Proceedings of the Fifth Annual Symposium on Combinatorial Search

Iterative Resource Allocation for Memory Intensive
Parallel Search Algorithms (Extended Abstract)*

Alex Fukunaga'
The University of Tokyo

1 Introduction

Cloud computing resources such as Amazon EC2 have be-
come widely available in recent years. In addition, there is
an increasing availability of massive-scale, distributed grid
computing resources such as TeraGrid/XSEDE, and mas-
sively parallel, high-performance computing (HPC) clus-
ters. These large-scale utility computing resources share two
characteristics that have significant implications for parallel
search algorithms. First, vast aggregate, memory and CPU
resources are available on demand. Secondly, resource us-
age incurs a direct monetary cost.

Previous work on parallel search algorithms has focused
on makespan: minimizing the (wall-clock) time to find a so-
lution, given fixed hardware resources; and scalability: as
resource usage is increased, how are makespan and related
metrics affected? With the vast amounts of aggregate mem-
ory available in utility computing, the monetary cost can be
the new limiting factor, since one can exhaust funds long
before allocating all of the resources available to rent.

We consider cost-efficient strategies for dynamically allo-
cating utility computing resources. We introduce an itera-
tive allocation (IA) strategy and derive bounds on the costs
incurred by IA, compared to optimal costs. For a realistic
class of computing environments and search problems, the
cost suboptimality is bounded by a constant multiplicative
factor as small as 4. We apply IA to HDA* (Kishimoto et
al. 2009), a parallel version of A* with hash-based work
distribution. Results on Al planning and multiple sequence
alignment, on 3 distinct, massively parallel environments,
show that the IA costs are reasonably close to optimal, and
significantly better than the worst-case upper bounds.

2 Utility Computing Services
In utility computing services, such as clouds, grids, and mas-
sively parallel clusters, there is some notion of an atomic

*A longer version of this paper appears in the Proceedings of
AAAT2012.

This research is supported by a grant from JSPS.

This research is supported by the JST PRESTO program and
KAKENHI.

§Part of this work was performed when this author was affiliated
with NICTA and The Australian National University.
Copyright (© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Akihiro Kishimoto*
Tokyo Institute of Technology

182

Adi Botea®
IBM Research, Dublin, Ireland

unit of resource usage. A hardware allocation unit (HAU),
is the minimal, discrete resource unit that can be requested
from a utility computing service. Various HAU types can
be available, each with different performance characteris-
tics and cost. Commercial clouds such as EC2 tend to have
an immediate HAU allocation model with discrete charges.
Usage of a HAU for any fraction of an hour is rounded up.
Grids and shared clusters tend to be batch-job based with a
continuous cost model. Jobs are submitted to a centralized
scheduler, with no guarantees about when a job will be run.
The cost is a linear function of the amount of resources used.

3 Iterative Allocation Strategy

A scalable, ravenous algorithm is an algorithm that can run
on an arbitrary number of processors, and whose memory
consumption increases as it keeps running. HDA* is an ex-
ample of a scalable, ravenous algorithm.

Our iterative allocation (IA) strategy repeatedly runs a
ravenous algorithm a until the problem is solved. The key
detail is deciding the number of HAUS to allocate in the next
iteration, if the previous iteration failed. We seek a policy
that tries to minimize the total cost.

For formal analysis, we make two assumptions. Firstly,
all HAUs used by IA are identical hardware configurations.
Secondly, if a problem is solved on ¢ HAUs, then it will
be solved on j > ¢« HAUs (monotonicity). Monotonicity is
usually (implicitly) assumed in the previous work on parallel
search.

Let T}, be the makespan (wall-clock) time needed to solve
a problem on v HAUs. In a continuous cost model, the cost
on v HAUs is T,, x v. In a discrete cost model, the cost is
[T,] x v. The minimal width W is the minimum number
of HAUs that can solve a problem with a given ravenous
algorithm. Given a cost model (i.e., continuous or discrete),
O™ is the associated min width cost. C* is the optimal cost
to solve the problem, and the minimal cost width W* is the
number of HAUSs that results in a minimal cost. Since W*
is usually not known a priori, the best we can hope for is to
develop strategies that approximate the optimal values.

The max iteration time E is the maximum actual (not
rounded up) time that an iteration can run before at least
1 HAU exhausts memory.

The min-width cost ratio R™ is defined as I(S)/C™,
where I(.5) is the total cost of IA (using a particular al-

Cores & Max # Continuous Model Discrete Model
(RAM) per HAUs number of problems solved on iteration Min-Width Cost Ratio (R*) Min-Cost Ratio (R*) # Solved w. Zero
HAU (cores) 2 3 4 |5 6 | 7 | Total Mean SD Max | Mean SD Max Cost Overhead
Planning: HPC 12(54GB) | 64(768) | 2 | 5 11 313 1 25 2.18 | 045 3.34 129 | 0.27 1.88 8
Planning: Commodity 8(16GB) 864) | S 1 2 - 8 1.62 | 0.29 2.29 1.04 | 0.12 1.33 7
Planning: EC2 4(15GB) 16(64) | 6 1 1 5 - 13 1.63 | 0.25 2.27 1.26 | 0.25 1.64 6
Mult. Seq. Align: HPC 12(54GB) | 64(768) | 4 1 1 2 8 2,02 | 046 2.76 1.54 | 0.75 3.28 3

Table 1: Summary of IAHDA* on planning and multiple sequence alignment on HPC, Commodity, and EC2 clusters.

location strategy S). The min-cost ratio R* is defined as
I(S)/C*. The total cost I(S) of IA is accumulated over all
iterations. In a discrete cost model, times spent by individ-
ual HAUs are rounded up. The effect of the rounding up is
alleviated by the fact that HAUs will use any spare time left
at the end of one iteration to start the next iteration.

