
Automatic Move Pruning Revisited

Neil Burch
Computing Science Department

University of Alberta
Edmonton, AB Canada T6G 2E8

(nburch@ualberta.ca)

Robert C. Holte
Computing Science Department

University of Alberta
Edmonton, AB Canada T6G 2E8

(holte@cs.ualberta.ca)

Abstract

In this paper we show that the move pruning method we pre-
sented at SoCS last year sometimes prunes all the least-cost
paths from one state to another. We present two examples ex-
hibiting this erroneous behaviour–a simple, artificial example
and a slightly more complex example that arose in last year’s
experiments. We then formally prove that a simple modifica-
tion to our move pruning method makes it “safe”, i.e., it will
never prune all the least-cost paths between a pair of states.
Finally, we present the results of rerunning last year’s exper-
iments with this provably safe version of move pruning and
show that last year’s main conclusions still hold, namely: (1)
in domains where there are short redundant sequences move
pruning produces substantial speedups in depth-first search,
and (2) in domains where the only short redundant sequences
are 2-cycles, move pruning is faster than parent pruning by a
factor of two or more.

Introduction
Last year we (Burch and Holte 2011) presented a gener-
alization of the method for eliminating redundant opera-
tor sequences (“move pruning”) introduced by Taylor and
Korf (1992; 1993) and showed that it could vastly reduce the
size of a depth-first search tree in spaces containing short
cycles or transpositions. We claimed our method could be
safely applied to any state space represented using the PSVN
language. The first contribution of the present paper is to
show that this claim is false: there are state spaces repre-
sentable in PSVN for which the method we presented last
year produces incorrect results; in particular, that method
sometimes removes all least-cost paths to the goal and can
even render the goal unreachable when it is, in fact, reach-
able.

The second contribution of this paper is to formally prove
that a slight modification of the method we presented last
year is correct (“safe”): for every pair of states, the revised
method is guaranteed to leave unpruned at least one least-
cost path between them. This theorem also shows that Tay-
lor and Korf’s original results on Rubik’s Cube are correct
because of the lexical ordering on operators they used to
choose between equivalent sequences. Finally, our theorem

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

shows that using move pruning to eliminate cycles is always
safe.

The third contribution of this paper is to rerun last year’s
experiments with the provably safe variation of our method
to examine its pruning power.

Examples of Erroneous Move Pruning
The fact that move pruning, as we implemented it last
year, could produce erroneous behaviour came to our atten-
tion after last year’s symposium when we were testing our
method on the Gripper domain from the International Plan-
ning Competition.1 As we will see below, the problem also
arises with the Work or Golf state space used in last year’s
paper: some of the results reported for that state space last
year are incorrect.

From these counterexamples we distilled a simple,
generic counterexample that challenges the fundamental
principle underlying our system, and Taylor and Korf’s,
which we described last year as follows:

following Taylor and Korf we can prune move se-
quence B if there exists a move sequence A such that
(i) the cost of A is no greater than the cost of B, and,
for any state s that satisfies the preconditions of B, both
of the following hold: (ii) s satisfies the preconditions
of A, and (iii) applying A and B to s leads to the same
end state.

We say that B is redundant with A, denoted B ≥ A, if A and
B meet the three conditions just stated. We write B ≡ A (B
is equivalent to A) if B ≥ A and A ≥ B, and write B > A
(strict inequality) if B ≥ A and A 6≥ B.

Our counterexample is as follows. Suppose that abd and
acd are the only least-cost paths from state s to state t. If
ab > ac then the principle above says we need not execute
ab, which means abd will not be executed. That is fine be-
cause acd will be executed. But if we also have cd > bd,
then the principle above says we need not execute cd, which
means acd will not be executed. So if we apply the prin-
ciple twice (once for each redundancy) neither abd nor acd
will be executed and all least-cost paths from s to t will be
pruned away.

