
Computing Equivalent Transformations for Combinatorial
Optimization by Branch-and-Bound Search

Eric I. Hsu and Sheila A. McIlraith
University of Toronto

{eihsu,sheila}@cs.toronto.edu

Abstract

Branch-and-Bound search is a basic algorithm for solv-
ing combinatorial optimization problems. Here we in-
troduce a new lower-bounding methodology that can
be incorporated into any branch-and-bound solver, and
demonstraint its use on the MaxSAT constraint op-
timization problem. The approach is to adapt a
minimum-height equivalent transformation framework
that was first developed in the context of computer vi-
sion. We present efficient algorithms to realize this
framework within the MaxSAT domain, and demon-
strate their feasibility by implementing them within
the state-of-the-art MAXSATZ solver. We evaluate the
solver on test sets from the 2009 MaxSAT competition;
we observe a basic performance tradeoff whereby the
(quadratic) time cost of computing the transformations
may or may not be worthwhile in exchange for better
bounds and more frequent pruning. For specific test
sets, the trade-off does result in significant improvement
in both prunings and overall run-time.

1 Introduction
MaxSAT is an optimization problem whose theoretical and
practical importance has motivated a growing body of re-
search on exact solvers, e.g. (Li, Manyà, and Planes 2007;
Heras, Larrosa, and Oliveras 2008; Lin, Su, and Li 2008;
Ansótegui, Bonet, and Levy 2009). Solutions are variable
assignments that maximize the weight of the clauses that
they satisfy–or equivalently, by convention the goal is to
minimize the weight of unsatisfied clauses. As a discrete
optimization problem, MaxSAT is amenable to branch-and-
bound search; for this approach to work it is critical to com-
pute tight lower bounds on the weight of clauses that must go
unsatisfied upon completing a partial assignment, in order to
prune the search space below said assignment whenever the
lower bound exceeds an upper bound representing the best
solution found so far. Typically, such lower bounds have
been produced by applying resolution-like inference rules
whenever fixing a variable during search (Li, Manyà, and
Planes 2007).

Here we introduce a new framework for constructing
MaxSAT lower bounds that can be incorporated into any

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

branch-and-bound solution method. The conceptual basis
for this framework is “minimum-height equivalent transfor-
mation” (“MHET”), which derives lower bounds by opti-
mistically assuming that we can achieve full problem height,
i.e., that we can achieve the maximum score for each clause.
Making this bound non-trivial first requires an extension to
the language of MaxSAT problems, where clauses can now
give varying weights to different configurations of their vari-
ables. Then, given a particular basic problem, we can seek
a problem in the extended space of problems that is equiva-
lent in how it scores any variable assignment, but has min-
imal height. The concept of MHET originates from a for-
mal analysis of vision problems that was originally devel-
oped in the Soviet Union (in the absence of high-powered
computers!), and that was recently reviewed in the context
of relating probabilistic reasoning to constraint satisfaction
(Schlesinger 1976; Werner 2007).

The primary contribution of this paper is to adapt the
MHET framework to MaxSAT, introducing representations
and algorithms that make the framework tractable for con-
temporary problems in clausal normal form. The resulting
adaptation can be seen as a generalization of existing in-
ference procedures that aspires to produce tighter bounds.
We have also implemented the bounding technique within
the state-of-the-art MAXSATZ solver, and assessed its use-
fulness on nineteen test sets representing a broad variety of
MaxSAT challenge areas and applications. In some of these
sets, performing equivalent transformations yields an overall
improvement in both the number of prunings and the overall
runtime. In the remainder, the methodology still increases
the number of prunings, but its computational overhead re-
sults in longer overall runtimes.

Section 2 motivates and defines the notion of minimum-
height equivalent transformation for MaxSAT, while Sec-
tion 3 presents efficient algorithms for calculating problem
height and finding MHET’s to local optimality. Section 4 de-
scribes the implementation of MHET and presents empirical
results. Finally, Section 5 relates the framework to existing
research and makes concluding observations.

2 Approach
To describe our approach to computing lower bounds by
MHET, we first define the MaxSAT problem convention-
ally, and then using a graphical interpretation, with an ex-

111

Proceedings of the Third Annual Symposium on Combinatorial Search (SOCS-10)

tensional representation of clauses. We can then extend the
space of problems, and specify how a problem from this ex-
tended space can be equivalent to a given conventional prob-
lem. We then present an “equivalent transformation” process
that encodes a mapping from a conventional problem to an
equivalent extended one. Finally, we define the notion of
problem height, which serves as our minimization criterion
within the space of equivalent problems, and is the basis for
MHET lower bounds.

MaxSAT. A weighted MaxSAT problem (in CNF) is a
triple Φ = (X,F,W), where:
• X is a set of n Boolean variables. By convention we

refer to 0 as the “negative” value and 1 as the “positive.”
We will typically index members of X with the subscript
i, as in “xi ∈ X .” An assignment is a set of mappings
between variables inX and values in {0, 1}; an individual
mapping is denoted by, for example, “xi = 0.”

