
Anytime Heuristic Search: Frameworks and Algorithms

Jordan Thayer and Wheeler Ruml
〈 jtd7, ruml 〉 at cs.unh.edu

The University of New Hampshire
Department of Computer Science

Durham, NH 03824 USA

Abstract

Anytime search is a pragmatic approach for trading solution
cost and solving time. It can also be used for solving prob-
lems within a time bound. Three frameworks for construct-
ing anytime algorithms from bounded suboptimal search have
been proposed: continuing search, repairing search, and
restarting search, but what combination of suboptimal search
and anytime framework performs best? An extensive em-
pirical evaluation results in several novel algorithms and re-
veals that the relative performance of frameworks is essen-
tially fixed, with the repairing framework having the strongest
overall performance. As part of our study, we present two en-
hancements to Anytime Window A* that allow it to solve a
wider range of problems and hastens its convergence on opti-
mal solutions.

Introduction

Many applications of heuristic search limit the re-
sources available for problem solving. Anytime heuristic
search (Boddy and Dean 1989) is particularly appealing
when time is limited. An anytime algorithm can be run so
that it returns an improving stream of solutions, eventually
converging on an optimal solution. This allows the anytime
algorithm to gracefully expand to consume all of the allotted
time, using it to produce a solution of greater quality than the
initial solution.

Many anytime search algorithms can be viewed as general
frameworks for extending bounded suboptimal searches into
anytime algorithms. Although these conversion techniques
can be applied to any bounded suboptimal search, previous
evaluations focus on weighted A* (Pohl 1970). Other al-
gorithms deserve consideration, particularly those that out-
perform weighted A* on common benchmarks. We natu-
rally expect this improved performance to extend to anytime
search frameworks.

Previous comparisons of the anytime algorithms focus on
a limited range of spaces. In their paper on anytime repairing
A* (ARA*), Likhachev, Gordon, and Thrun (2003) restrict
their evaluation to two domains, the robotic arm and dy-
namic robot pathfinding. These benchmarks have very high
branching factor and relatively few duplicate states, thus rep-
resenting a small fraction of the space of possible problems.
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Other evaluations have erred in the other direction, focus-
ing primarily on domains which are trees of bounded depth
where each leaf is a solution (Aine, Chakrabarti, and Kumal
2007). Both types of benchmarks are required for a realistic
impression of the performance of an algorithm.

Hansen and Zhou (2007) argued that the approach taken
by ARA* is flawed. They note that decreasing weights
and delaying the expansion of duplicate states is of lim-
ited utility and can be harmful. Delaying duplicates can in-
crease the cost of the solution found during an iteration of
ARA*, potentially increasing the time to converge on opti-
mal solutions. While delaying duplicates is only of moder-
ate value in the benchmarks used by Likhachev, Gordon, and
Thrun (2003), it is enormously important for some domains
such as pathfinding in grids, where duplicate handling deter-
mines performance. The implementation of weight sched-
ules in Hansen and Zhou (2007) was different from the one
suggested by Likhachev, Gordon, and Thrun (2003). ARA*
uses the minimum of the decremented weight and a cal-
culated lower bound, while the evaluation in Hansen and
Zhou (2007) only considers the decremented weight.

Richter, Thayer, and Ruml (2009) compare restarting
weighted A* against anytime heuristic search and anytime
repairing A*, as well as several other state of the art any-
time algorithms on a wide variety of benchmarks including
planning, the sliding tile puzzle, the robotic arm domain,
and a synthetic tree. Unfortunately, this comparison is lim-
ited to weighted A* based anytime searches as well as beam
searches and anytime window A*.

This paper fills in these holes in the empirical analyses
of anytime search algorithms. We test the performance of a
wide variety of bounded suboptimal algorithms within all
three general anytime search frameworks across eight di-
verse benchmarks in an attempt to study their general per-
formance. We compare these bounded suboptimal based
anytime searches against each other as well as beam stack
search and anytime window A*. We introduce two improve-
ments to anytime window A*, allowing it to solve problems
it previously could not.