4 The Geometric (b') Strategy

The geometric strategy allocates [b'] HAUs at iteration 1,
for some b > 1. For example, the 2* (doubling) strategy
doubles the number of HAUs allocated on each iteration.

We focus our cost ratio analysis on a class of realistic
cloud environments and ravenous search algorithms. Cloud
platforms such as Amazon EC2 and Windows Azure typi-
cally have discrete cost models, where the discrete billing
unit is 1 hour. This relatively long unit of time, combined
with the fast rate at which search algorithms consume RAM,
leads to the observation that many (but not all) search ap-
plications will exhaust the RAM/core in a HAU within a
single billing time unit in modern cloud environments. In
other words, a single iteration of IA will complete (by ei-
ther solving the problem or running out of memory) within
1 billing time unit (i.e., £ < 1). Our experiments validate
this observation for all of our planning and sequence align-
ment benchmarks. In addition, HDA* has been observed to
exhaust memory within 20 minutes on every planning and
24-puzzle problem studied in (Kishimoto et al. 2012). With
a sufficiently small F, all iterations could be executed within
a single billing time unit, entirely eliminating the repeated
allocation cost overhead. Indeed, for all our planning bench-
mark problems, all iterations fit in a single billing time unit.

It is easy to see that, in a discrete cost model with £/ < 1,
the cost to solve a problem on v HAUS is proportional to v.
As a direct consequence, W+ = W* and thus Rt = R*.
It can be shown that in the best case, R* = Rt 1, in

2 .
the worst case, RY,, = R}, < bl’_—l, and in the average
2
case, R;,, = R, < 5% . The worst case bound b /(b —

1) is minimized by the doubling strategy (b = 2). As b
increases above 2, the upper bound for Ry, improves, but
the worst case gets worse. Therefore: the doubling strategy
is the natural allocation policy to use in practice. For the 2¢
strategy, the average case ratio is bounded by 8/3 ~ 2.67,
and the worst case cost ratio does not exceed 4. With the 2°
strategy in a discrete cost model when E' < 1, we never pay
more than 4 times the optimal, but apriori unknown cost.

183

5 Experimental Results

We evaluate TA applied to HDA* (IAHDA*), with the dou-
bling strategy, on 3 parallel clusters: HPC - a large-scale,
high-performance cluster, where each HAU has 12 cores (In-
tel Xeon 2.93GHz), 4.5GB RAM/core, and a 40GB Infini-
band network; Commodity - a cluster of commodity ma-
chines, where each HAU has 8 cores (Xeon 2.33GHz) and
2GB RAM/core, and a 1Gbp (x3, bonded) Ethernet network;
EC2 - Amazon EC2 cloud cluster using the m1.xlarge
(“Extra Large”) HAU, which has 4 virtual cores, 3.75GB
RAM per core, and an unspecified network interconnect.

We evaluated IAHDA* for planning on a Fast-Downward
based planner using the merge-and-shrink (M&S) heuristic
(Helmert et al. 2007). We use 7 benchmark domains (142
problems) where the M&S heuristic is competitive with the
state of the art (Nissim et al. 2011). We evaluated TAHDA*
on multiple sequence alignment (MSA) using the variant of
HDA¥* in (Kobayashi et al. 2011), without the weighted-
A* preprocessing/upper-bounding step. The test set has 28
standard alignment problems for 5-9 sequences (HPC only).

Table 1 summarizes the results. We only consider prob-
lems which required > 2 iterations on that cluster. In the dis-
crete model, we assume the industry standard 1 hour gran-
ularity. In all our test problems, £ < 1 and thus discrete
R* = RT. The “# solved with zero overhead” column
shows the number of problems where the discrete R* = 1.
The mean discrete R* for all problems, on all 3 clusters, is
significantly less than the theoretical worst case bound (4.0)
and average case bound (2.67) for the doubling strategy. The
continuous R was never higher than 3.34.

References

Helmert, M.; Haslum, P.; and Hoffmann, J. 2007. Flexible Abstrac-
tion Heuristics for Optimal Sequential Planning. In Proceedings of
ICAPS-07, 176-183.

Kishimoto, A.; Fukunaga, A.; and Botea, A. 2009. Scalable, Paral-
lel Best-First Search for Optimal Sequential Planning. In Proceed-
ings of ICAPS-09, 201-208.

Kishimoto, A.; Fukunaga, A.; and Botea, A. 2012. Eval-

uation of a simple, scalable, parallel best-first search strategy.
arXiv:1201.3204v1. http://arxiv.org/abs/1201.3204.

Kobayashi, Y.; Kishimoto, A.; and Watanabe, O. 2011. Evalua-
tions of Hash Distributed A* in Optimal Sequence Alignment. In
Proceedings of IJCAI-11, 584-590.

Nissim, R.; Hoffmann, J.; and Helmert, M. 2011. Computing
perfect heuristics in polynomial time: On bisimulation and merge-
and-shrink abstraction in optimal planning. In Proceedings of 1J-
CAI, 1983-1990.