• F is a set of m clauses defined over X . Each clause is
a disjunction of positive or negative literals formed from
variables in X . We will typically index members of F
with the subscript a. Clause fa is satisfied by a given
variable assignment A iff it contains a literal whose vari-
able is mapped to the corresponding polarity in A.

• W ∈ (R+ ∪ {0})m associates a non-negative weight
with each clause in F . We will denote by “wa” the
weight associated with clause fa. (The approach to be
described can also easily accommodate partial weighted
MaxSAT problems, which distinguishes between hard
and soft weights–this distinction is left out of the descrip-
tion for ease of presentation.)

The score of an assignment to all the variables in a MaxSAT
problem is the sum of the weights associated with the
clauses that it satisfies. A solution to a MaxSAT problem is
a complete assignment that achieves the maximum possible
score–or rather, minimizes the weight of unsatisfied clauses.

Factor Graph Interpretation. A MaxSAT problem can
be represented as a factor graph, or a bipartite graph con-
taining two types of nodes: variables and functions. Associ-
ated with each such node is a variable or a function over vari-
ables, respectively; usually we will not need to distinguish
between variables/functions and their associated nodes in
the graph. Edges in the graph connect variable nodes to
nodes for functions in which they appear as arguments. To
interpret a MaxSAT problem Φ = (X,F,W) as a factor
graph, let X correspond to the variables in the graph, and
F correspond to the functions. Each clause fa should be
viewed as a two-valued function that evaluates to 0 if it is
not satisfied by the way its variables are assigned, and wa
otherwise. We can call the set of variables appearing as lit-
erals in a clause fa the “scope” of fa, denoted σa. Similarly,
we call the set of clauses containing literals for a variable xi
its “neighborhood,” denoted ηi.

Extensional Representation. Under the extensional, or
dual, representation, we explicitly list the value of a function
fa for each of the 2|σa| possible assignments to the variables
in its scope. Such assignments can be called “extensions” of

fa. Further, we can condition fa on an individual variable
assignment xi = val by discarding those extensions that do
not contain the assignment. In so doing, we thereby define a
new function with scope σa \ {xi}.
Example 1. Figure 1(a) shows a simple two-variable
MaxSAT problem in clausal form. Figure 1(b) depicts the
same problem as a factor graph with the clauses represented
as functions in extensional form. Conditioning the function
fc on the variable assignment x1 = 1, for example, yields
a new function defined over x2 whose value is 0 if x2 is as-
signed negatively, and 18 otherwise.

Equivalent Problems. Under the extensional representa-
tion, we can now extend our definition of MaxSAT prob-
lems from using clauses that can be represented exclusively
by two-valued functions, to arbitrary functions that can give
distinct positive or negative values to each possible exten-
sion of their arguments. That is, each function fa can now
map {0, 1}σa to the reals as opposed to {0, wa}. Where be-
fore the score of a given assignment was the sum of weights
for clauses that it satisfied, now the score is the sum of
function values according to the assignment. We can call
such problems “extended MaxSAT” problems, of which
traditional MaxSAT problems are a subclass. Two extended
MaxSAT problems Φ = (X,F) and Φ′ = (X,F ′) are
equivalent iff they yield the same score for all possible as-
signments to all the variables in X .

Equivalent Transformations. Here our interest is in ex-
tended MaxSAT problems that are equivalent to traditional
ones that we wish to solve. Given a traditional MaxSAT
problem Φ = (X,F,W), we can encode a specific equiva-
lent extended problem Φ′ = (X,F ′) by means of an equiv-
alent transformation Ψ ∈ R|X| |F | |{+,−}|. Ψ is a vector
of individual positive and negative potentials, which are
defined between variables and functions in their neighbor-
hoods, and are denoted ψ+

i,a and ψ−i,a respectively. Each such
pair of potential acts to “rescale” a function’s values by in-
structing fa to subtract ψ+

i,a from the value of each extension
wherein xi is assigned positively, and to subtract ψ−i,a from
those where it is assigned negatively. Thus, if Φ′ is the result
of applying equivalent transformation Ψ to Φ, then for each
fa ∈ F the rescaled f ′a ∈ F ′ is defined as follows:

f ′a(ext) = fa(ext)−
∑

(xi=val)∈ext

{
ψ−i,a if val is 0;
ψ+
i,a if val us 1.

(1)

Recall that because fa represents a clause that evaluates
to either 0 or wa, the expression above can be recast as the
negative sum of all potentials corresponding to the given
extension–plus wa if the extension is any of the 2|σa| − 1
that satisfy the original clause. (This perspective will be cru-
cial to the algorithms in Section 3, where we will evade the
computational expense of explicit extensional functions rep-
resentations.)

