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Abstract

In this paper we describe novel representations for pre-
computed heuristics based on Level-Ordered Edge Sequence
(LOES) encodings. We introduce compressed LOES, an ex-
tension to LOES that enables more aggressive compression
of the state-set representation. We evaluate the novel repre-
sentations against the respective perfect-hash and binary de-
cision diagram (BDD) representations of pattern databases in
a variety of STRIPS domains.

Introduction

A key challenge for applying memory-based search heuris-
tics such as pattern databases (Culberson and Schaeffer
1998) and merge & shrink abstractions (Drager, Finkbeiner,
and Podelski 2006; Helmert, Haslum, and Hoffmann 2007)
to domain-independent planning is succinct representation.
The performance of these heuristics usually improves with
the size of their underlying data, as well as the efficiency
with which they can be accessed, with subsequent conse-
quences to their memory requirements. The problem is ex-
acerbated when employing best-first search algorithms with
duplicate detection such as A*, since these algorithms are
usually limited by the amount of available memory, a decid-
ing factor for problem solvability.

Linear-space search algorithms such as IDA* (Korf 1985)
use much less memory than A* but by forgoing duplicate
detection they pay the price of extra node expansions to find
optimal solutions. This time-space tradeoff pays off in do-
mains with few duplicates such as the sliding-tile puzzles
where IDA* easily outperforms A*, but many domains (e.g.
multiple sequence alignment) are not conducive to this ap-
proach. Hence current state-of-the-art heuristic search plan-
ners such as Fast Downward (Helmert 2006), HSP∗

F and
Gamer include full duplicate detection in their search algo-
rithms.

Perfect hashing is a popular technique used to associate
subproblems to precomputed solutions. Here an (injective)
enumerating function assigns each subproblem a unique id
that is typically used to address a record in a random access
structure. However in domain-independent planning it is of-
ten infeasible to find a function that is also nearly surjective,
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Figure 1: The 8-puzzle, its abstraction to tile 4 and the corre-
sponding pattern database.

particularly when dealing with complex subproblems. This
quickly leads to excessive amounts of unused slots in the
data array, relegating the approach to simple subproblems.

Another approach to representing pattern databases is to
use BDDs (Edelkamp 2002). An (ordered and reduced)
BDD is a canonical graph-based representation of a binary
function, that through merging isomorphic sub-graphs is of-
ten very space efficient (Ball and Holte 2008). State-sets can
be mapped to binary functions straightforwardly and BDDs
have been successfully used in planning and model check-
ing (Jensen, Bryant, and Veloso 2002). One problem for
domain-independent planning is that the space efficiency of
these approaches can vary widely depending on the structure
of the underlying domain. Another problem is that BDDs
are not well suited for associating data with individual states
in a space efficient way. This is usually less of a problem
for pattern databases, as often, a significant number of pat-
terns is associated with the same value, but nevertheless this
makes BDDs a challenge to use in more general memoiza-
tion contexts.

In the following, we devise suitable pattern database
representations for domain independent planning based on
LOES encodings. We introduce a novel variant of LOES
that trades off LOES support for efficient member ranking
for better space efficiency in the context of inverse relation
representations. Finally we give an initial evaluation of these
representations in an independent planning setting.

Preliminaries

For brevity and clarity, we restrict ourselves to pattern
databases for the remainder of this paper, but the ideas pre-
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Figure 2: Three bit sequences and their induced prefix tree.

sented here should transfer rather straightforwardly to other
memoization techniques. The idea behind a pattern database
heuristic is to first create a (relatively) easy-to-solve abstrac-
tion of the original problem. A suitable abstraction must
be interpretable as a (usually not invertible) function map-
ping original problem configurations to their abstract coun-
terparts. An abstract problem configuration is referred to
as a pattern. One then solves the abstract problem for all
patterns and stores them with the associated costs of their
optimal solutions in a database. Figure 1 gives an exam-
ple. Informally, we abstract away the identities of all but tile
4. By associating each configuration of the 8-puzzle to the
pattern with the matching position of tile 4, this can be inter-
preted as a many-to-one mapping function. Depicted on the
right of Figure 1 then is the resulting pattern database.