To see that it is possible for a, b, c, and d to exist such that
ab > ac and cd > bd, here is a very simple example. In this

1http://ipc.icaps-conference.org/

18

Proceedings of the Fifth Annual Symposium on Combinatorial Search

example a state is described by three state variables and is
written as a vector of length three. The value of each vari-
able is either 0, 1, 2, or 3. The operators are written in the
form LHS → RHS where LHS is a vector of length three
defining the operator’s preconditions and RHS is a vector of
length three defining its effects. The LHS may contain vari-
able symbols (Xi in this example); when the operator is ap-
plied to a state, the variable symbols are bound to the value
of the state in the corresponding position. Preconditions test
either that the state has a specific value for a state variable or
that the value of two or more state variables are equal (this
is done by having the same Xi occur in all the positions that
are being tested for equality). For example, operator a be-
low can only be applied to states whose first state variable
has the value 0 and whose second and third state variables
are equal. A set of operators for which ab > ac and cd > bd
is the following (all operators have a cost of 1).

a : 〈0, X1, X1〉 → 〈1, 0, X1〉
b : 〈1, X2, 0〉 → 〈2, 0, 0〉
c : 〈1, X3, X4〉 → 〈2, X4, X3〉
d : 〈2, 0, 0〉 → 〈3, 1, 1〉

The preconditions and net effects for ab and ac are:
ab : 〈0, 0, 0〉 → 〈2, 0, 0〉
ac : 〈0, X1, X1〉 → 〈2, X1, 0〉

Clearly, the preconditions of ab are more restrictive than
those of ac and the effects and costs of the sequences are
the same when the preconditions of ab are satisfied. Hence,
ab > ac.

The preconditions and net effects for bd and cd are:
bd : 〈1, X2, 0〉 → 〈3, 1, 1〉
cd : 〈1, 0, 0〉 → 〈3, 1, 1〉

The preconditions of cd are more restrictive than those of bd
and the effects and costs of the sequences are the same when
the preconditions of cd are satisfied. Hence, cd > bd. If the
start state is 〈0, 0, 0〉 and the goal state is 〈3, 1, 1〉 the only
least-cost paths from start to goal are abd and acd, both of
which will be pruned away.

This is an artificial example created to be as simple as
possible. Something very much like it arises in sliding-tile
puzzles having more than one blank, such as Work or Golf.
For example, consider the two states of a 3x3 sliding-tile
puzzle with 3 blanks shown in Figure 1. The shortest path
transforming the state on the left to the state on the right has

Figure 1: Two states of the 3x3 sliding-tile puzzle with 3
blanks. The black squares are tiles that are not moved in any
of the shortest paths that transform the state on the left to
the state on the right. In the circles are the row and column
numbers.

four moves. There are eight such paths. If move pruning
is applied to all sequences of length 3 or less, all of these
four-move paths are pruned.

Table 1 shows three of the 2- and 3-move operator se-
quences our method identified as redundant and the se-
quence with which each was redundant. To illustrate how
our method identifies these redundancies, the derivation of
Pruning Rule 2 is given in the Appendix. In Table 1 op-
erator names indicate the row and column of the tile to be
moved with digits and the direction of movement with a let-
ter. For example 12R is the operator that moves the tile in
Row 1 (top row), Column 2 (middle column) to the right (R).
The first row of the table (Pruning Rule 1) indicates that the
2-move sequence 12R-11D is equivalent (“≡”) to 11D-12R.
Because they are equivalent, either one could be eliminated
in favour of the other; our method eliminated 12R-11D be-
cause it is lexically “larger than” 11D-12R. The other two
rows in Table 1 show operator sequences that are not equiv-
alent (“>”): the sequence in the “Redundant” column has
the same effects but more restrictive preconditions than the
sequence in the “Because of” column. In such cases there is
no choice about which sequence to eliminate.

The three pruning rules in Table 1 interact in a way that is
exactly analogous to how ab > ac and cd > bd interacted
to prune both abd and acd in our simple example above.
Each oval in Figure 2 represents an optimal (4-move) se-
quence to transform the left state in Figure 1 to the right
state. Each one of these sequences contains one of the 2- or
3-move sequences identified as redundant in Table 1—the
redundant subsequence is underlined. The arrows indicate
the operator sequence that is produced when the redundant
subsequence is replaced by the corresponding “Because of”
sequence in Table 1. For example, the sequence in the up-
per left oval (12R-11D-21R-31U) contains 12R-11D as its
first two operators. Table 1 indicates that this is redundant
with 11D-12R. Applying this substitution to the sequence in
the upper left oval produces the sequence in the bottom oval.
This sequence contains the subsequence identified as redun-
dant in the second row (Pruning Rule 2) of Table 1, and if
that subsequence is replaced by the corresponding “Because

Pruning Redundant
Rule # Sequence Because of

1 12R-11D ≡ 11D-12R
2 11D-12R-21R > 12R-11R-12D
3 11R-12D-31U > 11D-21R-31U

Table 1: Pruning rules involved in Figure 2.