Subtracting a series of arbitrary real numbers from the
values of particular function extensions yields a transfor-
mation, but to be sure this is not necessarily an equivalent

112

Figure 1: Example MaxSAT problem, represented (a) conventionally as clauses and (b) extensionally as a factor graph. Equivalent extended
MaxSAT problem (c) under equivalent transformation Ψ, whose every pair of components ψ−i,a and ψ+

i,a appears beside the edge connecting
variable xi to function fa. (The equivalent transformation also introduces two new unary functions over x1 and x2, but these both assign a
score of 0 to any extension, and are therefore not depicted.)

one. To achieve exactly the same score for Φ′ as for Φ under
any assignment, we augment F ′ with a unary function f ′i for
each variable xi ∈ X . These serve to add back in all the
positive or negative rescalings associated with the variable,
according to how it is assigned:

f ′i({xi = val}) =
{ ∑

a∈ηi
ψ−i,a if val is 0;∑

a∈ηi
ψ+
i,a if val us 1.

(2)

(If F already contains a unary, or “unit” clause for vari-
able xi it doesn’t affect the formalism if we create two func-
tions with the same scope in F ′, or perform some sort of
special handling when implementing the algorithms in Sec-
tion 3.)

In summary, an equivalent transformation Ψ encodes two
potentials for every variable/function pair, and thus com-
prises a rescaling of all the functions (clauses) in a stan-
dard MaxSAT problem. Applying Ψ to standard problem
Φ = (X,F,W) yields the equivalent extended problem
Φ′ = (X,F ′) where F ′ = {f ′a : fa ∈ F} ∪ {f ′i : xi ∈ X},
with each function f ′a and f ′i defined as in (1) and (2). It is
simple to see that the original score under Φ equals the new
score under Φ′ for any assignment to the variables in X: if
xi is assigned positively, for example, then f ′a will subtract
ψ+
i,a from the original score for each clause fa in which xi

appears; fi will in turn add back each such ψ+
i,a.

Example 2. In Figure 1(c) the example problem under-
goes equivalent transformation Ψ, yielding an equivalent

extended MaxSAT problem. The individual potentials com-
prising Ψ appear beside the corresponding edges in the fac-
tor graph. Intuitively, the variable xi has directed function
f ′c to decrease its value by 8 if xi is assigned negatively; this
is offset by also instructing f ′a to increase its value by 8 if xi
is 0. By such means, (b) and (c) yield the same score for any
assignment to x1 and x2.

Height. The height of a function fa is its maximum value
across extensions. The height of an extended MaxSAT
problem Φ is the sum of the heights of its functions. A
minimum-height equivalent transformation for a given
MaxSAT problem is one that produces an equivalent prob-
lem whose height is no greater than that of any other equiv-
alent problem. The height of a problem is an upper bound
on the maximum score that can be achieved by any assign-
ment to its variables; so the motivation for finding minimum-
height equivalent transformations is to tighten this bound.

Example 3. The height of the regular MaxSAT problem in
Figure 1(b) is 12 + 6 + 18 = 36; here we optimistically as-
sume that we can accrue the maximum score for each clause,
though in reality this cannot be done consistently by a single
assignment to all the variables. In contrast, the height of the
extended problem (c) is 10 + 10 + 10 = 30. In fact, 30 is
the minimum height across all problems equivalent to (b), so
Ψ is a minimum-height equivalent transformation. (In fact,
the height of (c) is a tight upper bound on the maximum
score achievable for (b): the score of 30 corresponding to

113

{x1 = 1, x2 = 1} is maximal across assignments.)

In summary, we use the height of a problem to bound the
maximum achievable score for a problem from above. Given
a particular standard MaxSAT problem, then, we can con-
sider the space of equivalent extended problems, and aspire
to find one yielding the tightest possible upper bound, by
minimizing height. The difference between the sum of all
clause weights in the original problem and the height of the
chosen equivalent problem thus comprises a lower bound on
the amount of weight that will have to be left unsatisfied by
any assignment to the problem’s variables. This constitutes
a new lower-bounding technique that can be applied directly
to any branch-and-bound backtracking MaxSAT solver.

3 Algorithms
Our overall goal of providing height-based lower bounds
to branch-and-bound MaxSAT solvers requires efficient al-
gorithms for calculating function heights, and for pursuing
minimum height equivalent transformations. To calculate
heights in extended problems, we sidestep the inherently ex-
ponential cost of representing functions extensionally. For
finding MHET’s we apply an approximate algorithm that
circumvents the inherent NP-completeness of the task (if
optimal height-minimization could be done in polynomial
time, then so could SAT, because any satisfiable problem
has a minimum-height equivalent problem whose height is
the number of clauses.)
Algorithm 1: LOWER-BOUND-BY-MIN-HEIGHT

Input : Weighted MaxSAT problem Φ = (X,F,W).
Output: Lower bound on weight of unsatisfied clauses.

