
Probably Approximately Correct Heuristic Search

Roni Stern Ariel Felner
Information Systems Engineering

Ben Gurion University
Beer-Sheva, Israel 85104

roni.stern@gmail.com felner@bgu.ac.il

Robert Holte
Computing Science Department

University of Alberta
Edmonton, Alberta, Canada T6G 2E8

holte@cs.ualberta.ca

Abstract

A* is a best-first search algorithm that returns an optimal so-
lution. w-admissible algorithms guarantee that the returned
solution is no larger than w times the optimal solution. In this
paper we introduce a generalization of the w-admissibility
concept that we call PAC search, which is inspired by the PAC
learning framework in Machine Learning. The task of a PAC
search algorithm is to find a solution that is w-admissible
with high probability. In this paper we formally define PAC
search, and present a framework for PAC search algorithms
that can work on top of any search algorithm that produces a
sequence of solutions. Experimental results on the 15-puzzle
demonstrate that our framework activated on top of Anytime
Weighted A* (AWA*) expands significantly less nodes than
regular AWA* while returning solutions that have almost the
same quality.

Introduction

Consider a standard search problem of finding a path in a
state space from a given initial state s to a goal state g.
Throughout the paper we use the standard search notation:
g(n) is the sum of the edge costs from s to n and h(n) is an
admissible heuristic that estimates the cost of getting from n
to g. The optimal solution can be found using the A* algo-
rithm (Hart, Nilsson, and Raphael 1968), a best-first search
algorithm that uses a cost function of f(n) = g(n) + h(n).
Furthermore, if h∗(s) is the cost of the optimal solution then
all the nodes with g+ h < h∗(s) must be expanded in order
to verify that no better path exist (Dechter and Pearl 1985).

While developing accurate heuristics can greatly reduce
the number of nodes with g + h < h∗(s), it has been shown
that in many domains even with an almost perfect heuristic
expanding all the nodes with g + h < h∗(s) is not feasible
within reasonable computing resources. (Helmert and Röger
2008)

When finding an optimal solution is not feasible, a range
of search algorithms have been proposed that return subop-
timal solutions. In particular, when an algorithm is guar-
anteed to return a solution that is at most w times the op-
timal solution we say that this algorithm is w-admissible.
Weighted A* (Pohl 1970), A∗

ε (Pearl and Kim 1982), Any-
time Weighted A* (Hansen and Zhou 2007) and Optimistic

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Search (Thayer and Ruml 2008) are known examples of
w-admissible algorithms. In general, w-admissible search
algorithms achieve w-admissibility by using an admissible
heuristic to obtain a lower bound on the optimal solution.
When the ratio between the incumbent solution (i.e., the best
solution found so far) and this lower bound is below w, then
w-admissibility is guaranteed. Efficient w-admissible algo-
rithms often introduce a natural tradeoff between solution
quality and search runtime. When w is high, solutions are
returned quickly but have poorer quality.1 By contrast, set-
ting low w values will increase the search runtime but solu-
tions of higher quality will be returned.

In this paper we argue that it is possible to develop a
search algorithm that will run much faster than traditional w-
admissible algorithm by relaxing the strict w-admissibility
requirement. Specifically, search problems can be solved
much faster if one allows the returned solution to be w-
admissible in most of the cases instead of always.

For example, consider Weighted A* (WA*), a best-first
search algorithm which uses the cost f(n) = g(n)+w·h(n).
It has been proven that WA* with weight w is w-admissible.
For example, if the requirement is that a solution must be
1.25-admissible, then w will be set to 1.25. However, it is
often the case that setting a higher weight may often return
a solution that is also 1.25-admissible with high probabil-
ity. For example, on the standard 100 random 15-puzzle in-
stances (Korf 1985), we have found that running WA* with
w = 1.5 always returns a solution that is 1.25-admissible.
Importantly, running WA* with w = 1.5 often returns a so-
lution faster than WA* with w = 1.25. Consequently, if one
requires a 1.25-admissible solution with high probability for
a 15-puzzle instance, running WA* with w = 1.5 would be
a better choice.