Figure 2: Each oval represents an optimal sequence trans-
forming the state on the left of Figure 1 to the state on the
right.

19

of” sequence, the operator sequence in the upper right oval
is produced. The last three operators in this sequence have
been found redundant (Pruning Rule 3); replacing them with
the alternative brings us literally full circle, back to the oper-
ator sequence in the upper left oval. Put another way, since
all of these operator sequences contain a subsequence de-
clared redundant by our move pruning system, all of them
will be pruned. The other five optimal (4-move) sequences
for transforming the left state in Figure 1 to the right state
also all contain a subsequence declared redundant by our
move pruning system, so all of them will be pruned too.

The important lesson from these examples is that even if
the redundancy of each operator sequence is correctly as-
sessed, a set of redundancies can interact to produce in-
correct behaviour. We therefore need to develop a theory
of when a set of redundancies does not prune all least-cost
paths. In the next section we present one such theory.

Theory
The empty sequence is denoted ε. If A is a finite operator
sequence then |A| denotes the length of A (the number of
operators in A, |ε| = 0), cost(A) is the sum of the costs of
the operators in A (cost(ε) = 0), pre(A) is the set of states
to which A can be applied, and A(s) is the state resulting
from applying A to state s ∈ pre(A).

The following is the formalization of the English at the
beginning of this paper.

Definition 1 Operator sequence B is “redundant” with op-
erator sequence A iff the following conditions hold:

1. cost(B) ≥ cost(A)

2. pre(B) ⊆ pre(A)

3. s ∈ pre(B)⇒ B(s) = A(s)

As before, we write B ≥ A, B > A, and B ≡ A to denote
that B is redundant with A, strictly redundant with A, or
equivalent to A, respectively.

Lemma 1 Let B ≥ A according to Definition 1 and let
XBY be any least-cost path from any state s to state t =
XBY (s). Then XAY is also a least-cost path from s to t.

Proof. There are three things to prove.

1. s ∈ pre(XAY).
Proof: X can be applied to s because XBY can be ap-
plied to s. A can be applied to X(s) because B can be ap-
plied to X(s) and pre(B) ⊆ pre(A) (because B ≥ A).
Y can be applied to A(X(s)) because Y can be ap-
plied to B(X(s)) and A(X(s)) = B(X(s)). Therefore
s ∈ pre(XAY).

2. XAY (s) = t.
Proof: Since t = Y (B(X(s))) and B(X(s)) = A(X(s))
(see the Proof of 1.), we get t = Y (A(X(s))) =
XAY (s).

3. cost(XBY) = cost(XAY).
Proof: cost(XBY) ≥ cost(XAY) follows from the cost
of a sequence being additive (cost(XBY) = cost(X) +
cost(B) + cost(Y)) and cost(B) ≥ cost(A) (because
B ≥ A). Since XBY is a least-cost path from s to

t and XAY is also a path from s to t, cost(XBY) =
cost(XAY).

�

We now introduce a total ordering, O, on operator se-
quences. We will use B >O A to indicate that B is greater
than A according to O. O has no intrinsic connection to re-
dundancy so it can easily happen that B ≥ A according to
Definition 1 but B <O A.

Definition 2 A total ordering on operator sequences O is
“nested” if ε <O A for all A 6= ε and B >O A implies
XBY >O XAY for all A,B,X, and Y .

Example 1 The most common nested ordering is “length-
lexicographic order”, which is based on a total order of the
operators o1 <O o2 <O For arbitrary operator se-
quences A and B, B >O A iff |B| > |A| or |B| = |A| and
ob >O oa where ob and oa are the leftmost operators where
B and A differ (ob is in B and oa is in the corresponding
position in A).

Definition 3 Given a nested ordering O, for any pair of
states s, t define min(s, t) to be the least-cost path from s
to t that is smallest according to O (min(s, t) is undefined
if there is no path from s to t).