We will now lay out central concepts of the LOES repre-
sentation. Our overview is likewise limited to the facilities
necessary for their representation (c.f. (Schmidt and Zhou
2011) for an in-depth discussion of the techniques behind
the encoding). We assume that any pattern (or abstract state)
in the database can be encoded in m bits for a given heuris-
tic. Such sets of patterns can be bijectively mapped to edge-
labeled binary trees of depth m with labels false and true
by mapping each pattern to a path from root to leaf with an
edge at tree-depth d corresponding to the value of the bit at
offset d in the pattern’s bit-string. In this way every unique
pattern results in a unique path and can be reconstructed by
the sequence of edge-labels from root to leaf. Henceforth,
we refer to these trees as prefix trees. An example is given
in figure 2.

A worthwhile preprocessing step is to determine a per-
mutation on the encoding of the patterns that minimizes
this prefix tree (see Figure 3). Methodically sampling the
(abstract) state-space and a greedy entropy search through
the permutation space based on these samples usually gives
good results with little computational effort.

LOES encoding

LOES allows us to represent prefix trees in (strictly) less
than two bits per edge. It is defined as the level-order con-
catenation of 2-bit edge-pair records for each inner node of
the tree (the bits corresponding to the presence of the false
and true edges at that node). Figure 4 shows how this allows
us to encode an example set in a single byte. The encoding
results in a bit-string of between 2n and ≈ 2nm bits for
a set of n states with m bit representation, with the average
case usually close to the lower bound (cf (Schmidt and Zhou
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Figure 3: Permuting the bit-order of the encoding can lead to
smaller prefix-trees.
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Figure 4: Level-ordered edge sequence for the example set.
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Figure 5: path offset computation for 001 in the example set.
At each level, we compute the offset of the corresponding edge-
presence bit, test the bit, continue on pass and return ⊥ on a fail.

In the LOES encoding, the presence bits for the false and
true edges of the node some edge at offset o points to can be
found at offsets 2rank(o) and 2rank(o)+1, where rank(i)
is a function that gives the number of set bits in the sequence

143



up to (and including) offset i. This follows from the level-
order encoding - each preceding edge (with the exception of
the leaf level) results in a preceding edge-pair record for the
respective target node of that edge. Hence the child record
for some edge at offset o will be the rank(o)+1-th record
in the sequence (as the root node has no incoming edge).
This property allows efficient navigation over the encoded
structure.

Rank. Using a two-level index, which logically divides
the LOES into blocks of 216 bits and sub-blocks of 512 bit,
rank can be computed in constant time. For each block, the
index holds an 8-byte unsigned integer, denoting the num-
ber of set bits from the beginning of the sequence up to the
beginning of the block. On the sub-block level, a 2-byte
unsigned value stores the number of set bits from the be-
ginning of the corresponding block up to the beginning of
the sub-block. The total index size is around 3.3% the size
of the LOES code (see Equation 1). Using simple address
translations this reduces the computation to the sum of two
table lookups and a straightforward population count in the
respective 512 bit sub-block.

64

216
︸︷︷︸

block index

+
16

29
︸︷︷︸

sub-block index

≈ 0.0323 (1)

Member test. The path-offset function (Algorithm 1)
navigates through the LOES from the root according to the
label-sequence interpretation of a state. If the state repre-
sents a valid path from the tree root to some leaf, the func-
tion returns the offset of the bit corresponding to the last
edge of the path. Else it evaluates to⊥. An example is given
in figure 5. A set contains a state, if and only if its path inter-
pretation corresponds to a valid path through the prefix tree
and path-offset returns �= ⊥.

Input: state a bitsequence of length m
Output: offset an offset into LOES
Data: LOES an encoded state-set

offset ← 0;
for depth ← 0 to m− 1 do

if state[depth] then
offset ← offset + 1;

if LOES[offset] then
if depth = m− 1 then

return offset;
else

offset ← 2rankLOES(offset);

else
return ⊥;

Algorithm 1: path-offset

Member index. Other than efficiently computing
member-set tests, the encoding allows to associate consecu-
tive ids ∈ {⊥, 0, . . . , n − 1} for each state in the set. The
idea is to compute the rank of the path-offset of a state and
normalize this to the [0, n) interval by subtracting the rank of
the last offset of the last but one layer +1. Algorithm 2 gives

1
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 5-3-1=1
 6-3-1=2

10111011
   34 56

0

0

s0 = 000→
s1 = 010→
s2 = 011→

rank

Figure 6: Index mappings for all states in the example set. We
subtract the rank+1 (of the offset) of the last edge in the last-but-
one level from the rank of the path-offset of an element to compute
its index.

the pseudo-code and figure 6 shows this for our example set.