Inspired by the Probably Approximately Correct (PAC)
learning framework from Machine Learning (Valiant 1984),
we formalize the notion of finding a w-admissible solution
with high probability. We call this concept Probably Ap-
proximately Correct Heuristic Search, or PAC search in
short. A PAC search algorithm is given two parameters, ε
and δ, and is required to return a solution that is at most
1+ε times the optimal solution, with probability higher than

1In some domains, increasing w above some point also de-
grades the search runtime.

158

Proceedings, The Fourth International Symposium on Combinatorial Search (SoCS-2011)



1− δ. We call 1+ ε the desired suboptimality, and 1− δ the
required confidence.

We first introduce and formally define what is PAC search.
Then, we present a general framework for a PAC search
algorithm. This framework can be built on top of any al-
gorithm that produces a sequence of solutions. When the
search algorithm produces a solution that achieves the de-
sired suboptimality with the required confidence, the search
halts and the incumbent solution (= the best solution found
so far by the search algorithms) is returned. This results in
a PAC search algorithm that can accept any positive value ε
and δ and return a solution within these bounds.

Empirical evaluation were performed on the 15-puzzle us-
ing our PAC search algorithm framework on top of Anytime
Weighted A* (Hansen and Zhou 2007). The results show
that decreasing the required confidence (1-δ) indeed yields
a reduction in the number of expanded nodes. For example,
setting δ = 0.05 decreases the number of expanded nodes by
a factor of 3 when compared to regular Anytime Weighted
A* (where δ = 0) for various values of ε.

Related Work

Ernandes and Gori (2004) have previously pointed out the
possible connection between the PAC learning framework
and heuristic search. They used an artificial neural network
(ANN) to generate a heuristic function ĥ that is only likely
admissible, i.e., admissible with high probability. They
showed experimentally that A* with ĥ as its heuristic can
solve the 15 puzzle quickly and return the optimal solutions
in many instances. This can be viewed as a special case of
the PAC search concept presented in this paper, where ε = 0
and δ is allowed values larger than zero.

In addition, they bound the quality of the returned solu-
tion to be a function of two parameters: 1) P (ĥ ↑), which is
the probability that ĥ is overestimating the optimal cost, and
2) d, the length (number of hops) of the optimal path to a
goal. Specifically, the probability that the path found by A*
with ĥ as a heuristic is optimal is given by (1 − P (ĥ ↑))d.
Unfortunately, this formula is only given as a theoretical ob-
servation. In practice, the length of the optimal path to a
goal d is not known until the problem is solved optimally,
and thus this bound cannot be used to identify whether a so-
lution is probably optimal in practice.

Other algorithms that use machine learning techniques
to generate accurate heuristics have also been pro-
posed (Samadi, Felner, and Schaeffer 2008; Jabbari Arfaee,
Zilles, and Holte 2010). The resulting heuristics are not
guaranteed to be admissible but were shown to be very effec-
tive. No theoretical analysis of the amount of suboptimality
was performed for these algorithms.

The PAC framework has been borrowed from machine
learning to other fields as well. For example, a data min-
ing algorithm that is probably approximately correct (Cox,
Fu, and Hansen 2009) has been proposed. Also, a frame-
work for probably approximately optimal strategy selection
was also proposed, for the problem of finding an efficient ex-
ecution order of sequence of experiments with probabilistic
outcomes (Greiner and Orponen 1990). To our knowledge,

Algorithm 1: PAC search algorithm framework
Input: 1 + ε, The required suboptimality
Input: 1− δ, The required confidence

1 U ← ∞
2 while Improving U is possible do
3 NewSolution ← search for a solution
4 if NewSolution < U then
5 U ← NewSolution
6 if U is a PAC solution then return U

the PAC framework has not yet been adapted to heuristic
search.