Theorem 2 Let O be any nested ordering on operator se-
quences and B any operator sequence. If there exists an
operator sequence A such that B ≥ A according to Defini-
tion 1 and B >O A, then B does not occur as a consecutive
subsequence in min(s, t) for any states s, t.

Proof. By contradiction. Suppose there exist s, t such that
min(s, t) = XBY for some such B and some X and Y .
Then by Lemma 1 XAY is also a least-cost path from s to
t. But XBY >O XAY (becauseO is a nested ordering and
B >O A), contradicting XBY being the smallest (accord-
ing to O) least-cost path from s to t. �

From this theorem it immediately follows that a move
pruning system that restricts itself to pruning only opera-
tor sequences B that are redundant with some operator se-
quence A and greater than A according to a nested ordering
will be “safe”: it will not eliminate all the least-cost paths
between any pair of states. In our PSVN implementation of
move pruning we generate move sequences in increasing or-
der according to a nested ordering (the one described in Ex-
ample 1). What went wrong in the implementation reported
last year is that when we generated a new move sequence
B we did two redundancy checks against each previously
generated, unpruned sequence A: we checked both B ≥ A
and A ≥ B. If the latter occurred, we would prune A even
though B >O A. Theorem 2 tells us that all we have to
do to correct our implementation is to remove the check of
A ≥ B. This means we might do less pruning than before,
but it guarantees the pruning will be safe. The experimental
section below repeats our experiments from last year with
this modification.

Theorem 2 also proves that Taylor and Korf’s results on
Rubik’s Cube are correct. They used the nested ordering
described in Example 1 and tested the equality of the net

20

Figure 3: Goal state for the Work or Golf puzzle. It has eight
1x1 tiles with letters and 2 irregularly shaped tiles, shown in
black. There are 4 empty locations.

effects of two operator sequences, the only part of Defini-
tion 1 that needs to be tested when operators have no pre-
conditions.

Finally, Theorem 2 shows that cycle elimination (e.g., par-
ent pruning) via move pruning is safe. This is captured in the
following Corollary.
Corollary 3 Let O be any nested ordering on operator se-
quences. For all B such that B ≥ ε according to Defini-
tion 1, B does not occur as a consecutive subsequence in
min(s, t) for any states s, t.
Proof. By definition B >O ε and therefore all the premises
of Theorem 2 are satisfied. �

Experimental Results
In our 2011 paper we evaluated the effectiveness of move
pruning on eight different state spaces: the 16-arrow puzzle,
the 10-blocks blocks world, 4-peg Towers of Hanoi with 8
disks, the 9-pancake puzzle, the 3x3 sliding-tile puzzle (8-
puzzle), 2x2x2 Rubik’s cube, TopSpin with 14 tiles and a
3-tile turnstile, and the Work or Golf puzzle, whose goal
state is shown in Figure 3. For each puzzle, we compared
the number of nodes generated, and execution time, of three
variations of depth-first search (DFS) with a depth bound:
(1) DFS with parent pruning (length 2 cycle detection) per-
formed by comparing a generated state to the parent of the
state from which it was generated, (2) DFS with our move
pruning method applied to sequences of length L = 2 or
less, and (3) DFS with our move pruning method applied to
sequences of length L = 3 or less.

Here we repeat these experiments but with the modifica-
tion to the move pruning algorithm described above, which
guarantees that the move pruning is safe. The results are
shown in the first eight rows of Table 2. All experiments
were run on the same machine as last year (2.83GHz Core2
Q9550 CPU with 8GB of RAM). Node counts (in thousands
of nodes) and computation times (in seconds) are totals (not
averages) across 100 randomly generated start states. In a
few cases, we had to generate a new set of start states in-
stead of using exactly the same start states as last year, which
means the results could be slightly different than last year’s
even if the effect of move pruning is the same. Also, changes
have been made to the PSVN compiler, which has affected
the execution times for some of the spaces. Less than 6
seconds were required to do the move pruning analysis for
L = 2 and only three domains required more than 19 sec-
onds for L = 3. The results in Table 2 lead to the same

conclusions as last year. In domains where there are redun-
dant short sequences beyond the 2-cycles detected by par-
ent pruning, move pruning produces substantial speedups,
ranging from 6.72x for Rubik’s Cube to over 9200x for the
Arrow puzzle. In domains where the only redundant short
sequences are 2-cycles, move pruning is faster than parent
pruning based on state comparison by a factor of two or
more.