Input: state a bitsequence of length m
Data: LOES an encoded state-set
Data: levelOffsets array of offsets

o ← path-offset(state );
if o = ⊥ then

return ⊥;

a ← rankLOES(o);
b ← rankLOES(levelOffsets[m− 1]− 1);
return a− b− 1;

Algorithm 2: member index

LOES Construction
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Figure 7: Construction states when building a LOES code from
the example states with algorithm 3.

We end this digest of LOES by discussing how to con-
struct the code from a sequence of lexicographically ordered
states. We start with an empty bit-sequence for each layer of
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Input: s a bitsequence of length m
Data: treelevels an array of bitsequences
Data: s’ a bitsequence of length m or ⊥
if s’ = ⊥ then

depth ← −1;

if s’ = s then
return;

else
depth ← i : ∀j < i, s[j] = s’[j] ∧ s[i] �= s’[i];
treelevels[depth]lastBit ← true;

for i ← depth + 1 to m− 1 do
if s [i] then

treelevels[i] ← treelevels[i] ◦ 〈01〉;
else

treelevels[i] ← treelevels[i] ◦ 〈10〉;
s’ ← s;

Algorithm 3: add state

the tree. Algorithm 3 shows how these sequences are ma-
nipulated when adding a new state. For the first insertion,
we merely append the corresponding records on all levels.
For the following insertions we compute the length of the
shared prefix between the inserted state s′ and the last state
in the code s and set d to the offset of the first differing bit.
We set the last bit of sequence for level d to true and then
append records according to s to all lower levels. Duplicates
(i.e. s = s′) are simply ignored. Once we are done with in-
serting states, the LOES code is constructed by forming the
concatenation of the sequences in ascending order of their
levels.

PDB Representations

Having introduced the basics of LOES, we now turn our at-
tention to the representation of pattern databases. For brevity
we will not concern ourselves in detail with pattern selec-
tion, domain abstraction and the regression search, but will
assume a pattern database has already been computed and
exists as some collection of pattern-value pairs. For in-depth
coverage of these interesting topics, we would like to point
the reader to (Haslum et al. 2007; Helmert, Haslum, and
Hoffmann 2007).

Combined Layer Sets

Inverse Relation

A basic representation is to convert all patterns into a LOES
code. LOES associates a unique id with every unique pattern
in the range {0, . . . , |PDB| − 1} which we use as an offset
to store the associated values in a packed bit-string where
each record comprises of the minimal amount of bits neces-
sary to discern between the occurring (in the PDB) values.
Computation of the heuristic then comprises of determining
the id of the pattern using algorithm 2, and get the value by
interpreting id as an offset into the packed bit-string.

Especially in unit-cost search, the number of patterns in a
PDB usually by far outstrips the number of different values.

[ → 0]

[ → 1]

[ → 2]

[ → 1]

[ → 1]

[ → 2]

[ → 1]

[ → 2]

[ → 2]

Pattern Database

1→ { }
2→ { }

0→ { }
Inverse Relation

Figure 8: PDB for tile 3 of the 8-puzzle and its inverse relation.

We can avoid associating this repetitive data with individ-
ual patterns by storing the inverse of the heuristic function.
In general, heuristics are not injective, hence a well-defined
inverse does not exist. Instead, the inverse relation (a left-
total relation, where every input is associated with multiple
outputs) is stored (see figure 8 for an example). The heuris-
tic function is then computed through consecutive tests of
the pattern against each of the pattern-sets and upon a hit,
returning that set’s associated value. Note, that due to the
function property of the heuristic, these sets are pairwise dis-
junct. If furthermore, the heuristic is a total function (i.e. the
union over all pattern sets comprises the entire abstract pat-
tern space), we can remove the largest of the sets and denote
its associated value as a default which we return if the test
against all remaining sets fail. The idea is to represent each
set as a LOES code. A further optimization is to keep track
of the success probabilities of the member-tests over time
and query the sets in descending order of these probabili-
ties.

Compressed LOES

Input: state a bitsequence of length m
Output: offset an offset into cLOES
Data: cLOES an encoded state-set

offset ← 0;
for depth ← 0 to m− 1 do

if cLOES[offset, offset + 1] = 00 then
return offset;

if state[depth] then
offset ← offset + 1;

if cLOES[offset] then
if depth = m− 1 then

return offset;
else

offset ← 2rankcLOES(offset);

else
return ⊥;

Algorithm 4: comp-path-offset

For the inverse relation representation, we do not need to
associate any information with individual states, but only be
able to compute set membership. If we encounter a root of
a complete subtree during a descend through the prefix tree,
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we already know that the element in question is present. To
exploit this, we developed a variant of LOES, called com-
pressed Level Order Edge Sequence (cLOES), that allows
us to omit complete subtrees from the structure. The idea
is straightforward - we use the remaining code-point namely
00 (i.e. no further edge at this node) to denote a root of a
complete subtree. Note that this does not violate the edge-
index child-record-position invariant of LOES. As algorithm
4 shows, the changes to member tests are minimal - when-
ever we reach a new record, we first test if it denotes a com-
plete subtree (i.e. equals 00) and if so return the current
offset. Else the algorithm behaves analogously to LOES.