After discussing the three frameworks for converting
bounded suboptimal algorithms into anytime searches, we
discuss the bounded suboptimal algorithms themselves. We
present an evaluation showing that although there are large
differences in the underlying search algorithms, the rela-
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Figure 1: Impact of ignoring duplicates

tive performance of the frameworks is essentially fixed. We
compare the framework based algorithms against other state
of the art anytime search algorithms such as anytime window
A* and beam stack search. On the test domains considered,
the repairing framework is best.

Frameworks

There are three previously proposed frameworks that con-
vert bounded suboptimal search algorithms into anytime
searches. We may choose to continue the search after the
first solution is found without changing anything at all, we
may continue after an initial solution is found and reconfig-
ure the search, or we could also choose to simply run several
bounded suboptimal search algorithms in succession.
Continuing a bounded suboptimal search beyond the
first encountered solution was introduced by Hansen and
Zhou (2007). If the search is continued it will produce a
stream of ever improving solutions, eventually finding the
optimal solution. Continued search is sensitive to the config-
uration of the underlying bounded suboptimal search. There
will naturally be some sensitivity to the underlying algo-
rithm for all frameworks, but unlike repairing or restarting
search, continued search never reconsiders the initial con-
figuration of the underlying algorithm. As a result it is very
reliant on pruning for performance. Thus, it performs best
in domains with strong admissible heuristics where greedy
search produces good solutions, and many nodes can be
pruned once an incumbent solution is in hand. It has dif-
ficulties in domains where there are many cycles because it
cannot ignore improved paths to an already visited state. Al-
though the underlying bounded suboptimal algorithms may
be able to ignore duplicate states while still respecting a
suboptimality bound (Ebendt and Drechsler 2009), ignoring
these nodes during a continued anytime search would pre-
vent us from converging on optimal.
Repairing searches differ from continued searches in two
ways. First, they have a special way for handling duplicate
nodes. When repairing search encounters a better path to
a state which it has already expanded, it places this state
onto a list of inconsistent nodes rather than immediately
re-expanding it. These nodes will not be selected for ex-

pansion until the next iteration of repairing search. While
this may decrease the quality of the solution found on any
iteration of repairing search, it leads to improved perfor-
mance in domains with many cycles by decreasing the time
it takes to find a solution on any iteration, as seen in Fig-
ure 1. Here, we show the performance of A∗

ǫ (Pearl and Kim
1982) and weighted A* (Pohl 1970) on a grid pathfinding
problem. The y-axis represents the number of nodes gen-
erated while finding a solution on a log scale. The x-axis
represents the parameter that the algorithm was run with.
Algorithms with ’dd’ appended do not re-expand duplicate
states, instead they ignore duplicate states whenever they are
encountered. While this can decrease solution quality, and
even quality bounds for some algorithms, ignoring dupli-
cates allows both of these algorithms to solve the problems
while generating orders of magnitude fewer nodes. In the
event that ignoring duplicate nodes loosens the desired sub-
optimality bound, as it does in every algorithm but weighted
A*, the anytime nature of the framework will ensure that we
still converge on an optimal solution, but the speedup will
still extend to every iteration of the search.

Second, repairing searches rely on parameter schedules.
These are typically constructed by selecting a starting pa-
rameter and a decrement for the parameter, although they
may also be specified by hand. Every time a new solution
is encountered the parameters are updated. Either they are
replaced by the next set on the schedule, or they are replaced
by a dynamic lower bound on solution quality 1, whichever
is tighter. There are now two parameters that need tuning:
the starting weight and the decrement. Set the decrement to
be too large, and the next iteration may never finish; how-
ever, if the decrement is too small, the dynamic bound will
always be used for the next iteration, and this may not pro-
vide a large enough step towards optimality. Changing the
parameters used by the search requires updating the evalua-
tion of every node the search is currently considering. While
touching every node will take time, it also allows for the im-
mediate pruning of every node that cannot lead to an im-
proved solution. This considerably reduces the size of the
open list and thus reduces overhead.

