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Abstract

This paper summarizes our AAMAS 2012 paper on “Time-
Bounded Adaptive A*)” which introduces the game time
model to evaluate search algorithms in real-time settings,
such as video games. It then extends the existing real-time
search algorithm TBA* to path planning with the freespace
assumption in initially partially or completely unknown ter-
rain, resulting in Time-Bounded Adaptive A* (TBAA¥*).
TBAA¥* needs fewer time intervals in the game time model
than several state-of-the-art complete and real-time search al-
gorithms and about the same number of time intervals as the
best compared complete search algorithm, even though it has
the advantage over complete search algorithms that the agent
starts to move right away.

Game Time Model

Video games often partition time into game cycles, each of
which is only a couple of milliseconds long. Each game
character executes one movement at the end of each game
cycle, which gives the players the illusion of fluid move-
ment. Our game time model is motivated by such video
games. Time is partitioned into uniform time intervals, an
agent can execute one movement during each time interval,
and search and movements are done in parallel. The objec-
tive is to move the agent from its start location to its goal
location in as few time intervals as possible. The game time
model addresses the fact that the standard way of evaluat-
ing search algorithms, namely using their CPU times or path
costs, is problematic in real-time situations. For example,
complete search algorithms first find a complete path from
the start location of the agent to its goal location and then
move the agent along it. The complete search algorithm (for-
ward) A*, for example, needs the smallest CPU time of any
search algorithm to find cost-minimal paths (up to tie break-
ing). Yet, A* typically needs several time intervals to find
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a cost-minimal path from the start location of the agent to
its goal location, resulting in a long delay before the agent
starts to move (which makes the agent unresponsive) and a
long time until it reaches its goal location (which makes the
agent inefficient) since there is no parallelism of search and
movement — the agent does not move until the path is found
and does not search afterwards. Real-time search algorithms
execute A* searches and movements in parallel and might
be able to move the agent to its goal location (along a sub-
optimal path) in fewer time intervals than A*, even though
both their CPU time and resulting path costs could be larger
than those of A*.

RTBA* and TBAA*

Time-Bounded A* (TBA*) (Bjornsson, Bulitko, and Sturte-
vant 2009) is an existing real-time search algorithm for undi-
rected terrain that performs an A* search from the start lo-
cation of the agent to its goal location. At the end of each
time interval, the agent executes a movement towards a lo-
cation in the OPEN list with the smallest f-value, by repeat-
edly either following the path from its start location to the
location in the OPEN list with the smallest f-value (if the
current location is on this path) or moving to the parent
of its current location in the search tree. However, TBA*
cannot be used when the terrain is not known initially. We
thus extend it to on-line path planning with the freespace as-
sumption in initially partially or completely unknown (but
static) terrain in two steps, namely via RTBA* to TBAA*.
Both new real-time search algorithms use on-line path plan-
ning with the freespace assumption by taking all obstacles
into account that the agent has observed so far but assuming
that unknown terrain is free of obstacles (Koenig, Tovey, and
Smirnov 2003).

RTBA* In the first step, we extend TBA* to Restarting
Time-Bounded A* (RTBA*). RTBA* is almost identical to
TBA¥*; the difference is that whenever the agent observes
obstacles on its current path to a location in the OPEN list
with the smallest f-value, RTBA* starts a new TBA* search
from the current location of the agent to its goal location.

TBAA¥* In the second step, we extend RTBA* to Time-
Bounded Adaptive A* (TBAA*). Each time RTBA* starts a
new TBA* search, all information from the previous TBA*
search is lost. However, real-time search algorithms often
update the h-values to make them more informed. TBAA*



is almost identical to RTBA*; the difference is that it up-
dates h-values of locations in the way (Lazy) Adaptive A*
(Koenig and Likhachev 2006a) and Real-Time Adaptive A*
(RTAA*) (Koenig and Likhachev 2006b) do to focus future
TBA* searches better. TBAA* performs this h-value update
only once the h-value of a location is needed by the current
TBA* search for the first time, to avoid computing those h-
values that are not needed later.