The last row in Table 2 is new, it is for the Gripper domain.
In this domain, there are two rooms (Room1 and Room2)
and B balls. In the canonical start and goal states the balls
start in Room1 and the goal is to move them all to Room2.
Movement is done by a robot that has two hands. The op-
erators are “pickup ballk with hand h” (where h is either
Left or Right), “change room”, and “put down the ball in
hand h”. It is an interesting domain in which to study move
pruning because of the large number of alternative optimal
solutions: the balls can be moved in any order, any pair of

State d DFS+PP DFS+MP DFS+MP
Space L=2 L=3

16 arrow ? 3,277 3,277
puzzle 15 >3600s 0.39s 0.39s

0.07s 18.58s
10 blocks 352,028 352,028 352,028

world 11 25.02s 12.23s 12.53s
5.97s 8m 27s

Towers 1,422,419 31,673 9,060
of 10 97.02s 1.45s 0.49s

Hanoi 0.30s 3m 43s
pancake 5,380,481 5,380,481 5,288,231
puzzle 9 246.49s 115.22s 111.18s

0.01s 0.02s
368,357 368,357 368,357

8-puzzle 25 24.77s 10.40s 10.40s
0.01s 0.08s

Rubik’s 2,715,477 833,111 515,614
cube 6 132.74s 20.00s 13.35s

2x2x2 0.02s 1.10s
? 2,165,977 316,437

TopSpin 9 >3600s 73.80s 12.59s
0.00s 1.11s

Work ? 209,501 58,712
or 13 >3600s 16.44s 5.14s

Golf 2.98s 15m 4s
9,794,961 590,870 25,982

Gripper 14 544.85s 17.22s 0.95s
0.08s 0.85s

Table 2: The first two columns indicate the state space and
the depth bound used. The other columns give results for
each DFS variation. In each results cell the top number is the
total number of nodes generated, in thousands, to solve all
the test problems. The number below that is the total time,
in seconds, to solve all the test problems. In the DFS+MP
columns the bottom number is the time (“m” for minutes,
“s” for seconds) needed for the move pruning analysis.

21

balls can be carried together, and there are eight different op-
erator sequences for moving a specific pair of balls between
rooms. The results in Table 2 are for B = 10, which has
68,608 reachable states, and are for only one start state (all
the balls and the robot in Room1), which has an optimal so-
lution length of 29. As can be seen, even just pruning short
redundant sequences (L = 2 or 3) has a very large effect
(over 500x speedup for L = 3). For B = 10 it is possible to
discover redundant sequences up to length L = 6 in just un-
der nine hours using less than 40MB of space to store the re-
sults. If this is done, the number of nodes generated to depth
14 is 368 thousand and the time drops to 0.02 seconds, over
23, 000 times faster than DFS with parent-pruning. With
L = 6 move pruning, depth-first search can fully explore to
depth 29 (the solution depth for B = 10) in 46 seconds. The
number of nodes generated is 157, 568, 860.

Related Work
Wehrle and Helmert (2012) have recently analyzed tech-
niques from computer-aided verification and planning that
are closely related to move pruning. They divide the tech-
niques into two categories. State reduction techniques re-
duce the number of states that are reachable while still guar-
anteeing the cost to reach the goal from the start state re-
mains unchanged. Transition reduction techniques reduce
the number of state transitions (“moves”) considered during
search without changing the set of reachable states or the
cost to reach a state from the start state. Move pruning is a
transition reduction technique.

The most powerful transition reduction technique dis-
cussed by Wehrle and Helmert is the “sleep sets”
method (Godefroid 1996). Sleep sets exploit the commuta-
tivity of operators.2 To illustrate the key idea, suppose move
sequence A contains an operator c that commutes with all
the other operators in A. Then c can be placed anywhere in
the sequence, with each different placement creating a dif-
ferent sequence that is equivalent to A. For example, if A is
o1o2c and c commutes with o1 and o2 then sequences o1co2
and co1o2 are both equivalent to A. The sleep set of a node
is the set of operators that do not have to be applied at that
node because of this commutativity principle.