Restarting is an incredibly straightforward approach to con-
verting bounded suboptimal search into anytime search. The
underlying algorithm is run with progressively tightening
suboptimality bounds, each time restarting from the initial
search state. Heuristic calculations and the best path to a
state from the root are stored across iterations. Like repair-
ing search, restarting can choose to ignore duplicates dur-
ing any iteration, save the last. Restarting allows these any-
time algorithms to reconsider decisions made early on in the
search and avoid a problem called low-h-bias. The weight-
ing in weighted A* causes nodes with low cost to go es-
timates to look more desirable than they may actually be.
As a result, weighted A* may spend a large amount of time
searching portions of the space where there are no or very
few good solutions. Not every domain is structured so that
low-h-bias causes problems; we observed it in only one of
our benchmarks, vacuum planning. Further, not every al-

1cost of incumbent divided by the minimum fA∗ of any node
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gorithm is prone to low-h-bias. This property is unique to
weighted searches such as weighted A*. These algorithms
rely on a single heuristic, h, and their performance hinges
on placing more importance on h than on the cost of arriv-
ing at a node. Other bounded suboptimal algorithms, A∗

ǫ for
example, do not do this, and thus do not suffer in domains
with low-h-bias.

Bounded Suboptimal Algorithms

We briefly describe each algorithm and their performance
relative to one another both within and without the anytime
frameworks. We will see that although the algorithms have
very different behaviors as bounded suboptimal searches,
this rarely changes the relative performance of the frame-
works.

Weighted A* (Pohl 1970) alters the node evaluation func-
tion of A* (Hart, Nilsson, and Raphael 1968) by placing
additional emphasis on the heuristic evaluation function h,
making it appear more important than the cost of arriving
at a node, g. That is, the cost function of A*, fA∗(n) =
g(n) + h(n) becomes fwA∗(n) = g(n) + w · h(n). Thus it
tends to prefer nodes that appear to be closer to a goal.

Revised Dynamically Weighted A* (Thayer and Ruml
2009) attempts to extend this approach by using two mea-
sures of goal proximity: h, and d, the estimated num-
ber of steps to the goal. As nodes progress towards the
goal, the weight is steadily decreased. Revised dynami-
cally weighted A* sorts nodes in order of frdwA∗ = g(n) +

max(1, w
d(n)

d(root))h(n). Revised dynamically weighted A*

was constructed to correct a flaw in the original implemen-
tation of dynamically weighted A* (Pohl 1973). In the orig-
inal formulation, weight was decreased based on the depth
of a node, implicitly assuming that every step away from the
root is one towards a goal. While this is true in the trav-
eling salesman problem, the benchmark used in the original
paper, it doesn’t hold for many common benchmarks includ-
ing permutation puzzles and pathfinding.
A

∗

ǫ (Pearl and Kim 1982) also considers the distance of
a node from a goal when deciding which to expand next.
Rather than incorporating this information into the evalua-
tion function, A∗

ǫ maintains two orderings on the nodes. In
the first ordering nodes are sorted in order of fA∗ , forming
the open list. The node at the front of the open list is the one
with minimum fA∗ . In order to select nodes that are close
to a goal, A∗

ǫ maintains a list of nodes sorted on d, called
focal. Focal contains nodes that we can prove lie on a path
to a w-admissible solution, and these are sorted in order of
d. The node at the front of focal is expanded until a solution
is found.

AlphA* (Reese 1999) also uses the idea of maintaining mul-
tiple orderings over the nodes. Nodes are stored using one
of two cost functions. Either they are stored with their fA∗

values or their fwA∗ value. If a node’s parent has an h value
greater than the last node expanded, it is stored with fwA∗,
otherwise it is stored with fA∗.

Aǫ (Ghallab and Allard 1983) is very similar in
form to A∗

ǫ . It starts by expanding n such that
argminn d(n) : fA∗(n) ≤ w · fA∗(bestf), exactly the

Bound 1.5 1.75 2. 3. 4. 5.

wA* 4.1 3.4 2.8 3.7 3.4 2.4
A∗ǫ 50.4 44.8 28.5 1.8 1.1 0.6
Clamped 8.3 10.1 11.6 67.0 85.6 85.8
AlphA* 126.6 140.1 181.6 282.2 309.3 315.0
rdwA* 374.1 316.9 245.1 101.0 84.8 128.1
Aǫ 911.4 857.7 683.2 624.9 597.4 614.3

