 of them 
(11 satisfiable) in the last 800 seconds.  

Table 1 compares ELF, SPREAD, and the four methods 
from Figure 5 on 32 problems from the challenge set, those 
solved by at least one method. (None was solved during a 
portfolio phase.) Here we report on two versions of 
SPREAD, that differ only in their portfolio phase times: a 
10-second SPREAD-10-pf, and the 100-second SPREAD-
100-pf used in the remainder of this paper. SPREAD signifi-
cantly outperformed the other parallelization methods, 
even though we had hand tuned ELF’s explorer to do well 
on this set (geometric restart with base 100, factor 1.3333, 
and discount factor 0.8). Although SPREAD did best with 
rand problems, it also solved varied problems from such 

classes as langford, crossword, and queenAttacking.  
To investigate resource usage, let the idle ratio of the ith 

worker be the fraction of overall runtime that it was idle on 
a problem. On problems solved during its partitioning 
phase, SPREAD’s average idle ratio (across its processors in 
3 runs) rose as high as 0.8251 on hard, 0.8793 on harder, 
and 0.5015 on challenge problems, probably due to high 
backtrack limits on extremely unbalanced search trees. 
Overall, however, SPREAD still often managed an idle ratio 
under 0.1: on 56.92% of the hard problems, 69.92% of the 
harder problems, and 75.00% of the challenge problems. 

Finally, Figure 6 plots, as a median with cutoff 1800 se-
conds, SPREAD’s runtimes to solve a difficult unsatisfiable 
instance on different numbers of processors. Similar im-
provements were also observed on satisfiable problems, 
where search performance typically has greater variance. 

Discussion and conclusions 
ELF and SPREAD have several advantages. In the search for 
a single solution, they are complete, and make no assump-
tion about domains or constraint types; as long as their 
solver can address a problem, they can too. Both represent 
search space splitting as a queue of bit strings that repre-

 
Fig. 4 On the hard problem set, solution time for SPREAD (on the x-axis) to other methods (on the y-axis). Points above the diagonal are 
CSPs that SPREAD completed more quickly; points along the top line are those the competitor failed to solve within the time limit. 

 
Fig. 5. On the harder problem set, cumulative solved problems 
across 1800 seconds for SPREAD, ELF, and other methods.  

 
Fig. 6. Over 10 runs, medians of SPREAD on rlfapScene11-f1.  
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sent subproblems, which is easy to implement and conven-
ient to pass in MPI. In addition, both permit the program-
mer to ignore the implementation details of any underlying 
sequential solver, and thereby simplify parallelization. 
Several factors account for SPREAD’s ability to outperform 
ELF on the harder problems and the challenge problems. 
ELF makes its followers wait for one another before they 
restart, and requires them to restart simultaneously and 
fairly often. This leaves ELF relatively less time to search 
extensively. In contrast, SPREAD’s workers wait only for 
new subproblems, not for one another. Moreover, SPREAD 
allocates greater resources to its workers for what are ex-
pected to be more difficult subproblems, while ELF assigns 
resources to subproblems uniformly.  

There are several possible explanations for the differ-
ences between SPREAD-10-pf and SPREAD-100-pf. Alt-
hough SPREAD’s search is influenced by the variables it 
splits on and their order, its portfolio-phase search limit al-
so has a strong effect. Because the splitting-phase search 
limit is proportional to the number of backtracks in the 
portfolio phase, and because restarts in the portfolio phase 

are geometric, the longer portfolio phase in SPREAD-100-pf 
is more likely to produce higher resource limits during the 
splitting phase and possibly more idle time. Nonetheless, 
SPREAD-100-pf has additional portfolio time, which could 
produce more reliable weights. On the other hand, if 
weights do not provide good guidance, SPREAD-10-pf can 
devote that additional 90 seconds to subproblem search. 
Were the splitting-phase search limit infinite, SPREAD 
would partition only once and would probably benefit from 
a longer portfolio phase, but could also be modified to 
search for all solutions.  

Of course, a parallelization scheme can interrupt and 
repartition long-running tasks, or steal partial workloads 
for idle workers from busy ones. Because MPI delivers in-
formation by handshake, however, with SPREAD we chose 
to spare workers from repeated checks for restart messages 
and new problems from the manager. This reduces inter-
processor communication and naturally embeds restart into 
a non-shared memory environment. SPREAD can thereby 
maintain a simple protocol readily applicable to a modern 
sequential solver without incisive modification of the solv-

Table 1: Runtimes for different parallelization strategies on the challenge problem set. Best results in boldface. 