Sleep sets are less powerful than move pruning in
some ways and more powerful in others. They are less
powerful because they consider only one special kind of
redundancy—commutativity of individual operators. Move
pruning with L = 2 will detect all such commutative rela-
tions, but will also detect relations between sequences that
do not involve the same operators, such as o1o2 ≡ o3o4, and
strict redundancies such as o1o2 > o2o1. In addition, move
pruning can be applied with L > 2.

On the other hand, sleep sets can eliminate sequences
that are not eliminated by move pruning, as we have im-
plemented it, because sleep sets can prune arbitrarily long
sequences even if not all the operators in the sequence com-
mute with one another. Continuing the above example, if
the ordering on operators used by move pruning had o2 <O
c <O o1 and move pruning considered only sequences of

2Operators o1 and o2 are commutative if o1o2 ≡ o2o1.

length L = 2 or less, then it would permit both o1o2c and
co1o2 to be executed whereas the sleep set method would
only execute one of them.3

A different, but related approach to avoiding redundant
move sequences is state space “factoring” (Lansky and
Getoor 1995; Lansky 1998; Amir and Engelhardt 2003;
Brafman and Domshlak 2006; Fabre et al. 2010; Guenther,
Schiffel, and Thielscher 2009). The ideal situation for fac-
toring is when the given state space is literally the product of
two (or more) smaller state spaces; a solution in the original
state space can then be constructed by independently finding
solutions in the smaller state spaces and interleaving those
solutions in any manner whatsoever. The aim of a factoring
system is to identify the smaller state spaces given the def-
inition of the original state space. If the smaller spaces are
“loosely coupled” (i.e., not perfectly independent but nearly
so) factoring can still be useful, but requires techniques that
take into the account the interactions between the spaces.
Techniques similar to state space factoring have been de-
veloped for multiagent pathfinding (Sharon et al. 2011;
Standley 2010) and additive abstractions (cf. the indepen-
dent abstraction sets defined by Edelkamp (2001) and the
Factor method by Prieditis (1993)).

Transposition tables (Akagi, Kishimoto, and Fukunaga
2010) represent an entirely different approach to eliminat-
ing redundant operator sequences: they store states that have
been previously generated and test each newly generated
state to see if it is one of the stored states. Like parent prun-
ing, transposition tables are slower at eliminating redundant
sequences than move pruning because they involve gener-
ating a state and then processing it to determine if it is a
duplicate, whereas move pruning simply avoids generating
duplicate states.4 Transposition tables are not strictly more
powerful than move pruning because, with transpositions ta-
bles, a state might be generated by a suboptimal path before
being generated by an optimal path. If the two paths are
length L or less, this will not happen with move pruning.
More importantly, in large state spaces there is not enough
memory available to store all the distinct generated states.
This forces transposition tables to be incomplete, i.e., to de-
tect only a subset of the duplicate states. The memory re-
quired by move pruning, by contrast, is Θ(mL), where m
is the number of operators, which is usually logarithmic in
the number of states in a combinatorial state space, and L
is the maximum length of the sequences being considered.
The memory required for move pruning will therefore usu-
ally be small compared to the number of distinct generated
states. For example, for the Arrow puzzle the move pruning
table when L = 2 is Θ(a2) in size, where a is the number
of arrows, whereas the number of reachable states is 2a−1

and for the (n × n)-sliding tile puzzle, the move pruning
table when L = 2 is Θ(n2) in size whereas the number of

3This is Wehrle and Helmert’s Example 1 adapted to our nota-
tion.

4The efficiency gained by avoiding generating unneeded nodes,
as opposed to generating and testing them, is the entire motivation
for Enhanced Partial Expansion A* (Felner et al. 2012), which uses
a data structure (the “OSF”) specifying when an operator should be
applied that is much like the move pruning table in our system.