PAC Heuristic Search

PAC Learning is a framework for analyzing machine learn-
ing algorithms and the complexity of learning classes of con-
cepts. A learning algorithm is said to be a PAC learning al-
gorithm if it generates with probability higher than 1 − δ a
hypothesis with an error rate lower than ε, where δ and ε are
parameters of the learning algorithm. Similarly, we say that
a search algorithm is a PAC search algorithm, if it returns
with high probability (1 − δ) a solution that has the desired
suboptimality (of 1 + ε).

Formal Definition

We now define formally what is a PAC search algorithm. Let
M be the set of all possible start states in a given domain,
and let D be a distribution over M. Correspondingly, we
define a random variable S, to be a state drawn randomly
from M according to distribution D. For a search algorithm
A and a state s ∈ M, we denote by cost(A, s) the cost of
the solution returned by A given s as a start state. We de-
note by h∗(s) the cost of the optimal solution for state s.
Correspondingly, cost(A,S) is a random variable that con-
sists of the cost of the solution returned by A for a state
randomly drawn from M according to distribution D. Sim-
ilarly, h∗(S) is a random variable that consists of the cost of
the optimal solution for a random state S.

Definition 1 [PAC search algorithm]
An algorithm A is a PAC search algorithm iff

Pr(cost(A,S) ≤ (1 + ε) · h∗(S)) > 1− δ

Classical search algorithms can be viewed as special cases
of a PAC search algorithm. Algorithms that always return
an optimal solution, such as A* and IDA*, are simply PAC
search algorithms that set both ε and δ to zero. w-admissible
algorithm are PAC search algorithms where w = 1 + ε and
δ = 0. In this work we propose a general framework for
a PAC search algorithm that is suited for any non-negative
value of ε and δ.

Framework for a PAC Heuristic Search Algorithm

We now introduce a general PAC search framework (PAC-
SF) to obtain PAC search algorithms. The main idea of PAC-

159



SF, is to generate better and better solutions and halt when-
ever the incumbent solution has the desired suboptimality
(1+ε) with the required confidence (1-δ). The pseudo code
for PAC-SF is listed in Algorithm 1. The incumbent solution
U is initially set to be ∞ (line 1). In every iteration of PAC-
SF, a search algorithm is run until a solution with cost lower
than U is found (line 3), or it is verified that such a solution
does not exist (line 2). When the incumbent solution U is
a PAC solution, i.e., it is (1+ε)-admissible with high prob-
ability (above 1-δ), the search halts and U is returned (line
6).

Implementing PAC-SF introduces two challenges:

1. Choosing a search algorithm (line 3).
This is the fundamental challenge in a search problem:
how to find a solution.

2. Identifying when to halt (line 6).
This is the challenge of identifying when the incumbent
solution U ensures that the desired suboptimality has been
achieved with the required confidence.

Anytime search algorithms can address the first chal-
lenge. Anytime algorithms are: “algorithms whose qual-
ity of results improves gradually as computation time in-
creases” (Zilberstein 1996). After the first solution is found,
an anytime search algorithm continues to run, finding so-
lutions of better qualities.2 This is exactly what is needed
for PAC-SF (line 3 in Algorithm 1). Prominent exam-
ples of anytime search algorithms are Anytime Weighted
A* (Hansen and Zhou 2007), Beam-Stack Search (Zhou and
Hansen 2005) and Anytime Window A* (Aine, Chakrabarti,
and Kumar 2007). Note that the incumbent solution U can
be passed to an anytime search algorithm for pruning pur-
poses, e.g., pruning all the nodes with g + h ≥ U with an
admissible h.