Input: s a bitsequence of length m
Data: codes an array of bitsequences
Data: s’ a bitsequence of length m or ⊥
if s’ = ⊥ then

depth ← −1;

if s’ = s then
return;

else
depth ← i : ∀j < i, s[j] = s’[j] ∧ s[i] �= s’[i];

8 if depth = m− 1 then
codes[depth]]lastRec ← 00;
for i ← depth − 1 to 0 do

if codes[i]lastRec = 11
∧codes[i+ 1]last2Recs = 0000 then

codes[i]lastRec ← 00;
codes[i+ 1].popRecord();
codes[i+ 1].popRecord();

else
break;

18

else
codes[depth].lastBit ← true;
for i ← depth + 1 to m− 1 do

if s [i] then
codes[i] ← codes[i] ◦ 〈01〉;

else
codes[i] ← codes[i] ◦ 〈10〉;

s’ ← s;

Algorithm 5: comp-add-state

Tree construction also changes slightly from LOES. Algo-
rithm 5 gives the procedure along with cLOES modifications
(lines 7 to 17). If an insertion generates an 11 record on the
leaf level, we convert this to a 00 record. We then run a sim-
ple bottom-up pattern-matching algorithm over (the ends of)
all level codes. The pattern to match is where the bit-string
on some level i ends in 11 and the bit-string on the lower
level in 0000. On a hit we prune the last four bits of the
lower level and change the record of the higher level into
11. The intuition behind this is simple - whenever a record
sports two edges pointing to complete subtrees, the record is
a root-node of a complete subtree.

Empirical Evaluation

Our evaluation setup consisted of a preprocessor for con-
verting PDDL input files into multivalued problem descrip-
tions similar to Fast Downward’s preprocessor. The differ-
ence is that our preprocessor outputs additional at-most-one
constraints covering the problem variables. They come in
the form of lists of variable-assignment tuples and are inter-
preted such that for any valid state, at most one of the tu-
ples in every list holds true. For the original problem, these
constraints add no additional information over what is en-
coded in the multi-valued description - that is, no successor
of the initial state generated through the operator set will
violate these constraint. The problem is that these implicit
constraints are lost due to abstraction by projecting to a sub-
set of variables.

Consider the multi-valued encoding generated by Fast
Downward’s (and our) preprocessor for the N -puzzles. It
comprises of one variable for each tile denoting its position.
There are operators for every viable pairing of the blank
tile and neighboring non-blank. Each such operator has the
specific positions of the blank and the tile as precondition
with their switched positions as effect. As tiles start out on
distinct positions in the initial state, the constraint that no
two tiles can occupy the same position is implicitly upheld
through the operator set. Once even a single variable is pro-
jected away (which results in the removal of its references
from all operator preconditions and effects) that constraint
is violated, creating a non surjective abstraction (i.e. there
are viable patterns in the abstraction, that have no counter-
part in the original problem).

This creates two problems. The lesser one is an often ex-
ponential increase in the size of the pattern database. The
greater one is the severe reduction in quality of the result-
ing heuristic. If one, say, projects on 7 variables from the
15-puzzle, the resulting database will comprise ≈ 270 mil-
lion patterns, but as tiles can move “through” each other will
carry no more information than the manhattan distance of
these 7 tiles. Note, that this does not affect the admissibility
of the heuristic. Evaluating these “redundant” constraints in
the abstract space allows us to mitigate this problem by up-
holding additional constraints (see also (Haslum, Bonet, and
Geffner 2005)).

The translation process is followed by a rule based system
selecting variables for one or more PDBs. Both of these
components are experimental at this point which somewhat
limited the scope of our evaluation. Then the PDBs would
be constructed through a regression search and encoded in
one of five representation forms.

Perfect Hashing (PH) The perfect hash function maps
each possible assignment vector (of the abstract problem)
to a unique id given by its lexicographic rank. Ids are used
for addressing packed records holding the associated val-
ues.