22

reachable states is (n2)!/2. This means move pruning can
be effective in situations where transposition tables would
be too small to be of much use. For example, in the Gripper
domain (B = 10) the move pruning table when L = 2 re-
quires 7 kilobytes and allows a complete depth-first search
to depth 14 to finish in 17.22 seconds (see Table 2). If our
transposition table implementation is restricted to use 7 kilo-
bytes, depth-first search is unable to finish depth 13 in 6 min-
utes. In general, the duplicates eliminated by move pruning
and by incomplete transposition tables will be different and
one would like to use both together. However, we showed
in last year’s paper that the two methods can interact with
each other to produce erroneous behaviour (rendering some
reachable states unreachable). The modification we have
presented in this paper to make move pruning safe does not
make it safe to use in combination with transposition tables.

Conclusions
In this paper we have shown that the move pruning method
presented last year would, in some circumstances, prune
all the least-cost paths from one state to another. We have
presented a simple, abstract example in which move prun-
ing will behave erroneously and a slightly more complex
example that arose in our experiments last year with the
Work or Golf domain. We then formally proved that a
simple modification—requiring move pruning to respect a
fixed nested ordering on operator sequences—was “safe”,
i.e., would never prune all the least-cost paths between a pair
of states. Imposing this restriction did not noticeably reduce
the amount of pruning done in our experiments compared to
last year, but in principle an unlucky choice of the ordering
could substantially reduce the amount of pruning done—in
the extreme case, the ordering could prevent any move prun-
ing from being done (this would happen if B <O A for ev-
ery pair of operator sequences A and B such that B > A).
There is, therefore, more research to be done on how to max-
imize the amount of pruning that can be done while remain-
ing safe.

Acknowledgements
Thanks to Shahab Jabbari Arfaee for encoding the Gripper
domain in PSVN and running the initial experiment that ex-
posed the problem, to Sandra Zilles for her thoughtful feed-
back on early versions of the manuscript and help with the
theoretical section of the paper, and to Malte Helmert and
Martin Wehrle for discussions about the partial order reduc-
tion methods described in (Wehrle and Helmert 2012). We
gratefully acknowledge the financial support of NSERC and
Alberta Innovates Technology Futures.

Appendix. Derivation of Pruning Rule 2
In PSVN states are represented by vectors of a fixed length.
In this example, we will use vectors of length 6, where the
first 3 positions of the vector represent Row 1 (Columns 1,
2, and 3) and the next 3 represent Row 2. In reality, there
would be 3 additional vector positions for the third row, but
since they are not needed in this example they are omitted
for brevity.

An operator in PSVN is of the form LHS => RHS where
LHS and RHS are both vectors the same length as a state vec-
tor. LHS specifies the operator’s preconditions, RHS speci-
fies its effects. Figure 4 shows the PSVN definitions for the
operators involved in Pruning Rule 2. A capital letter (V,
W,...) is a variable symbol that will be bound to the corre-
sponding value in the state vector when the operator is ap-
plied to a state. b is a constant used to represent that the
corresponding puzzle position is blank. A dash (-) in the
LHS indicates that the corresponding state position is irrele-
vant, a dash in the RHS indicates that the operator does not
change the value in that position.

The first step in deriving a pruning rule is to compute
the macro-operators for the two sequences (in this example,
11D-12R-21R and 12R-11R-12D). A macro-operator for an
operator sequence has exactly the same form as an ordinary
operator but its LHS specifies the preconditions required to
execute the entire sequence and its RHS specifies the net ef-
fect of executing the entire sequence.

The macro-operator is built up through a “move composi-
tion” process starting with the identity operator

A B C D E F => A B C D E F

and updating it with one operator at a time from the sequence
to create the macro-operator for the entire sequence. The
update process involves two steps. The first is to “unify”
the RHS of the current macro-operator with the LHS of the
next operator. This determines whether the sequence can
be executed at all and, if so, what constraints there are on
the variables (A, B,...) in the LHS of the macro-operator.
In our example, unifying the RHS of the current macro-
operator (the identity operator) with operator 11D, adds the
constraint that D=b. The second step in the update process
is to update the effects of the macro-operator. This is sim-
ple once the first step has been done, because that step has
bound symbols in the macro-operator’s RHS to the variable
symbols in the operator’s LHS. Transferring these to the op-
erator’s RHS gives the RHS for the updated macro-operator.
In our example, the update process based on 11D produces
the macro-operator

A B C b E F => b B C A E F.