Figure 2: CPU usage as a factor of EES

node that A∗

ǫ expands every iteration. Aǫ commits to this
node, not unlike the way realtime search algorithms commit
to a node, and repeatedly follows the best child from each
expansion until a goal is found or until the best child would
not be within the bound. If the best child would be outside of
the bound, Aǫ must either abandon its commitment, expand-
ing n such that argminn d(n) : fA∗(n) ≤ w · fA∗(bestf ),
or it may instead choose to persevere, expanding the node
with minimum fA∗ until the desired child is within the
bound, continuing along this path once the lower bound on
optimal solution cost has been sufficiently raised.

Clamped Adaptive (Thayer, Ruml, and Bitton 2008) is
a simple technique for using an inadmissible cost function

ĥ to guide our search while maintaining bounded subopti-
mality. We merely restrict the estimated cost of a solution

traveling through a node, f̂(n) = g(n) + ĥ(n) to never be

larger than w · fA∗ as in fca(n) = min((w · fA∗), f̂(n)).
In many domains, clamped adaptive search can be too con-
servative, so we place additional weight on the inadmissible

heuristic to correct for this as in f̂ ′(n) = g(n) + w · ĥ(n).
Although there are many ways to construct accurate but po-
tentially inadmissible heuristics, we use temporal difference

learning (Sutton 1988) to construct ĥ from h.

Explicit Estimation Search (Thayer and Ruml 2010)
There is one significant drawback to clamped adaptive
search: it cannot make use of search distance information
provided by d unless it is used in the construction of ĥ. Yet
the stated goal of bounded suboptimal search is to find a so-
lution within the bound as quickly as possible, so it seems
necessary to rely on d to form an appropriate search order.

Explicit Estimation Search (EES) uses f̂ to estimate the true
cost of a solution through a node and a corrected version of
d to estimate the search effort remaining beneath a node.

Relative Performance

The bounded suboptimal algorithms we just introduced were
constructed to take advantage of additional sources of infor-
mation to address problems with previous search algorithms,
or to do both. Their performance differs, sometimes greatly,
between domains. We would expect the performance of the
bounded suboptimal searches to impact the performance of
an anytime algorithm based on them. We now summarize
the relative performance of the bounded suboptimal algo-
rithms, on their own and within anytime frameworks.

Figure 2 summarizes the relative performance of these
bounded suboptimal algorithms across the domains in the
evaluation. Here, we present the performance of all other
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Continued Restarting Repairing

wA* 263.38 288.45 298.55
A∗

ǫ 227.48 220.44 260.82
rdwA* 11.06 286.66 298.41
Clamped 279.95 264.46 298.28
EES 227.80 295.81 297.23

Figure 3: Performance score on life grids

bounded suboptimal algorithms as a factor of the perfor-
mance of EES, with a value of two in a column meaning that
an algorithm consumed twice as much CPU time on average
across all instances for all domains at that particular subop-
timality bound. The number is calculated by comparing the
runtime of the algorithm with the runtime of EES on a per
instance basis. We then take the average all of the instances
within a domain, and then take the average value across all
domains. We do this to avoid unfairly weighting any given
domain, since we have a different number of instances for
each domain in our study. We clearly see that, with the ex-
ception of A∗

ǫ with suboptimality bound of 5, all algorithms
take more time for all suboptimality bounds than explicit es-
timation search does. See Thayer and Ruml (2010) for a
more thorough comparison of these algorithms.