Binary Decision Diagram (BDD) The PDB is stored as an
inverse relation with each set represented as a BDD as
described above. Common subgraphs are shared between
sets. We used the buddy package, a high performance
implementation from the model checking community for
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our evaluation.

LOES Analogous to PH. The perfect hash function is im-
plemented through a LOES set of all occurring patterns
and its member-index function.

Inverse Relation LOES (IR LOES) Analogous to BDD.
Each set is represented as a LOES. All sets use the same
encoding permutation.

Inverse Relation compressed LOES (IR cLOES)
Analogous to BDD. Each set is represented as a cLOES
with a specific encoding permutation.

The PDBs were then used in an A∗ search. The “Pipesworld
Tankage”, “Driverlog” and “Gripper” instances were run on
a 2.2GHz Intel Core processor running Mac OS 10.6.7 with
8 GB of memory. For the 15-Puzzle STRIPS instances, we
used a 3.3GHz Xeon processor with 4GB of memory.

Table 1: Total PDB size, solution length and complete search
time (parsing, analysis, PDB construction and search) for the
“Pipesworld Tankage” (pt), “Driverlog” (dl) and “Gripper” (gr) in-
stances.

# size sl tPH tIR LOES tIR cLOES tLOES tBDD
pt1 67144 5 1.4 1.4 1.7 2.6 3.3
pt2 3559 12 0.2 0.1 0.2 0.2 0.2
pt3 38204 8 1.8 1.8 2.0 2.1 2.7
pt4 85422 11 5.0 4.9 5.7 5.9 7.4
pt5 212177 8 9.9 10.2 10.8 11.6 16.7
pt6 113364 10 9.0 9.3 9.8 9.8 11.6
pt7 13620 8 4.2 4.3 4.1 4.2 4.7
pt8 35307 11 11.5 14.4 11.9 12.8 16.6
dl1 30375 7 0.3 0.4 0.6 0.6 0.8
dl2 339750 19 8.9 9.2 11.2 12.6 16.3
dl3 1766250 12 37.4 35.7 38.5 51.3 75.2
dl4 2466625 16 125.5 118.0 120.7 151.9 179.4
dl5 1800000 18 54.9 55.5 57.1 65.6 83.5
dl6 4478976 11 266.5 267.7 267.3 294.2 352.0
dl7 3779136 13 333.1 337.7 334.7 359.4 417.9
gr1 600 11 0.0 0.0 0.0 0.0 0.0
gr2 4604 17 0.0 0.1 0.1 0.1 0.2
gr3 30320 23 0.4 0.6 1.2 1.0 1.4
gr4 181428 29 3.6 3.9 8.1 7.5 9.9
gr5 1016072 35 28.5 25.9 37.3 52.3 63.6
gr6 1460128 41 51.7 63.7 78.2 90.4 190.5
gr7 1975008 47 136.6 237.8 277.8 206.3 746.3
gr8 2582788 53 574.9 1187.4 1346.0 757.7 3751.0
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Figure 9: Size of the PDB representations in bytes for the
“Pipesworld Tankage” instances.
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Figure 11: Size of the PDB representations in bytes for the
“Driverlog” instances.

The IPC4 “Pipesworld Tankage” domain models the
problem of transporting oil derivatives through pipeline seg-
ments connecting areas that have limited storage capacity
due to tankage restrictions for each product. The additional
constraints made explicit by the preprocessor state that for
any pipe, there can only be one batch that is the nearest to
a source area and one batch that is the nearest to a destina-
tion area. The analysis component generated single PDBs
for all instances. The PDBs are relatively small and retain
a good amount of the original problem’s constraints. This
shows in the sizes for the different representations (see Fig-
ure 9) where BDD outperforms PH by between one to two
orders of magnitude, with the LOES versions besting this by
another order of magnitude.

On the time dimension (see Figure 10), LOES only per-
forms marginally worse than PH while the IR variants take
about twice as long. BDD performance varies considerably
and performs a good order of magnitude worse than PH and
the LOES encodings.

Driverlog

“Driverlog” is an example where our preprocessing fails to
uncover any explicit constraints over those encoded in the
multi-valued variables. This results in PDBs comprising of
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Figure 13: Size of the PDB representations in bytes for the “Grip-
per” instances.

all possible abstract patterns with very low quality. It is
also a domain that is quite amendable to BDD representa-
tion. This shows in the space comparison (see Figure 11),
where the BDD shines on the large, multi-million pattern
instances (that are scarcely subdivided by the IR represen-
tation), actually taking up an order of magnitude less space
than on the smaller instances. Remarkably the IR LOES
variants still manage to outperform PH by a factor of two to
three. LOES predictably performs worse as its packed store
is nearly the same size as PHs (the difference stems from the
fact, that it can omit storing the largest equal-value subset of
patterns in PBD and denote the corresponding value as its
default). The runtime comparison (see Figure 12) paints a
similar picture, as the representations’ look-up cost is simi-
lar to the“Pipesworld Tankage” instances.