The process is then repeated using this updated macro-
operator and the next operator in the sequence, 12R in this
example. First the RHS of the macro-operator, b B C A E
F, is unified with the LHS of 12R. This produces the con-
straint C=b and bindings which, when transferred to the RHS
of 12R, result in the following macro-operator:

A B b b E F => b b B A E F.

The same process is applied with this macro-operator and
the third operator in the sequence, 21R, to produce the final
macro-operator for 11D-12R-21R:

Figure 4: PSVN rules involved in Pruning Rule 2.

23

A B b b b F => b b B b A F.

Applying the move composition process to operator se-
quence 12R-11R-12D produces this macro-operator:

A B b D b F => b b B D A F.

The two macro-operators can now be compared, using
Definition 1, to determine if one is redundant with the other.
First, their costs are the same (3). Second, it is easy for
the PSVN compiler to determine that any state that matches
the LHS of the macro-operator for 11D-12R-21R will also
match the LHS of the macro-operator for 12R-11R-12D,
since the LHS’s are identical except that the former requires
the fourth vector position to be b whereas the latter allows
it to be any value. Finally, it is easy for the PSVN com-
piler to determine that the net effect of both sequences (the
RHS of both macro-operators) is identical for any state that
matches the LHS of the macro-operator for 11D-12R-21R.
By this means the PSVN compiler establishes that 11D-12R-
21R > 12R-11R-12D. Last year’s system immediately de-
clared 11D-12R-21R redundant. As we have shown in this
paper, this is not safe to do, in general. The correction we
propose in this paper is to only declare 11D-12R-21R re-
dundant if it follows 12R-11R-12D in the fixed nested order
being used.

References
Akagi, Y.; Kishimoto, A.; and Fukunaga, A. 2010. On trans-
position tables for single-agent search and planning: Sum-
mary of results. In Proc. Third Annual Symposium on Com-
binatorial Search (SOCS-10).
Amir, E., and Engelhardt, B. 2003. Factored planning. In
IJCAI, 929–935.
Brafman, R. I., and Domshlak, C. 2006. Factored planning:
How, when and when not. In AAAI, 809–814.
Burch, N., and Holte, R. C. 2011. Automatic move pruning
in general single-player games. In Proceedings of the 4th
Symposium on Combinatorial Search (SoCS).
Edelkamp, S. 2001. Planning with pattern databases. In
Proc. European Conference on Planning, 13–24.
Fabre, E.; Jezequel, L.; Haslum, P.; and Thiébaux, S. 2010.
Cost-optimal factored planning: Promises and pitfalls. In
Proc. 20th International Conference on Automated Planning
and Scheduling, 65–72.
Felner, A.; Goldenberg, M.; Sharon, G.; Stern, R.; Sturte-
vant, N.; Schaeffer, J.; and Holte, R. C. 2012. Partial-
expansion A* with selective node generation. In AAAI.
Godefroid, P. 1996. Partial-Order Methods for the Verifi-
cation of Concurrent Systems - An Approach to the State-
Explosion Problem, volume 1032 of Lecture Notes in Com-
puter Science. Springer.
Guenther, M.; Schiffel, S.; and Thielscher, M. 2009. Fac-
toring general games. In IJCAI Workshop on General Game
Playing (GIGA’09).
Lansky, A. L., and Getoor, L. 1995. Scope and abstraction:
Two criteria for localized planning. In IJCAI, 1612–1619.

Lansky, A. L. 1998. Localized planning with diverse plan
construction methods. Artificial Intelligence 98(1-2):49–
136.
Prieditis, A. 1993. Machine discovery of effective admissi-
ble heuristics. Machine Learning 12:117–141.
Sharon, G.; Stern, R.; Goldenberg, M.; and Felner, A.
2011. The increasing cost tree search for optimal multi-
agent pathfinding. In IJCAI, 662–667.
Standley, T. S. 2010. Finding optimal solutions to coopera-
tive pathfinding problems. In AAAI, 173–178.
Taylor, L. A., and Korf, R. E. 1993. Pruning duplicate nodes
in depth-first search. In AAAI, 756–761.
Taylor, L. A. 1992. Pruning duplicate nodes in depth-first
search. Technical Report CSD-920049, UCLA Computer
Science Department.
Wehrle, M., and Helmert, M. 2012. About partial order
reduction in planning and computer aided verification. In
Proceedings of ICAPS.

24