Ψ← MIN-HEIGHT-EQUIV-TRANSFORM (Φ).1
lb← 0.2
foreach xi ∈ X do3

lb← lb − VARIABLE-HEIGHT (xi,Ψ).4
end5
foreach fa ∈ F do6

lb← lb + wa − CLAUSE-HEIGHT (fa, wa,Ψ).7
end8
return lb.9

Algorithm 1 depicts the overall process of producing
lower bounds. Given the subproblem induced by the se-
ries of variable assignments that we have made up to a cer-
tain point during branch-and-bound search, we first find a
height-minimizing equivalent transformation Ψ. We then
calculate the difference between the total weight available
from the problem, and its height under the equivalent trans-
formation, producing a lower bound on the weight of clauses
that will have to be unsatisfied should we continue down this
branch of search. Aside from the step of actually pursuing a
minimum-height equivalent transformation, the complexity
of Algorithm 1 and its subroutines is O(d(n + m)), where
d is the largest degree of any node in the problem’s factor
graph representation.

The “variable-height” function at Line 4 of the algorithm
indicates the height of the unary function that the equivalent
transformation process introduces for each variable, as in
Eq. (2). Algorithm 2 performs this fairly straightforward

calculation. (This depiction and the following are written
for clarity rather than efficiency–many of the calculations
can be cached and re-used within and between procedures.)

Algorithm 2: VARIABLE-HEIGHT

Input : Variable xi, potentials comprising equivalent
transformation Ψ.

Output: Height of xi under equivalent transformation.

// Variable’s positive/negative rescaled weight is sum of
// the pos/neg potentials it distributes across its clauses.
neg←

∑
a∈ηi

ψ−i,a , pos←
∑
a∈ηi

ψ+
i,a.1

// Height is maximum rescaled weight.
return max (pos, neg).2

To calculate the height of a transformed problem clause
at Line 7, we cannot rely on any explicit representation of
extension values akin to the tables in Figure 1(c). Instead,
we rely on the fixed structure of equivalent transformations
by variable-clause potentials, and observe that with one ex-
ception, the highest-scoring extension for a clause is always
that with the least associated potentials. The one exception
occurs when the extension with least rescaling happens to
be the unique extension that does not satisfy the original
clause–then we do not accrue the original clause weight. In
this case, we must determine whether gaining this weight is
worth the extra rescaling that our score will suffer should
we flip the assignment of a single variable. This is the basis
for calculating a transformed clause’s height under a given
equivalent transformation, in Algorithm 3.

Line 15 of Algorithm 3 determines the decrease in score
that we suffer on substituting the second-least rescaled ex-
tension for the least-rescaled one identified earlier in the al-
gorithm. This is done by flipping a single variable with least
difference between its two potentials (recall that all exten-
sions satisfy an original clause, except one.) This allows us
to judge whether sacrificing the clause’s weight or suffering
additional rescaling will yield the function’s highest score.

The remaining algorithmic task is to find equivalent trans-
formations that minimize problem height. In Algorithm 4
we adapt the max-sum diffusion algorithm (Kovalevsky and
Koval approx 1975) developed from an older line of re-
search in the Soviet Union (Schlesinger 1976) and recently
reviewed in the context of probabilistic inference and com-
puter vision (Werner 2007). The algorithm is guaranteed to
converge, but only to a local minimum in problem height,
rather than a global minimum. Lines 6 though 14 comprise
the core of the process, effecting a “height-smoothing” that
rescales the factors surrounding a given variable so that they
all have the same height when conditioned on either assign-
ment to the variable. For a given positive or negative as-
signment, this is realized by calculating the height of each
function when conditioned on the assignment (by subjecting
the clause height algorithm to the simple changes depicted
as Algorithm 5.) and forming an average. We then update
the variable’s potentials for this polarity to the difference
between each clause’s conditional height and this average.
The time complexity for each iteration of the algorithm is
O(d(n+m)).

114

Algorithm 3: CLAUSE-HEIGHT

Input : Factor fa, weight wa, potentials comprising
equivalent transformation Ψ.

Output: Height of fa under equivalent transformation.