Despite the potentially large differences in the underlying
best first search algorithms, with a given algorithm, the rela-
tive performance of the frameworks is only rarely affected
by the choice of bounded suboptimal search, as demon-
strated in Figure 3, where we see that, without exception,
repairing search outperforms all other approaches, and that
continued search is almost always the worst approach. In
Figure 3 we’ve reduced the performance curve of an any-
time algorithm, in this case the CPU time consumed on ver-
sus solution quality, into a single value, the area beneath
that curve. Time ranges between 0 and 300 seconds, and
the quality of a solutions ranges between 0 and 1. Quality
is computed by dividing the cost of the best solution found
by any algorithm on an instance by the cost of the current
solution of the anytime algorithm. Frameworks are repre-
sented as columns, and best first searches as rows. We omit
the results of AlphA* and Aǫ because they fail to find an
initial solution to many of the benchmarks. We show the re-
sults for Life Grids, but other domains were similar. For all
underlying algorithms, the repairing framework performed
best. Note that not only did it perform best, but the perfor-
mance of algorithms within the repairing framework is very
similar. For example, clamped adaptive search consumed
tens of times more CPU time than EES for any suboptimal-
ity bound. However, when we evaluate them as the center-
piece of an anytime algorithm, their performance becomes
quite similar. For the domains in our evaluation the con-
tinued framework performed worse than both the restarting
and the repairing framework, and the repairing framework
was always better than the restarting framework.

The ordering of frameworks occasionally changes when
using clamped adaptive search as the underlying best first
search. Its continued search variant is much stronger when
compared to other continued search algorithms. Continued
searches do not alter their parameters during the course of a

run, but clamped adaptive search learns a correction to the
admissible heuristic over the course of the search, effectively
altering the algorithm’s initial parameter settings. It avoids
one of the largest drawback of the continued search frame-
work, and this explains its surprisingly good performance.
It still doesn’t pay special attention to duplicate nodes, and
this is why it is not better than the repairing framework.

Alternate Approaches

There are anytime searches that are not frameworks for
extending bounded suboptimal algorithms into anytime
searches. These include beam stack search, BULB, anytime
window A*, and branch and bound. Branch and bound per-
forms poorly for all of the benchmarks problems presented
here excluding the TSP. The traveling salesman problem is
the only domain we examined with a fixed depth. As a re-
sult of this fixed depth, depth first approaches like branch
and bound can find an incumbent solution quickly, and begin
pruning starting the process of converging on an optimal so-
lution. When the safety net of a fixed depth is removed, find-
ing any solution with a depth first search is extremely chal-
lenging, and converging on an optimal solution may happen,
but it will take a remarkably long time. For example for
the 4-connected grid pathfinding problems we considered,
A* will solve the problem in less than 2 seconds for all in-
stances we considered, while branch and bound fails to find
any solution within the first five minutes. This isn’t simply
a problem with one domain, it happens in every domain in
our evaluation save the TSP. As a result, we omit discussion
of it, instead focusing on the more general algorithms which
can solve problems of bounded and unbounded depth.

Beam Searches

Beam search is a memory limited search where a set num-
ber of nodes at each depth are expanded. The beam is typ-
ically some form of ’leaky’ priority queue, where the best
elements that fit within the size limit are held. When a new
element is added to the beam, if the beam is at capacity, the
worst element is discarded. Since nodes are discarded be-
fore a solution is found, the search is incomplete, but it can
be extended into a complete anytime search in several ways.

Beam stack search (Zhou and Hansen 2005), keeps track
of the elements that are discarded from each beam at each
depth. Whenever a node is discarded, we make a note of it.
When we have exhausted all of the nodes at a certain depth,
backtracking begins. When backtracking to a layer, we see if
any nodes were discarded. If no nodes were discarded from
the beam, we continue backtracking. If some nodes were
discarded, we regenerate the beam by re-expanding all of
the nodes in the previous beam. This time, rather than only
holding on to the best nodes, we hold on to the best nodes
that are at least as bad as the best previously discarded node.
When repopulating the beam, we still keep track of the best
node that is discarded. Eventually, we will exhaust all beams
right up to the root layer, at which point we know that the
search has returned an optimal solution.

BULB (Furcy and Koenig 2005) is a blending of limited
discrepancy search (Korf 1996) and beam search that aims
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Figure 4: Use distance instead of depth in window A*

to correct the incompleteness of beam search. Limited dis-
crepancy search is a tree based search where we search from
the start of the search space towards the leaves but limit the
number of times we can choose a node not recommended
by the heuristic. Initially, limited discrepancy search will
proceed greedily towards a goal, but as the allowed num-
ber of discrepancies increases, more of the space is explored
until eventually the entire space is considered. It can also
be extended to graph search. Rather than maintaining fA∗-
boundaries as beam stack search, BULB increases the num-
ber of discrepancies allowed during an iteration, and even-
tually it will exhaust the search space. Beam stack search
consistently outperformed BULB in our evaluation.