Some anytime algorithms are guaranteed to eventually
find the optimal solution. Consequently, if PAC-SF is built
on top of such an algorithm, then it is guaranteed to return a
solution for any values of ε and δ. This is because whenever
the optimal solution is found, then the incumbent solution
U is optimal and can be safely returned for any ε and δ.
For simplicity, we assume hereinafter that the search algo-
rithm used in PAC-SF is an anytime search algorithm that
converges to the optimal solution.

Identifying a PAC Solution

We now turn to address the second challenge in PAC-SF,
which is how to identify when the incumbent solution U is a
PAC solution, and the search can terminate (line 6 in Algo-
rithm 1).

Definition 2 [Sufficient PAC Condition]
A sufficient PAC condition is a termination condition for
PAC-SF that ensures that PAC-SF will return a solution for

2For some anytime algorithms, it is not guaranteed that a re-
turned solution is necessarily of higher quality than a previously
returned solution. However, this can be easily remedied by contin-
uing to run such anytime algorithms, until a solution that is better
than all of the previously returned solutions is found.

a randomly drawn state that is (1+ ε)-admissible with prob-
ability of at least 1− δ.

PAC-SF with an anytime search algorithm that converges
to the optimal solution is guaranteed to be a PAC search al-
gorithm (as defined in Definition 1) iff it halts (and returns a
solution) when a sufficient PAC condition has been met.

How do we recognize when a sufficient PAC condition has
been met? For a given start state s, a solution of cost U is
(1 + ε)-admissible if the following equation holds.

U ≤ h∗(s) · (1 + ε) (1)
However, Equation 1 cannot be used in practice as a suf-

ficient PAC condition in PAC-SF, because h∗(s) is known
only when an optimal solution has been found. Next, we
present several practical sufficient PAC conditions, that are
based on Equation 1.

Trivial PAC Condition

Recall that S denotes a randomly drawn start state. The fol-
lowing condition is a sufficient PAC condition.

Pr(U ≤ h∗(S) · (1 + ε)) > 1− δ (2)
The key idea here is to assume we know nothing about a

given start state s except that it was drawn from the same
distribution as S (i.e., drawn from M according to distribu-
tion D). With this assumption, the random variable h∗(S)
can be used in place of h∗(s) in Equation 1.

To use the sufficient PAC condition depicted in Equa-
tion 2, the distribution of h∗(S) is required. Pr(h∗(S) ≥
X) can be estimated in a preprocessing stage by randomly
sampling states from S. Each of the sampled states is solved
optimally, resulting in a set of h∗ values. The cumulative
distribution function Pr(h∗(S) ≥ X) can then be estimated
by simply counting the number of instances with h∗ ≥ X , or
using any statistically valid curve fitting technique. A remi-
niscent approach was used in the KRE formula (Korf, Reid,
and Edelkamp 2001) for predicting the number of nodes
generated by IDA*, where the state space was sampled to
estimate the probability that a random state has a heuristic
value h ≤ X .

Note that the procedure used to sample the state space
should be designed so that the distribution of the sampled
states will be as similar as possible to the real distribution
of start states. In some domains this may be difficult, while
in other domains sampling states from the same distribution
is easy. For example, sampling 15-puzzles instances from a
uniform distribution over the state space can be done by gen-
erating a random permutation of the 15 tiles and verifying
mathematically that the resulting permutation represents a
solvable 15-puzzle instance (Johnson 1879). Sampling ran-
dom states can also be done in some domains by performing
a sequence of random walks from a set of known start states.

Clearly, a sufficient PAC condition based on Pr(h∗(S) >
X) is very crude, as it ignores all the state attributes of the
initial state s. For example, if for a given start state s we
have h(s) = 40 and h is admissible then h∗(s) cannot be
below 40. However, if one of the randomly sampled states
has h∗ of 35 then we will have Pr(h∗(S) < 40) > 0.