Problem Name Satisfi-
able? NR NV PP RP ELF SPREAD- 

10-pf 
SPREAD- 
100-pf 

crossword-m1-words-21-10 yes 520.47 - - 721.84 - - 846.01 
crossword-m1c-ogd-vg10-13_ext no - - - - - 744.89 583.22 
crossword-m1c-ogd-vg10-14_ext no - - - - - 1302.41 402.33 
crossword-m1c-ogd-vg12-12_ext no - - - - - 461.62 586.02 
crossword-m1c-uk-vg11-12_ext no - - - - - - 1081.71 
frb53-24-2-mgd_ext yes - - - 1240.12 361.06 749.33 329.85 
frb53-24-5_ext yes - - 748.17 331.19 281.01 63.04 255.86 
frb56-25-2-mgd_ext yes - - - - 470.45 661.94 822.12 
langford-2-14 no    485.81  187.39 401.30 
langford-3-16 no    567.92  659.73 446.50 
queenAttacking-8 yes - 1065.19 - - - - - 
rand-3-24-24-76-632-17_ext yes - - - 358.80 430.53 240.02 326.82 
rand-3-24-24-76-632-fcd-47_ext yes    823.91 988.58 693.89 207.30 
rand-3-24-24-76-632-fcd-50_ext yes - - - 692.31 410.21 59.71 168.40 
rand-3-28-28-93-632-16_ext yes - - - - 1453.55 1551.52 - 
rand-3-28-28-93-632-23_ext yes - - - - 1077.27 551.02 758.57 
rand-3-28-28-93-632-25_ext yes - - - - - 448.20 464.58 
rand-3-28-28-93-632-3_ext yes - - - - - 1306.23 648.04 
rand-3-28-28-93-632-30_ext yes - - - - - 893.93 1061.22 
rand-3-28-28-93-632-35_ext no - - - - - 1186.84 1321.97 
rand-3-28-28-93-632-37_ext yes - - - - - - 238.10 
rand-3-28-28-93-632-8_ext no - - - - - 1126.08 - 
rand-3-28-28-93-632-fcd-16_ext yes - - - - - 1531.64 530.76 
rand-3-28-28-93-632-fcd-20_ext yes - - - 24.79 428.46 299.64 314.52 
rand-3-28-28-93-632-fcd-21_ext yes - - - - - 1322.25 - 
rand-3-28-28-93-632-fcd-24_ext yes - - - - - 1122.49 - 
rand-3-28-28-93-632-fcd-27_ext yes - - - - - - 1349.44 
rand-3-28-28-93-632-fcd-31_ext yes - - - - - 700.22 211.54 
rand-3-28-28-93-632-fcd-35_ext yes - - - - - 494.40 616.61 
rand-3-28-28-93-632-fcd-40_ext yes - - - - 202.85 137.29 219.16 
rand-3-28-28-93-632-fcd-42_ext yes - - 1618.35 - 120.04 144.94 124.55 
rand-3-28-28-93-632-fcd-46_ext yes - - - 1410.23 199.73 168.30 159.21 
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er’s own search algorithm. 
 To split a search space, ELF and SPREAD use IBP, which 
has no knowledge about problem domains. One could, 
however, exploit domain characteristics, for example, par-
tition a critical variable’s large domain into more subprob-
lems, rather than bisect it, or group particular values into 
split domains rather than simply split at the median. In 
contrast, for extremely small domains (e.g., binary in SAT), 
parity constraints could lead to more balanced and effec-
tive partitioning than IBP (Bordeaux et al., 2009).  

RS-IBP must first fail on a subproblem to partition it; 
that first effort on it is wasted. Moreover, because RS-IBP 
initially depends on data from the portfolio phase, it can be 
misled. For example, in the queens-knights (QK) problems, 
the knight variables are the true contention, but weights 
initially prefer the queen variables. SPREAD’s portfolio 
phase is similarly misled, so RS-IBP partitions on queen 
variables, and the results prove unsatisfactory. Indeed, in a 
test run, SPREAD with a portfolio time of 10 seconds failed 
on all five QK problems in the hard problem set. A longer 
(100-second) portfolio phase, however, provided more ac-
curate weights, and SPREAD managed to solve 2 of them.  

Both ELF and SPREAD are adaptive; ELF learns weights 
and cutoffs for its workers from its explorer, while SPREAD 
iteratively partitions hard subproblems. Under RS-IBP, 
however, SPREAD gradually allocates more computing cy-
cles to the hard parts of a problem, and thereby balances 
workload assignments for processors better.  Current work 
includes a dynamically-chosen duration for the portfolio 
phase, and investigation of methods that maintain the deci-
sion path and change only the variables that further parti-
tion a returned subproblem. Future work will also combine 
adaptive decision variable selection with nogood learning.  

Meanwhile, SPREAD provides a well-tested and promis-
ing paradigm for parallel search on CSPs. SPREAD is com-
patible with the widely-used MPI communication standard 
and requires no alteration of its underlying solver.  SPREAD 
combines and extends methods for workload partitioning 
and balancing from SAT to CSP solution. This paper con-
firms its ability to conveniently and efficiently parallelize a 
modern sequential CSP solver.  
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