Window A*
Anytime window A* (Aine, Chakrabarti, and Kumal 2007)
is an extension of window A* where window A* is run with
iteratively increasing window sizes. Window A* is an in-
complete search where A* is run on a sliding window of
nodes in the search space, instead of on an open list consist-
ing of every node ever generated but not yet expanded. Re-
stricting the comparisons between nodes to nodes a similar
distance away from the root makes the comparisons fairer
while searching on a restricted set of nodes typically im-
proves the speed with which we can find solutions.

d-Fenestration When we say that window A* assumes
nodes at a similar depth are similarly informed, what we

mean is that it assume their heuristics are similarly accurate.
Large heuristics belong to nodes that are very far away from
the goal, and therefore seem more likely to be inaccurate
than nodes with small heuristic values. It has been previ-
ously noted that the depth of a node does not directly trans-
late into the distance of that node from a goal, even in best
first search (Thayer and Ruml 2009). We use an estimate of
distance to goal, d, to form the window of window A* rather
than the node depth, a technique we call d-Fenestration. Us-
ing d instead of depth requires a minor change to the al-
gorithm. Unlike depth, which grows over the course of a
search, d should decrease as new nodes are generated. This
may not always be true since d is a heuristic estimate of the
distance to a goal for most of the domains in our evaluation.
We are interested in the smallest d that the search has ever
seen rather than the largest depth. This changes how we de-
termine if a node is within the current window. Nodes are
within the window if they have d values that are up to the
window size larger than the smallest d we’ve ever seen, as
opposed to up to the window size shallower than the deepest
node we have ever seen.

Scaling Windows Selecting an appropriate window size
for the iterations of anytime window A* is key in obtain-
ing reasonable performance. For some domains, such as the
knapsack problem, window A* is guaranteed to find a so-
lution for any window size. All nodes have solutions be-
neath them, so it is impossible for the window to only con-
tain nodes with no solution beneath them. There are also no
cycles in the standard encoding, so it is impossible for the
algorithm to see nodes it has already generated via a better
path, meaning the window can never be exhausted. When
these properties do not hold there are many window sizes
that find no solution. Typically these are smaller windows,
so the question of how to grow the window to the appropri-
ate size naturally arises.

To solve this problem, we grow the window rapidly so
long as no solution is found, and become more cautious in
growing the window as solutions begin to stream in. We
maintain two values, a window step size and a current win-
dow size, both initialized to 1. At every iteration, we add the
window step size to the current window size to produce a
new window. In every iteration where no solution is found,
the window step size increases by one, but if we do find a so-
lution, the step size is set back to one. So long as no solution
is found, the size of the window continues to grow rapidly
until the first solution is encountered. Then, we back off and
increase the window size slowly until the solution stream
dries up. We also considered using a geometric progression
for window step size, but found this was too aggressive.

The top panel of Figure 4 compares the performance of
the old and new approaches to window search on pathfind-
ing in a gridworld. The x-axis represents the time used by
the algorithms in log10 scale. The y-axis represents solu-
tion quality, where the quality of a solution is calculated by
dividing the cost of the best solution found across all algo-
rithms in that plot by the cost of the solution returned by
the algorithm. This was the same performance metric used
in the most recent IPC. We show 95% confidence intervals
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Figure 5: Performance on permutation puzzles

on the quality of the solution. d-fenestration significantly
improves the speed at which the algorithm converges. In
other domains, such as dynamic robot pathfinding, shown
in the lower panel, the difference is not convergence, but if
instances can be solved.