160



Ratio-based PAC Condition

Next, we propose an alternative sufficient PAC condition,
that regards the heuristic value of the start state s. Instead of
considering the distribution of h∗(S), consider the distribu-
tion of the ratio between h∗ and h for a random start state
S. We denote this as h∗

h (S). Similarly, the cumulative dis-
tribution function Pr(h

∗
h (S) > Y ) is the probability that a

random start state S (i.e., drawn from from M according to
distribution D) has h∗

h larger than a value Y . This allows the
following sufficient PAC condition.

Pr(
h∗

h
(S) ≥ U

h(s) · (1 + ε)
) > 1− δ (3)

Equation 3 can be seen as a simple extension of Equa-
tion 2, where both sides are divided by the heuristic estimate
of the random state, and given the heuristic value of the spe-
cific start state s. It is easy to see that Equation 3 is indeed
a sufficient PAC condition. The benefit of this condition is
that the heuristic estimate of the given start state (h(s)) is
considered.

Estimating Pr(h
∗
h (S) ≥ Y ) in practice can be done

in a similar manner that was described above for estimat-
ing Pr(h∗(S) ≥ X). First, random problem instances
are sampled. Then, collect h∗

h values instead of h∗ val-
ues, and generate the corresponding cumulative distribution
function Pr(h

∗
h (S) ≥ Y ). Note that if h is admissible then

Pr(h
∗
h (S) ≥ 1) = 1.

Our experiments (detailed below) were performed on the
15-puzzle domain - a standard search benchmark, using the
additive 7-8 PDB as a heuristic (Korf and Felner 2002;
Felner, Korf, and Hanan 2004). We use these experiments
to demonstrate how the sampling process described above
can be done. First, the distribution of h∗

h for the 15-puzzle
and the additive 7-8 PDB heuristic has been learned as fol-
lows. The standard 1,000 random 15-puzzle instances (Fel-
ner, Korf, and Hanan 2004) were solved optimally using A*.
The ratio h∗

h was calculated for the start state of every in-
stance. Figure 1 presents the resulting cumulative and prob-
ability distribution functions. The x-axis displays values of
h∗
h . The blue bars which correspond to the left y-axis show

0%
10%
20%

30%
40%

50%

60%

70%

80%

90%

100%

0%

5%

10%

15%

20%

25%

30%

35%

1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5

CD
F 

Pr
ob

ab
ili

tie
s 

PD
F 

Pr
ob

ab
ili

tie
s 

h*/h Ratio 

PDF
CDF

Figure 1: h∗
h distribution for the additive 7-8 PDB heuristic.

the probability of a problem instance having a specific h∗
h

value. In other words the blue bars show the probability dis-
tribution function (PDF) of h∗

h which is Pr(h
∗
h = X). The

red curve, which corresponds to the right y-axis, shows the
cumulative distribution function (CDF) of h∗

h , i.e., given X

the curve shows Pr(h
∗
h ≤ X).

Next, assume that we are given as input the start state s,
ε = 0.1 and δ = 0.1. Now assume that h(s) = 50 and a
solution of cost 60 has been found (i.e., U = 60). Accord-
ing to sufficient PAC condition depicted in Equation 3, the
search can halt when:

Pr(
h∗

h
(S) ≥ U

h(s) · (1 + ε)
) > 1− δ

Setting U=60, h(s)=50, ε=0.1 and δ=0.1, we have:

Pr(
h∗

h
(S) ≥ 1.09) > 0.9

The probability that h∗
h (S) ≥ 1.09 can be estimated with

the CDF displayed in Figure 1. As indicated by the red
dot above the 1.1 point of the x-axis (according to the
right y-axis), Pr(h

∗
h (S) < 1.09) ≤ 0.1 and consequently

Pr(h
∗
h (S) ≥ 1.09) > 0.9. Therefore, the sufficient PAC

condition from Equation 3 is met and the search can safely
return the incumbent solution (60) and halt. By contrast, if
the incumbent solution were 70, then U

h(s)·(1+ε) = 1.27, and

according to the CDF in Figure 1 h∗
h is lower than 1.27 with

probability that is higher than 90%. Therefore, in this case
the sufficient PAC condition is not met, and the search will
continue, seeking for a better solution than 70.