// Get minimum-potential assignment to variables in fa.
assignment← {}.1
potentials← 0.2
foreach xi ∈ σa do3

if ψ−i,a < ψ+
i,a then4

assignment← assignment ∪ {xi = 0}.5

potentials← potentials + ψ−i,a.6

else7
assignment← assignment ∪ {xi = 1}.8

potentials← potentials + ψ+
i,a.9

end10

end11
if assignment satisfies fa then12

// Height is factor’s weight after minimum rescaling.
return wa− potentials.13

else14
// Height depends on whether factor’s weight is
// more valuable than difference between minimum
// and next-most-minimum rescaling.
difference←∞.15
foreach xi ∈ σa do16

if |ψ−i,a − ψ
+
i,a| < difference then17

// Flipping this variable yields least increase
// in minimum rescaling (and satisfies fa).
difference← |ψ−i,a − ψ

+
i,a|.18

end19

end20
if wa > difference then21

return wa− potentials − difference.22
else23

return −potentials.24
end25

end26

Convergence to a local minimum in problem height is
readily demonstrated by directly adapting a theorem from
the review of the originating MHET research (Werner 2007).
(Technically the theorem allows the algorithm to stagnate at
the same non-minimal height, so long as the height never in-
creases, but this has never been observed in practice. Also,
the number of iterations is unbounded, but convergence can
be enforced by an epsilon-valued threshold.)

Algorithm 4: MIN-HEIGHT-EQUIV-TRANSFORM

Input : Weighted MaxSAT problem Φ = (X,F,W).
Output: Height-minimizing equivalent transformation

Ψ ∈ R|X| |F | |{+,−}|.
// Initialize all variable-factor potentials to zero.
foreach xi ∈ X , fa ∈ F do1

ψ+
i,a ← 0, ψ−i,a ← 0.2

end3
repeat4

foreach xi ∈ X do5
// Find max rescaled score for each of variable’s
// functions, conditioned on each polarity.
foreach fa ∈ ηi do6

α+
i,a ← COND-HEIGHT (fa, wa, xi = 1,Ψ).7

α−i,a ← COND-HEIGHT (fa, wa, xi = 0,Ψ).8

end9
// Average max rescaled scores across functions.
µ+ ←

∑
a∈ηi

α+
i,a/|ηi|.10

µ− ←
∑
a∈ηi

α−i,a/|ηi|.11

// Set the variable’s potentials to rescale each
// function’s former max score to the average.
foreach fa ∈ ηi do12

ψ+
i,a ← α+

i,a − µ+.13

ψ−i,a ← α−i,a − µ−.14

end15

end16

until convergence17
return Ψ.18

Algorithm 5: COND-HEIGHT

// Algorithm is same as CLAUSE-HEIGHT, but changed
// to reflect assumption that xi is already fixed to val.
Change Line 1 to “assignment← {xi = val}.”1
Change Line 3 to “foreach xi ∈ σa \ {xi} do.”2
Change Line 16 to “foreach xi ∈ σa \ {xi} do.”3

Theorem 1 (“Convergence”). After each iteration of Line
5 in Algorithm 4, the height of Φ cannot increase.

Proof. At the beginning of the loop, variable
xi and its neighborhood ηi contribute quantity
max{

∑
a∈ηi

ψ−i,a,
∑
a∈ηi

ψ+
i,a} +

∑
a∈ηi

max{α+
i,a −

ψ+
i,a, α

−
i,a − ψ−i,a} (the single-variable height of

xi plus the height of each clause) to the height
of Φ. At the end of the loop, they contribute
max{

∑
a∈ηi

ψ+
i,a +α+

i,a−ψ
+
i,a,

∑
a∈ηi

ψ−i,a +α−i,a−ψ
−
i,a}.

The second quantity cannot exceed the first.

Intuitively, the proof observes that in first calculating
problem height, we are free to cast xi positively in choosing
the highest-scoring extension for one of its functions, and
to still cast it negatively when taking the height of another.
After iterating on xi, we are still free to do so, but all of
xi’s functions will yield the same height when it is set posi-
tively, and they will all share another common height when

115

xi is set negatively–we only consider which of these two is
greater. As for correctness of the lower bound, it is easiest
to appeal directly to the equivalence property of equivalent
transformations: no matter what values Algorithm 4 assigns
to its components, Ψ will by construction define a problem
that yields the same score as Φ, for any variable assignment.

4 Implementation and Results
We have implemented the algorithms described above
within the state-of-the-art 2009 version of the MAXSATZ
solver(Li, Manyà, and Planes 2007)1. We thus evaluate
the usefulness of MHET as a lower-bounding framework
on nineteen test sets comprising the most general divi-
sions (weighted, and weighted partial MaxSAT) of the 2009
MaxSAT Evaluation (Argelich et al. 2009). The experi-
ments were run on machines with 2.66 GHz CPU’s using
512 MB of memory.

Table 1 compares the performance of MAXSATZ with
and without the computation of minimum-height equivalent
transformations. The basic tradeoff is between the increased
computational cost of computing the transformations, ver-
sus the opportunity to search a reduced space due the extra
prunings triggered by such transformations.