Comparison of Anytime Algorithms

We now present an empirical evaluation of the anytime al-
gorithms across a set of common benchmark domains. All
algorithms were implemented in Objective Caml and com-
piled to native binaries on 64-bit Intel Linux systems. Al-
gorithms with initial suboptimality bounds were sampled
at weights of 5, 3, and 2 while beam searches were sam-
pled with beam widths of 500, 100, and 50. We show only
the best parameter setting in the results below. For clarity,
we reduce the number of algorithms shown in each plot.
We restrict ourselves to the strongest window search, d-
fenestration with scaling, the strongest beam search, beam
stack search, and the most robust bounded suboptimal search
across the three frameworks, EES. In this case, we are mea-
suring robustness in terms of average performance across
all of the benchmarks we considered. As we saw in Fig-
ure 2, no bounded suboptimal algorithm outperforms EES,
with the exception of a single setting of A∗

ǫ .

Sliding Tile Puzzle We examined algorithm performance
on the 15-puzzle using the instances from Korf (1985), us-
ing Manhattan distance to guide search. Figure 5 shows the

results for this domain. We can see that d-fenestrated win-
dow A* is the best algorithm, followed by restarting and
repairing anytime algorithms. The window-based approach
performs very well in this domain because of the structure of
the problem. There are few cycles and no dead-ends in tiles,
so it is rare that algorithms based on window A* will fail to
find a solution in a given iteration. Restarting and repairing
are comparable for two reasons: First, node generation is
very cheap in this problem, so the extra effort of restarting
search doesn’t add up very quickly, and second, solutions
are shallow, so there is not much repeated work.

Pancakes Following (Thayer and Ruml 2010), we also per-
formed experiments on another permutation problem, the 10
Heavy Pancake puzzle. Like the original pancake puzzle, the
goal is to arrange a permutation of numbers from 1 to N into
an ascending sequence. Each pancake has a weight, equal to
its index. The cost of a move is the sum of the indexes of
pancakes being flipped.

Figure 5 shows the results for the heavy pancake puzzle.
Initially there is a large difference between the quality of so-
lutions returned by d-fenestration and those returned by the
bounded suboptimal based algorithms, a result of overcom-
mitment by the window A* based algorithm. A best first
algorithm will be able to go back and reconsider all previ-
ous decisions at any point, while window based approaches
must wait until the end of an iteration before being allowed
to reconsider a node outside of the window’s scope. Beyond
this large early gap, the algorithms perform quite similarly,
except for beam stack search, which lags behind.

Grid Worlds Following (Thayer and Ruml 2010) we tested
on grid pathfinding problems using the “life” cost function
as well as the standard unit cost variant. We show results
over 20 instances of 2000 by 1200 grids, allowing for move-
ment in each of the cardinal directions. The grids were gen-
erated by blocking 35% of the cells randomly. The start is
in the lower left, and the goal is in the lower right.

In the leftmost panel of Figure 6 we see that the algo-
rithms separate into roughly two classes, those that eventu-
ally converge to an optimal solution, and those that failed to
solve the problem optimally within the time limit. Both of
the algorithms that converge to optimal reconsider their ini-
tial parameter settings. We cannot simply select better initial
parameters. Altering the parameter presumably means low-
ering it, increasing the time taken to find an initial solution
and harming the performance of the algorithms. Addition-
ally, the question of how to best set parameters for anytime
algorithms is still open. For the unit cost problems, shown
in the center panel, the algorithms are still separable into
two groups: continued search and everyone else. Contin-
ued search is having difficulty handling the large number of
duplicate nodes in this space.

Dynamic Robot Navigation This domain follows that used
by Likhachev, Gordon, and Thrun (2003). The goal is to
find the fastest path from the starting location of the robot to
some goal location and heading by altering the heading and
velocity of the robot. We perform this search in worlds that
are 500 by 500 cells in size. To add challenge to these prob-
lems, we scatter 75 lines with random orientations across the
domain. Each line is up to 70 cells in length.
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Figure 6: Performance in pathfinding

The dynamic robot navigation problem is fraught with
dead ends, and the performance of d-fenestration and beam
stack search suffer as we see in the rightmost panel of Fig-
ure 6. d-fenestration takes much longer than the other al-
gorithms to find an initial solution, while beam stack search
never converges. Despite this initial handicap, d-fenestration
does eventually find some of the best solutions.

Traveling Salesman Following Pearl and Kim (1982) we
test on the traveling salesman problem. Each node repre-
sents a partial tour with each action representing the choice
of which city to visit next. We used the minimum spanning
tree heuristic for h and the number of cities remaining for d.