Gripper

The “Gripper” domain models a mobile robot that can use
its two grippers to pick up and put down balls, in order to
move them from one room to another. In this domain, the
preprocessor picked up the implicit constraint that no object
can be in both grippers at the same time. The variable se-
lection logic constructed PDBs comprising of the fluents for
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Figure 14: Relative search time as a multiple of PH for the “Grip-
per” instances.

the gripper states, the location of the robot and goal quali-
fied balls. A rule was in place that would split PDBs as the
abstract state space grew too large. As the multiple result-
ing PDBs were not additive they were combined by taking
the maximum of their heuristic values. This happened be-
ginning with instance 6, mitigating the growth of the PDBs
(see Figure 13).

“Gripper” is one of the domains where BDDs are known
to perform extremely well. Still it outperformed IR cLOES
in storage efficiency only in instances 5 and 8, when the
PDBs where about 1 and 2.6 million patterns in size. PH
consistently required around 2 orders of magnitude more
storage on the larger instances. The runtime comparison
(see Figure 14) paints an interesting picture. For the smaller
PDBs, PH is about 1.3 (LOES) to 5 (IR cLOES) times faster
than the LOES versions. As the pattern databases grow the
advantages from the quick addressing shrink considerably,
probably due to increased cache misses. Again the more
complex matching in BDDs is a good order of magnitude
slower.

15-Puzzle

The 15-Puzzle is a classic combinatorial search benchmark.
It is also a token problem for PDB heuristics. Our prepro-
cessor here manages to extract constraints ensuring that no
two tiles can occupy the same position. Also the analy-
sis component manages to extract multiple, additive PDBs
by excluding the blank and selecting tiles up to its pattern
space size limit (up to 6 variables in this domain, hence an
additive 6-6-3 PDB). Note that these PDBs are still notice-
ably weaker than the handcrafted and blank-compressed ad-
ditive PDBs typically employed in domain-specific sliding-
tile puzzle solvers. We run our planner over Korf’s 100
random instances (Korf 1985), which are challenging for
domain-independent planners (e.g., the state-of-the-art Fast
Downward planner using merge & shrink heuristic with an
abstraction size of 10K nodes cannot solve the easiest in-
stance within 96 GB of RAM). It is also a permutation
problem, which is known to be problematic for the type of
redundancy-elimination techniques employed by LOES and
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Figure 15: Planning time (parsing, analysis, PDB creation and search) over Korf’s 100 instances of the 15-puzzle. I23 stands for instance
23. If a representation has no bar for an instance, it failed to terminate successfully in 30 minutes.

BDDs. We ran all instances with a hard 30 minute cut-off

Table 2: Number of instances solved, PDB size and relative search
speed over Korf’s hundred 15-puzzle instances.

Rep. #solved size (MB) tx
tPH

PH 91 20.0 1.00
BDD 40 117.6 0.11
IR LOES 82 11.4 0.36
IR cLOES 70 9.6 0.23
LOES 68 11.2 0.49

timer. Table 2 gives the results. Here PH fared the best,
thanks to its very quick PDB lookups. While the LOES
variants offered a noticeable relative reduction in PDB size,
the absolute differences were relatively small. The results
would probably change if the analysis component allowed
larger PDBs (to the detriment of the BDD based representa-
tion). Figure 15 gives an overview of the total planning time
over all hundred instances.

Conclusion and Future Work

We believe techniques such as LOES offer exciting oppor-
tunities to better exploit dynamic programming and other
memoization techniques in domain-independent planning.
The approach allows for quite efficient representation of
strong, precomputed heuristics. The very basic domain anal-
ysis we employed in our evaluation can only give a hint of
the potential for ad-hoc abstraction in heuristic search. Of
interest is also LOES’ impedance match with BDDs. The
inverse relation representation straightforwardly allows to
adaptively interchange BDD and LOES based representa-
tions of state-sets. In this way, a domain-independent plan-
ner can leverage the superior efficiency of BDDs in appro-
priate domains while mitigating their lack of robustness by
falling back to a LOES-based representation.
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