4.1 Problems for which MHET is Beneficial,
Neutral, or Harmful Overall

The rows of the table group the nineteen problem sets into
three categories, by comparing the number of problems
solved using the two versions of MAXSATZ within a 30-
minute timeout. The categories can be understood as con-
taining problems sets for which adding MHET improves
overall performance, makes no significant difference, or de-
grades overall performance. The principal statistics appear
in the first two groupings of three columns each. The first
column in each such grouping displays the number of prob-
lems from a given test set that were solved before time-
out. The next columns show, for problems that were solved
within the timeout period, the average number of backtracks
and overall average runtimes. (Thus, a version may show a
lower average runtime even if it solved fewer problems.)

For the first six problem sets in the table, MAXSATZ
with MHET embedded solves a greater or equal number
of problems without timing out when compared to regu-
lar MAXSATZ. Looking ahead to the third grouping of
columns, entitled “Prunings Triggered,” we can characterize
these problems as ones where MHET allows for a significant
number of prunings, while the original version of MAXSATZ
could find few or none. Here the difference is enough to out-
weigh the added computational cost of performing MHET.
The problems in this category are diverse in their specific
characteristics; one general property that they have is com-
mon relative to the other entries in the table is that they are
fairly difficult to solve, meaning that fewer problems within
a set can be solved in the time allotted, and that these prob-
lems themselves require more time. This yields a simple

1Upon publication of its description, the source code for the
solver, along with example problems, will be available at http:
//www.cs.toronto.edu/˜eihsu/MAXVARSAT/.

explanation for why the greater power of MHET is worth
the computational expense. A secondary phenomenon that
remains to be explained is that these problems also tend to
have large weights; at this point it is unclear to the authors
whether this is actually beneficial to the MHET formalism,
and why this might be.

For the middle grouping of problem sets, adding MHET
slows MAXSATZ overall for all but two test sets; but the
difference in runtime is negligible in the sense that the two
versions still solve the same number of problems within the
30-minute cutoff period. This grouping is characterized by
problems that are already extremely easy or extremely hard
for both versions. Still, it is worth noting that for all but
the (extremely easy) random problems, MHET continues
the trend of finding additional prunings and drastically re-
ducing the search space, while regular MAXSATZ performs
far more branches but without the overhead that tends to
double overall runtime. So, while the two versions of the
solver are comparable here, particularly in terms of the num-
ber of problems solved before the cutoff time, such parity is
achieved by divergent means.

For the final grouping of three problem sets, adding
MHET prevents MAXSATZ from solving problems that it
was originally able to solve, within the 30-minute timeout.
While MHET is still able to find a significant number of new
prunings, for these problem its overhead cost is prohibitive.
Such problems are characterized by the largest numbers of
variables across the entire evaluation (thousands, in the case
of the Mancoosi configuration problems.) Thus, the greater
cost of doing MHET on such problems makes it not worth-
while. Still, it is important to note that proportionally to the
existing heuristics, MHET is not especially more costly, as
such heuristics also tend to have low-order polynomial com-
plexity on the number of variables. Rather, the problems are
just large in general and present a challenge to any inference-
based heuristic.

4.2 Direct Measurement of Pruning Capability,
and Proportion of Runtime

Turning to the third (“Prunings Triggered”) grouping of
columns, we can corroborate some overall trends across
all categories of problems. Here we have re-run each
test suite with a new configuration of MAXSATZ that runs
both “MHET” and the “original” MAXSATZ inference rules
(Rules 1 and 2 from (Li, Manyà, and Planes 2007)) each time
a variable is fixed, regardless of whether one or the other
has already triggered a pruning. This way, we can identify
pruning opportunities that could be identified exclusively by
one technique or the other, or by both. Additionally, if nei-
ther technique triggers a pruning, we identify a third class
of “other” prunings–those that are triggered by additional
mechanisms built into the solver like unit propagation, the
pure literal rule, and most prominently, look-ahead. Here
we see that although MHET always triggers more prunings
than the original MAXSATZ inference rules, the test sets for
which it causes longer runtimes correspond almost exactly
to those where an even greater number of prunings could
have been triggered by the third class of built-in mecha-
nisms.

116

Solved w/ MHET Solved w/o MHET Prunings Triggered Runtime %
Test Suite # branches time # branches time MHET orig. both other MHET rest