It is important to note that the process of obtaining the
distribution of Pr(h

∗
h (S) ≥ X) is done in a preprocessing

stage, as it requires solving a set of instances optimally. This
is crucial since optimally solving a set of instances may be
computationally expensive (if finding optimal solutions is
easy there is no need for PAC search). This expensive pre-
processing stage is done only once per domain and heuristic.
By contrast, the actual search is performed per problem in-
stance. Usually one implements a search algorithm to be
used for many problem instances. Therefore the cost of ex-
pensive preprocessing stage should be amortized over the
gain achieved for all instances that will be solved by the im-
plemented algorithm.

Experimental Results

Next, we demonstrate empirically the benefits of PAC-SF
on the 15-puzzle, which is a standard search benchmark. A
solution was returned when the sufficient PAC condition de-
scribed in Equation 3 was met, using the distribution of h∗

h
shown in Figure 1. For producing solution (line 3 in Al-
gorithm 1) we have used Anytime Weighted A* (Hansen
and Zhou 2007), which is an anytime variant of Weighted
A* (Pohl 1970). Weighted A* (WA*) is a w-admissible best-
first search algorithm which uses f(n) = g(n) + w · h(n)
for its cost function. Anytime Weighted A* (AWA*) dif-
fers from WA* in the termination condition. While WA*
halts when a goal is expanded, AWA* continues to search,

161



AWA*+PAC
1+ε 1-δ A* w=1.1 w=1.25 w=1.5 w=2.0

1 0.5 37,688 21,048 (0.98) 21,913 (0.92) 26,989 (0.90) 43,573 (0.89)
0.8 21,988 (0.99) 23,194 (0.98) 28,367 (0.98) 44,949 (0.98)
0.9 21,995 (1.00) 23,213 (1.00) 28,391 (1.00) 44,980 (1.00)

0.95 22,005 (1.00) 23,230 (1.00) 28,409 (1.00) 45,002 (1.00)
1 22,007 (1.00) 23,236 (1.00) 28,416 (1.00) 45,008 (1.00)

1.1 0.5 4,841 (0.99) 7,143 (0.89) 18,826 (0.84)
0.8 14,761 (1.00) 18,345 (0.96) 33,031 (0.93)
0.9 19,020 (1.00) 23,504 (0.98) 38,926 (0.97)

0.95 20,619 (1.00) 25,466 (1.00) 41,558 (0.99)
1 9,369 (1.00) 23,165 (1.00) 28,335 (1.00) 44,935 (1.00)

1.25 0.5 1,043 (1.00) 1,637 (0.90)
0.8 1,257 (1.00) 2,566 (0.93)
0.9 1,496 (1.00) 5,046 (0.97)

0.95 1,786 (1.00) 5,961 (0.99)
1 1,865 (1.00) 7,079 (1.00) 17,715 (1.00)

1.5 0.5 533 (0.99)
0.8 566 (1.00)
0.9 582 (1.00)

0.95 603 (1.00)
1 993 (1.00) 782 (1.00)

Table 1: Average number of nodes expanded until PAC-SF returned a solution.

returning better and better solutions. Eventually, AWA* will
converge to the optimal solution and halt.

In the experiments we varied the following parameters:
• Weights (w for AWA*): 1.1, 1.25, 1.5 and 2.
• Desired suboptimality (1 + ε): 1, 1.1, 1.25 and 1.5.
• Required confidence (1− δ): 0.5, 0.8, 0.9, 0.95 and 1.