Analysis

We prove in our AAMAS paper that RTBA* and TBAA*
correctly either move the agent from its start location to its
goal location or detect that this is impossible. Many other
real-time search algorithms cannot detect when there is no
solution efficiently. Furthermore, RTBA* and TBAA* can
eventually move the agent on a cost-minimal path from its
start location to its goal location if they reset the agent into
its start location whenever it reaches its goal location.

Experimental Evaluation

We evaluate all search algorithms experimentally in known
and initially partially or completely unknown eight-neighbor
grids with blocked and unblocked cells. The user-provided
h-values are the octile distances. The agent knows the di-
mensions of the grid and its start and goal cells. It can al-
ways move from its current unblocked cell to one of the
eight unblocked neighboring cells with cost one for hor-
izontal or vertical movements and cost /2 for diagonal
movements. We run all search algorithms with time inter-
vals whose lengths range from 0.3 to 1.5 milliseconds and
record the average number of time intervals and number
of movements until the agent reaches the goal cell for the
first time. We use six game maps (from Nathan Sturtevant’s
www.movingai.com) and generate 300 search problems with
randomly chosen start and goal cells for each game map, for
a total of 1,800 search problems. In known grids, the agent
knows the blockage status of all cells initially. In initially
partially or completely unknown grids, it does not know the
blockage status of some or all, respectively, cells initially but
always observes the blockage status of its eight neighboring
cells. It can use path planning with the freespace assumption
by assuming that all cells are unblocked, that is, edges con-
nect every cell to its neighboring cells. If, after executing a
movement, it observes that a neighboring cell is blocked,
it increases the costs of all incoming and outgoing edges
of that cell to infinity, which is equivalent to removing the
edges.

Known Terrain We use the game time model to com-
pare the real-time search algorithm TBA* in our AAMAS
paper against the complete search algorithm (forward) A*
and the real-time search algorithms RTAA* and daRTAA*
(Hernandez and Baier 2012). Our experimental results are
as follows: All real-time search algorithms move the agent
in known terrain from its start cell to its goal cell in about
the same or more time intervals than A*. However, TBA*
moves the agent to its goal cell in fewer time intervals than
the two real-time search algorithms RTAA* and daRTAA*
and in about the same number of time intervals as A*. TBA*
has the advantage over A* that the agent moves right away.
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Initially Partially or Completely Unknown Terrain We
use the game time model to compare RTBA* and TBAA*
in our AAMAS paper against the complete search algo-
rithms (forward) Repeated A*, Adaptive A*, and D* Lite
and the real-time search algorithms RTAA* and daRTAA*.
Repeated A* is almost identical to (forward) A*; the differ-
ence is that Repeated A* starts a new A* search from the
current cell of the agent to its goal cell whenever the agent
observes blocked cells on its current path to its goal cell. In-
cremental search algorithms, such as Adaptive A* (Koenig
and Likhachev 2006a) and D* Lite (Koenig and Likhachev
2002), behave in the same way but speed up the A* searches
by using their experience with prior A* searches to speed
up future ones. Our experimental results are as follows: All
real-time search algorithms move the agent in initially par-
tially or completely unknown terrain from its start cell to its
goal cell in fewer time intervals than Repeated A*. The game
time model is thus able to explain the importance of real-
time search in this case. TBAA* moves the agent in initially
partially or completely unknown terrain from its start cell to
its goal cell in fewer time intervals than the two complete
search algorithms Repeated A* and Adaptive A* and the
two real-time search algorithms RTAA* and daRTAA* and
in about the same number of time intervals as the best com-
pared complete search algorithm D* Lite. TBAA* seems to
have a slight advantage over D* Lite in initially partially
unknown terrain and vice versa in initially completely un-
known terrain (although this difference might not be statis-
tically significant). In both cases, TBA* has the advantage
over D* Lite that the agent moves right away.
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