auction-paths 87 201K 74 76 14087K 192 57 0 0 0 82 4
random-frb 34 1K 187 9 789K 12 1K 0 0 0 82 5
ramsey 39 40K 99 37 28K 4 4K 2 87 11K 12 1
warehouse-place 6 208K 520 1 6K 0 636 0 0 0 42 6
satellite-dir 3 632K 105 2 593K 7 33K 0 0 0 75 5
satellite-log 3 1012K 475 2 578K 9 95K 0 0 89 59 4
factor 186 38 0 186 32K 13 3 0 0 17 67 26
part. rand. 2-SAT 90 511 15 90 511 8 143 0 0 333 57 40
part. rand. 3-SAT 60 35K 72 60 35K 20 473 0 4 33K 57 8
rand. 2-SAT 80 236 1 80 236 1 5 0 0 229 66 29
rand. 3-SAT 80 61K 171 80 62K 56 645 0 1 52K 76 13
maxcut-d 57 15K 89 57 37145 82 5K 0 4 13K 70 23
planning 50 9K 147 50 97K 128 17K 149 162 27K 76 13
quasigroup 13 110K 156 13 564K 93 4K 1K 87 185 87 7
maxcut-s 4 3K 35 4 4K 22 5 0 2 3K 41 33
miplib 3 24K 325 3 30K 192 25 0 0 10 92 8
mancoosi-config 5 1107K 1445 40 5424K 1271 4K 23 3 95 78 13
bayes-mpe 10 5K 2 21 787K 152 299K 0 0 6K 82 14
auction-schedule 82 549K 164 84 1504K 38 33 0 0 0 83 7

Table 1: Performance of MHET on weighted problems from MaxSAT Evaluation 2009.
The first two groups of columns depict the performance of MAXSATZ with and without MHET-derived lower bounds. Each entry lists the
number of problems from a given test set that were solved within a 30-minute cutoff period, and the average number of backtracks and
seconds of CPU time required for each successful run. (All three entries appear in bold when a configuration solves more problems than the
other; otherwise backtracks and CPU time are highlighted to indicate the more efficient configuration.) The third column tracks the number
of prunings that the various lower bounding mechanisms are able to generate, as described in the text. The final column depicts the average
percentage of total runtime devoted to performing the MHET lower-bounding technique, versus the rest (“orig.” and “other”).

This observation is amplified by the final column of the
results table, which shows the percentage of overall run-
time used to calculate MHET versus that of all other pruning
mechanisms (both “original” and “other”). Here we see that
while MHET computations are extremely valuable, they are
also very expensive in terms of time. For the four test suites
where adding MHET increases overall runtime, the “other”
built-in pruning mechanisms are able to find a large number
of prunings, demotivating the use of MHET. Still, the low-
order polynomial complexity of performing MHET suggests
that its percentage cost will always be within a constant fac-
tor of the other mechanisms’.

4.3 Practical Considerations: Blending the Two
Pruning Methods

The experiments demonstrate that MHET is able to gener-
ate unique lower bounds and trigger prunings that were not
possible using the existing methods. For at least some of
the problems, this ability is strictly beneficial; and for the
majority it does not do any harm in terms of the number
of problems solved within the timeout period. For practi-
cal considerations, though, it is compelling to seek a finer-
grained approach to using MHET versus the existing rules.
For in the experiments above, recall that the new and exist-
ing lower bounding techniques are run at every single node
of the search space. Instead, it may be worthwhile to at-
tempt to prune at only a portion of the nodes in the search

space, and to choose between MHET and the old techniques
in some way that balances computational cost with greater
pruning power.

Thus, an area of ongoing research has been to formulate
a blend of using either no lower-bounding techniques, old
techniques alone, MHET alone, or both, at selected nodes in
the search space. On the one hand, we are generally more
likely to prune toward the bottom of the search tree, so run-
ning a bounding technique here is more likely to pay off with
a pruning. On the other hand, if we do manage to trigger a
pruning higher in the search tree, then the pruned subtree
will be exponentially larger. In this light, a simple heuris-
tic is to run the old bounding techniques at every node, and
run MHET once every 10a node expansions, where a is a pa-
rameter. Such a scheme shows an exponential preference for
running the method lower in the search tree, because there
are exponentially more such nodes. Naturally, using low val-
ues of a will be effective on problems from Table 1 where
MHET was more successful, while increasingly high values
of a will simulate using the old techniques alone, producing
better results on the corresponding problems. In practice,
we have found that this method produces a reasonable im-
provement on the test sets considered, with a set to about
3.

Also under development is a more sophisticated approach
to blending four choices of pruning strategy (nothing, old,
MHET, old+MHET), while learning from experience and

117

consulting the current state of the search process. Here we
use reinforcement learning to balance between exploring the
effectiveness of the various actions in different situations
within search, while also exploiting our experiences to pre-
fer those actions that have done well when applied to com-
parable situations in the past. We measure “doing well” by
penalizing decisions for the runtimes they incurr, while re-
warding them according to how many nodes they are able to
prune. And “situations” are realized by state variables that
represent our current depth within the search tree and the
current gap between the upper bound and the most recently
computed lower bound.

In this paper, though, we have isolated the effect of MHET
by running it at every node, and demonstrated its usefulness
in triggering unique prunings and minimizing backtracks,
while in some cases improving overall runtime. Methods
for blending the various pruning methods are described in a
separate presentation.