Table 1 shows the number of nodes expanded until PAC-
SF returned a solution. The data in every cell of the table
is the average over the standard 100 random 15-puzzle in-
stances (Korf 1985). For reference, the average number of
nodes expanded by A*, which is 37,688, is given the in the
column denoted by A*. Note that these 100 instances are
not included in the standard 1,000 random instances (Fel-
ner, Korf, and Hanan 2004) that were used to estimate
Pr(h

∗
h (S) > X). This was done to separate the training

set from the test set. The values in brackets show the ratio
of instances where the solution returned indeed achieved the
desired suboptimality, i.e, when the cost of the solution was
no more than 1 + ε times the optimal solution.

Until the first solution has been found, AWA* behaves
exactly like Weighted A*. Therefore it is guaranteed that
the first solution found by AWA* with weight w is not larger
than w times the optimal solution (Pohl 1970). For example,
if the desired suboptimality is 1.25, 1.5 or 2, the number
of nodes expanded by AWA* with w = 1.25 is exactly the
same, and the confidence that the found solution achieves
the desired suboptimality is 1.0. Therefore, for w = 1 + ε
we report only results with confidence 1.0 (for reference)
and omit the results for w < 1 + ε since as explained above
they are exactly the same as the results for w = 1 + ε.

As can be seen, all the values in the brackets exceed
the required confidence significantly. Therefore, in this do-

main PAC-SF succeeds in returning solutions that achieve
the desired suboptimality with confidence higher than the
required confidence. Note that in this domain PAC-SF with
AWA* is very conservative. For example, AWA* with
w=1.5 achieved a suboptimality of 1.25 for all the 100 in-
stances, even when the required confidence was only 0.5
(1 − delta = 0.5). This suggests that it may be possible to
further improve the proposed PAC identification technique
in future work.

Now, consider the number of nodes expanded when w >
1 + ε. Clearly, for every value of suboptimality (i.e., every
value of 1 + ε), decreasing the required confidence (1 − δ)
reduced the number of nodes expanded. This means that
relaxing the required confidence indeed allowed returning
solutions of the desired quality faster. For example, con-
sider AWA* with w = 1.5, where the desired suboptimality
is 1.25 (1+ε=1.25). If the required confidence is 1.0, then
AWA* with w = 1.5 expanded 7,079 nodes. On the other
hand, by relaxing the required confidence to 95% (i.e., 1-
δ=0.95), AWA* expanded only 1,786 nodes. Interestingly,
even when the required confidence is set to 95%, AWA*
with w = 1.5 was able to find a 1.25-admissible solution
in 100% of the instances (see the value in the brackets).

Conclusion and Future Work

In this paper we adapt the probably approximately correct
concept from machine learning to heuristic search. A PAC
heuristic search algorithm, denoted as PAC search algo-
rithm, is defined as an algorithm that returns with high prob-
ability a solution with cost that is w-admissible. A general
framework for a PAC search algorithm is presented. This
framework can use any algorithm that returns a sequence of
solutions, and obtain a PAC search algorithm. A major chal-

162



lenge in PAC search is to identify when a found solution is
good enough. We propose an easy-to-implement technique
for identifying such a solution, based on sampling and esti-
mating the ratio between the optimal path and the heuristic
estimate of the start state.

Empirical evaluation on the 15-puzzle demonstrate that
the proposed PAC search algorithm framework is able to in-
deed find solutions with the desired suboptimality with prob-
ability higher than the required confidence. Furthermore, by
allowing AWA* to halt when the desired suboptimality is
reached with high probability (but not 100%), AWA* is able
to find solutions faster (i.e., expanding less nodes) than reg-
ular AWA*, which halts when the desired suboptimality is
guaranteed.

We currently plan to extend this work in several direc-
tions. One of the directions that we are currently perusing
is to develop better sufficient PAC conditions that exploit
the knowledge gained during the search (e.g., exploiting the
openlist in a best-first search). Another research direction
is to obtain a more accurate h∗

h distribution by using an ab-
straction of the state space, similar to the type system con-
cept used to predict the number of states generated by IDA*
in the CDP formula (Zahavi et al. 2010). States in the state
space will be grouped into types, and each type will have a
corresponding h∗

h distribution. A third research direction is
how to adapt the choice of which node to expand next to in-
corporate the value of information gained by expanding each
node.