We see that d-fenestration performs relatively well in the
leftmost and center panels of Figure 7, taking longer to find
the first solution, but converging very quickly, finding bet-
ter solutions than other approaches in the Unit square vari-
ant. This is because window A* algorithms lack any form of
heuristic focus and the greedy behavior that comes with it.
They are still expanding nodes in A* order, they just happen
to be working on a subset of the nodes in the space at any
given time. As a result, d-fenestration takes much longer to
find its first solution than the other algorithms. Once it does,
it converges quickly. This suggests that we should look at
the expected cutoff time for anytime algorithms as well as
the domain properties when selecting which algorithm to use
on a particular problem.

Vacuum World In this domain, inspired by the first state
space depicted in Russell and Norvig (2010), a robot is
charged with cleaning up a grid world. Movement is in the
cardinal directions, and when the robot is on top of a pile
of dirt, it may remove it. Cleaning and movement have unit
cost. We use the minimum spanning tree of the robot and
dirt locations plus the number of piles of dirt as an admissi-
ble h. Search distance is estimated by finding the length of
a greedy solution on a board with no obstacles. We consid-
ered making h and d equivalent, but found that this produced
poor performance for algorithms which relied on d. We used
instances that are 500 cells tall by 500 cells wide, each cell
having a 35% probability of being blocked. We place twenty
piles of dirt randomly in unblocked cells and ensure that the
problem can be solved. We show 95% confidence intervals

averaged over 100 instances.
The right panel of Figure 7 shows the results in this do-

main. The algorithms separate into two groups, those based
around best first search and those that are not. The vacuum
problem has many cycles and inconsistent heuristics, which
window A* and beam based algorithms both find problem-
atic. The continued, repairing, and restarting frameworks
have been serendipitously designed to work with inconsis-
tent heuristics. These frameworks have traditionally used
weighted A* as the underlying algorithm. Weighted A*
works by weighting an admissible, and typically consistent,
heuristic. Weighting a consistent heuristic will almost al-
ways produce an inconsistent one, and as a result, most eval-
uations focus on the use of inconsistent information. The
beam and window based algorithms have seen less evalu-
ation on domains with inconsistent heuristics, and perform
poorly as a result.

Discussion

Anytime searches built from the previously proposed frame-
works were always better than the next best approach, d-
fenestration, except for the sliding tiles problem, where their
performance was comparable. d-fenestration consistently
outperforms the original implementation of Anytime Win-
dow A* as well as all beam based approaches that we eval-
uated. Best-first based anytime searches, especially in the
repairing framework, are the best choice for anytime search
for the wide variety of domains considered in our evaluation.

Restarting was not the strongest performing framework in
our evaluation. Only one of the domains in our evaluation
exhibit a strong low-h-bias, limiting the effectiveness of the
restarting approach in this evaluation. The results we present
use EES within each of the frameworks. EES has no low-h-
bias to correct for; given a large suboptimality bound, it will
attempt to greedily complete the shortest solution. In the
restarting framework, EES gets all of the additional work of
restarting, but none of the benefits of avoiding low-h-bias.

Our results make the continued framework appear more
efficient than it truly is. This is the result of using EES as
a base. EES tunes a set of parameters constantly during the
search, making reconsidering the initial parameter settings
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Figure 7: Performance on the traveling salesman and vacuum problems

less important. If we had shown continued A∗

ǫ instead, then
continued search would not have appeared to be competitive
with either restarting or repairing search.

Conclusions

We presented an extensive analysis of three frameworks for
converting bounded suboptimal heuristic search algorithms
into anytime algorithms across a wide variety of benchmark
domains. We discovered that framework has strong influ-
ence on the performance of an anytime algorithm, and that
repairing is the strongest framework in general. We intro-
duced two improvements to anytime window A* allowing
it to solve problems it previously could not, and improving
its convergence behavior. When compared to other state of
the art algorithms, including anytime beam search and our
improved anytime window A* variant, repairing searches
performed best. This is a result of its ability to gracefully
handle duplicates and its robustness in the face of domains
with dead end nodes.
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