5 Related Work and Conclusions
We have demonstrated a Minimum-Height Equivalent
Transformation framework for computing a new type of
lower bound that can improve the performance of branch-
and-bound search for MaxSAT. Interestingly, the notion of
equivalent transformation defined over an expanded space of
extensionally represented functions can be seen as a “soft”
generalization of existing inference rules within the current
state-of-the-art. More precisely, just as a linear program-
ming relaxation drives the formal apparatus in the original
account of MHET (Schlesinger 1976), so can we view the
algorithms of Section 3 as sound relaxations of traditional
inference rules like those of MAXSATZ, whose proofs of
soundness incidentally appeal to an integer programming
formulation (Li, Manyà, and Planes 2007). For instance,
the problem in Figure 1 is simple enough to have been
solved one such rule (essentially, weighted resolution or arc-
consistency.) But by softening the rules to work over frac-
tional weights and functions with more than two values, and
by allowing the consequences of a rescaling operation to
propagate throughout the factor graph over multiple itera-
tions, we achieve a finer granularity and more complete pro-
cess to reduce problem height on real problems (a goal that
is not motivated by existing approaches that seek exclusively
to create empty clauses.)

Similarly, within the research area of weighted constraint
satisfaction problems (a generalization of MaxSAT), a grow-
ing body of work has also sought to process weighted con-
straint problems into equivalent ones that produce tighter
bounds (Cooper et al. 2008; Cooper, DeGivry, and Schiex
2007; Cooper and Schiex 2004). Indeed, many of the rep-
resentations and optimizations found in the algorithms pre-
sented here can independently be found in generalized form
within this literature. In keeping with the previous discus-
sion of related MaxSAT techniques, such efforts originated
from the translation of hard (consistency-based) inference
procedures from regular constraint problems to weighted
ones. Again the work presented here differs primarily in us-
ing fractional weights and multiple rescaling iterations, thus

allowing weight to be re-distributed further along chains of
interacting variables, and at a finer granularity.

In conclusion, the MaxSAT solver presented here reflects
an MHET apparatus that is decades-old (Schlesinger 1976),
but that requires a good deal of adaptation and algorithmic
design to achieve the gains depicted in Table 1. Two un-
tapped features of that foundation suggest directions of fu-
ture work. First, the authors link the height-minimization
framework to the entire field of research in performing sta-
tistical inference on probablistic models (like Markov Ran-
dom Fields.) This suggests algorithmic alternatives to the
“diffusion” method presented here, and an opportunity to
improve the generated bounds or (more importantly) reduce
their computational cost. Secondly, the tightness of a height-
minimization bound can be tested (in binary domains like
SAT) by arc consistency alone. In this work, though, we
have adapted an existing formulation motivated by com-
puter vision to introduce a new bounding technique to the
MaxSAT research area. We have developed efficient algo-
rithms to make the framework feasible for problems in con-
junctive normal form, and tested its utility on a variety of
contemporary problems.

References
Ansótegui, C.; Bonet, M. L.; and Levy, J. 2009. Solving (weighted)
partial MaxSAT through satisfiability testing. In SAT ’09.
Argelich, J.; Li, C. M.; Manyà, F.; and Planes, J. 2009. Fourth
Max-SAT evaluation. http://www.maxsat.udl.cat/09/.
Cooper, M. C., and Schiex, T. 2004. Arc consistency for soft
constraints. Artificial Intelligence 154(1-2):199–227.
Cooper, M. C.; DeGivry, S.; Sanchez, M.; Schiex, T.; and Zytnicki,
M. 2008. Virtual arc consistency for weighted CSP. In Proc. of
23rd National Conference on A.I. (AAAI ’08), Chicago IL, 253–
258.
Cooper, M.; DeGivry, S.; and Schiex, T. 2007. Optimal soft arc
consistency. In Proc. of 20th International Joint Conference on A.I.
(IJCAI ’07), Hyderabad, India, 68–73.
Heras, F.; Larrosa, J.; and Oliveras, A. 2008. MiniMaxSAT: An
efficient weighted Max-SAT solver. JAIR 31.
Kovalevsky, V. A., and Koval, V. K. (approx.) 1975. A diffu-
sion algorithm for decreasing energy of max-sum labeling problem.
Glushkov Institute of Cybernetics, Kiev, U.S.S.R.
Li, C. M.; Manyà, F.; and Planes, J. 2007. New inference rules for
Max-SAT. JAIR 30.
Lin, H.; Su, K.; and Li, C. M. 2008. Within-problem learning for
efficient lower bound computation in Max-SAT solving. In AAAI
’08.
Schlesinger, M. I. 1976. Sintaksicheskiy analiz dvumernykh zritel-
nikh signalov v usloviyakh pomekh (syntactic analysis of two-
dimensional visual signals in noisy conditions). Kibernetika 4.
Werner, T. 2007. A linear programming approach to max-sum
problem: A review. IEEE Transactions on Pattern Analysis and
Machine Intelligence 29(7).

118