Acknowledgments

This research was supported by the Israel Science Founda-
tion (ISF) under grant number 305/09 to Ariel Felner. Spe-
cial thanks to the anonymous reviewer whose comments
greatly improved the final version of this paper.

References

Aine, S.; Chakrabarti, P. P.; and Kumar, R. 2007. AWA* - a
window constrained anytime heuristic search algorithm. In
IJCAI, 2250–2255.
Cox, I.; Fu, R.; and Hansen, L. 2009. Probably approxi-
mately correct search. In Advances in Information Retrieval
Theory, volume 5766 of Lecture Notes in Computer Science.
Springer. 2–16.
Dechter, R., and Pearl, J. 1985. Generalized best-first search
strategies and the optimality of A*. Journal of the Associa-
tion for Computing Machinery 32(3):505–536.
Ernandes, M., and Gori, M. 2004. Likely-admissible and
sub-symbolic heuristics. In European Conference on Artifi-
cial Intelligence (ECAI), 613–617.
Felner, A.; Korf, R. E.; and Hanan, S. 2004. Additive pat-
tern database heuristics. Journal of Artificial Intelligence
Research (JAIR) 22:279–318.
Greiner, R., and Orponen, P. 1990. Probably approximately
optimal satisficing strategies. Artificial Intelligence 82:21–
44.

Hansen, E. A., and Zhou, R. 2007. Anytime heuristic search.
Journal of Artificial Intelligence Research (JAIR) 28:267–
297.
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A for-
mal basis for the heuristic determination of minimum cost
paths. IEEE Transactions on Systems Science and Cyber-
netics SSC-4(2):100–107.
Helmert, M., and Röger, G. 2008. How good is almost
perfect? In AAAI, 944–949.
Jabbari Arfaee, S.; Zilles, S.; and Holte, R. C. 2010. Boot-
strap learning of heuristic functions. In Symposium on Com-
binatorial Search (SoCs).
Johnson, W. W. 1879. Notes on the ”15” Puzzle. American
Journal of Mathematics 2(4):397–404.
Korf, R. E., and Felner, A. 2002. Disjoint pattern database
heuristics. Artificial Intelligence 134(1-2):9–22.
Korf, R. E.; Reid, M.; and Edelkamp, S. 2001. Time
complexity of iterative-deepening-A*. Artificial Intelligence
129(1-2):199–218.
Korf, R. E. 1985. Depth-first iterative-deepening: An opti-
mal admissible treesearch. Artificial Intelligence 27(1):97–
109.
Pearl, J., and Kim, J. H. 1982. Studies in semi-admissible
heuristics. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence PAMI-4(4):392–399.
Pohl, I. 1970. Heuristic search viewed as path finding in a
graph. Artificial Intelligence 1(3-4):193 – 204.
Samadi, M.; Felner, A.; and Schaeffer, J. 2008. Learning
from multiple heuristics. In AAAI, 357–362.
Thayer, J. T., and Ruml, W. 2008. Faster than weighted
A*: An optimistic approach to bounded suboptimal search.
In International Conference on Automated Planning and
Scheduling (ICAPS), 355–362.
Valiant, L. G. 1984. A theory of the learnable. Communica-
tions of the ACM 27:1134–1142.
Zahavi, U.; Felner, A.; Burch, N.; and Holte, R. C. 2010.
Predicting the performance of IDA* using conditional dis-
tributions. Journal of Artificial Intelligence Research (JAIR)
37:41–83.
Zhou, R., and Hansen, E. A. 2005. Beam-stack search:
Integrating backtracking with beam search. In Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS), 90–98.
Zilberstein, S. 1996. Using anytime algorithms in intelligent
systems. AI Magazine 17(3):73–83.

163


