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Introduction
Scaling up the number of simultaneously moving units in
pathfinding problems to hundreds, or even thousands, is well
beyond the capability of theoretically optimal algorithms in
practice, which is consistent with existing intractability re-
sults (Surynek 2010). However, significant scalability can
be achieved by trading off solution optimality. This moti-
vates evaluating the quality of suboptimal solutions, espe-
cially in instances much larger than can be handled by opti-
mal algorithms.

In this work, we consider pathfinding in uniform cost grid
maps. We study the solution quality using the three most
common quality criteria. The total travel distance is the
sum of distances covered by all units, measuring the total
cost. The sum of actions includes moves and also wait ac-
tions that appear in a plan, providing an indication of the
aesthetic quality of a plan, as long or frequent wait intervals
are undesirable. The makespan measures the total number of
time steps in a global plan when steps can be run in parallel.

We focus on MAPP (Wang and Botea 2009; 2010), which
has been shown as state-of-the-art in terms of scalability and
success ratio (i.e., percentage of solved units) on realistic
game grid maps. Until now, the quality of MAPP’s solutions
had not been as extensively analyzed. Our analysis indicates
that solutions computed with existing versions of MAPP can
often suffer in terms of quality. We introduce enhancements
that significantly improve MAPP’s solution quality. For ex-
ample, the sum of actions is cut to half on average.

MAPP becomes competitive in terms of solution qual-
ity with FAR (Wang and Botea 2008) and WHCA* (Sil-
ver 2005), two successful algorithms from the literature.
MAPP provides a formal characterization of problems it can
solve, and low-polynomial upper bounds on the resources
required, which are not reported for FAR and WHCA*. Our
extensions bring MAPP’s solution quality to a state-of-the-
art level, while maintaining its advantages over FAR and
WHCA* on the performance criteria of scalability, success
ratio, and ability to tell a priori if it will succeed in the in-
stance at hand. One of our extensions, which spreads out the
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precomputed paths, can be more generally applied to other
decentralised methods to reduce waiting time and collisions.

To evaluate the quality of suboptimal solutions in in-
stances beyond the capability of optimal algorithms, we use
lower bounds of optimal values to show our solutions have
a reasonable quality. A simple and computationally cheap
lower bound uses a set of shortest paths between all start–
target pairs. For example, MAPP’s average total travel dis-
tance is 19% longer than the total length of all shortest paths.

Improving MAPP’s Solution Quality
In brief, MAPP precomputes a path, π, from the start to the
target of each unit, satisfying three well-defined conditions
that guarantee conflicts can be resolved online. MAPP’s so-
lution plans consist of alternating progression and reposi-
tioning stages. Units advance along their π-paths during
progression, and attempt to push aside blocking units to
clear the way. Repositioning brings unsolved units back on
their π-paths, ensuring more units will be solved in the next
progression stage, and the algorithm eventually terminates.
For more details, we guide the reader to the original pub-
lications (Wang and Botea 2009; 2010). We identified two
causes affecting MAPP’s solution quality.

Firstly, as units prefer shorter paths, a large number of π-
paths overlapped, creating traffic jams online and affecting
the solution quality. A different choice of paths can reduce
this problem. Hence, our first enhancement, called SP, en-
courages units to spread out the paths by avoiding already
busy locations when searching for π-paths. Units are in-
formed by a global traffic report, which is computed incre-
mentally. With a hash map implementation and lazy instanti-
ation, the memory overhead is very reasonable. SP does not
affect MAPP’s completeness range or low-polynomial time
and memory upper bounds.

Secondly, since a repositioning stage starts only after
the previous progression stage completes (and vice-versa),
when a unit is pushed off its π-path, it needs to wait until
the end of the current progression stage, before attempting
to reposition back on its π-path. Hence, we modify the al-
gorithm to allow an off-track unit to make a dynamic reposi-
tioning move, interleaved on the fly with progression moves
of other units, under well specified conditions that do not
create cycles between units. Repositioning stages can still
occur globally, but are significantly reduced. We call this
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DR SP SP+DR
Repositioning stages 0.24 0.79 0.18
Undo moves 0.71 1.22 0.41
Total distance (TD) 0.98 0.97 0.9
Makespan (MS) 0.52 0.81 0.43
Sum of actions (SA) 0.59 0.8 0.5
Elapsed real time 0.98 1.05 1.08
Additional nodes expanded 1 1.02 1.02

Table 1: Ratios of DR, SP, and SP+DR MAPP’s solutions
compared to old MAPP. A ratio in column x is the value of
x MAPP divided by the value of old MAPP.

FAR WHCA* WHCA*+d A* lb A*+d lb
TD 1.01 0.95 1.12 1.19 1.43
MS 1.06 1.24 3.47 4.38
SA 0.94 0.98 1.83 2.21
Time 1.46 0.15 0.16 n/a n/a

Table 2: Ratios of SP+DR MAPP’s solutions compared to
FAR, WHCA*, and lower bounds of optimal solutions (“+d”
means diagonals enabled). A ratio in column x is the value
of SP+DR MAPP divided by the value of algorithm x.

enhancement DR. It also preserves previous low-polynomial
upper bounds on resource requirements and solution length.

Experimental Results
We used input data from previous published work (Wang
and Botea 2010; 2008), consisting of the 10 largest maps
from the game Baldur’s Gate, with 13765 to 51586
traversable tiles, non trivial configurations of obstacles, and
100 to 2000 mobile units (in increments of 100). For each
value of the number of units on each map, 10 instances were
generated with random start and target locations. Unless
stated otherwise, the maps are assummed to be 4-connected.

Our new versions, SP MAPP, DR MAPP, and SP+DR
MAPP, are compared with the best existing MAPP (Wang
and Botea 2010), as shown in Table 1. Since SP+DR MAPP
produced the best results, we also compared it with FAR
and Sturtevant and Buro’s WHCA*(w, a) (2006), with spa-
tial abstraction (but with no unit priority system for replan-
ning). All parameters are set as recommended in the origi-
nal works. As these algorithms have different success ratios
(MAPP (2010) solved 98.8% of all units, FAR and WHCA*
solved 81.9% and 80.9%, respectively), we plot the subset
of problem instances fully solved by all algorithms. Fur-
thermore, FAR and WHCA* cannot a priori identify units
that they are guaranteed to solve, thus a timeout limit of 10
minutes per instance is set, as used in previously work. Fig-
ure 1 illustrates an average behaviour from one sample map.
Table 2 shows that SP+DR MAPP is at least as competitive
as FAR and WHCA* on average in terms of solution quality.

The lower bounds for optimal solutions are obtained by
assuming no unit will interfere with another. The A* lower
bound, A* lb, is computed with cardinal moves only. No-
tice the sum of actions and makespan lower bounds become
significantly smaller than the optimal value.
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Figure 1: SP+DR MAPP’s solution quality compared with
FAR, and WHCA* with or without diagonals.

Conclusion
Suboptimal multi-agent pathfinding algorithms scale well
beyond the capabilities of optimal methods. In terms of scal-
ability, success ratio, and ability to provide formal complete-
ness guarantees and low polynomial upper bounds on re-
source requirement, MAPP dominates convincingly bench-
mark algorithms such as FAR and WHCA*. In this work,
we have also improved MAPP’s solution quality to a state-
of-the-art level. In future work, we plan to investigate exten-
sions to units of different speed or size.
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