
Cost Based Search Considered Harmful
(Extended Abstract)

William Cushing and J. Benton and Subbarao Kambhampati
Department of Computer Science and Engineering

Arizona State University
Tempe, AZ 85281

Abstract

Planning research has returned to the issue of optimizing
costs (rather than sizes) of plans. A prevalent perception, at
least among non-experts in search, is that graph search for
optimizing the size of paths generalizes more or less trivially
to optimizing the cost of paths. While this kind of general-
ization is usually straightforward for graph theorems, graph
algorithms are a different story. In particular, implementing
a search evaluation function by substituting cost for size is a
Bad Idea. Though experts have stated as much, cutting-edge
practitioners are still learning of the consequences the hard
way; here we mount a forceful indictment on the inherent
dangers of cost-based search.1

Introduction
Planning, and combinatorial search in general, is being
wedged ever tighter into the proverbial “rock and a hard
place”. On the one hand, satisficing approaches return ar-
bitrarily poor solutions in theory, and (sometimes) practice
(Openstacks, Satellite); on the other, optimal approaches
‘guarantee non-termination’. Recent results from Helmert
and Röger tighten the ‘non-termination guarantee’ of opti-
mal planning considerably: even given max(h∗ − e, 0) for
free, optimal planners will take exponential time both in the-
ory and on standard benchmarks. In contrast, enforced hill
climbing is both polynomial (O(be)) and optimal given such
a powerful heuristic (as is best-first search).

Many tackle this dilemma head on: attempting to develop
planners with guarantees on solution quality, terminating
in both theory and practice. Instead we believe it is bet-
ter to separate the problems of discovering good solutions
and proving bounds about them. Standard formalizations
of these problems are both PSPACE-complete, so it would
seem there is little to gain. However, an important difference
arises when considering cost instead of size.

(Proof by example) Suppose a (cost-)optimal and second-
best solution to a problem exist on 10 and 1000 unspecified
actions. The optimal solution may be the larger one. How
long should it take just to find the 10 action plan? How

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1Full version: http://rakaposhi.eas.asu.edu/socs-full.pdf
This research is supported in part by ONR grants N00014-09-1-
0017 and N00014-07-1-1049, and the NSF grant IIS-0905672.

long should it take to prove (or disprove) its optimality? In
general (presuming PSPACE 6= P):

1. Discovery should require time exponential in 10.
2. Proof should require time exponential in, at least, 1000.
That is, in principle the only way to (domain-independently)
prove that the 10 action plan is better than the 1000 ac-
tion one is to in fact go and discover the 1000 action plan.
That the problem is PSPACE-complete then gives the lower
bound by assumption. (A full proof of optimality might have
to find yet larger near-optimal solutions.)

For discovery alone, size-based (branch-and-bound)
search demonstrates the upper bound. Moreover (we argue),
it sets a reasonable baseline in general — against which
cost-based fails to measure up. By “size-based (branch-
and-bound)” we mean: The search proceeds as if all costs
were 1 (“size-based”), but also tracks real costs in order
to prune nodes worse than the currently best known solu-
tion (“branch-and-bound”). (One can incorporate admissi-
ble heuristics into the pruning.) Then discovery is the print-
ing of solutions, and proof of optimality is termination of
the search. So by “branch-and-bound” we mean some-
thing like “anytime optimal” or Zilberstein’s interruptible,
but more specific.

In the following we present 3 critiques of cost-based
(branch-and-bound) search. First, it is (easily) possible to
construct ‘traps’ to make it perform extremely poorly. Sec-
ond, we argue that of all possible topological surfaces (an
evaluation function) to choose for search, cost-based is the
worst. Lastly, we carry out some tests of our own with real
planners, in order to confirm that such traps arise in practice.
These tests are deliberately quite limited: many others have
already encountered these pernicious effects of cost-based
search in their own (comprehensive) experimental studies.

Yet it rarely seems to merit more than a plaintive mention.
The community seems resigned to the view that these diffi-
culties are just the cost of doing business in the area (pun
intended). We want to question that resignation, and explic-
itly take the position that cost-based search is harmful.

Trapping Cost-Based Search
Very low cost actions are a common feature of real world
planning problems: boarding versus flying (ZenoTravel),
mode-switching versus machine operation (Job-Shop), labor

140

Proceedings of the Third Annual Symposium on Combinatorial Search (SOCS-10)

versus (precious) material cost, and so forth.2 In addition,
planning formalisms are often stretched to encompass ad-
ditional complex concepts via compilation. So, we expect
problems to contain actions with very small (or very large)
costs. If we normalize all costs to [0, 1] by dividing through
by maxa cost(a), then ε = mina cost(a)

maxa cost(a) is the cost of the
least cost action(s) after normalization.
ε-cost Trap:3 Consider the problem of making some
counter on k bits contain one less than its maximum value
(2k − 2), starting from 0, using only the operations of in-
crement and decrement. There are 2 minimal solutions: in-
crementing 2k − 2 times, or decrementing twice (exploiting
overflow). Set the cost of incrementing and decrementing to
1, except that overflow (in either direction) costs, say, 2k−1.
Then the 2 minimal solutions cost 2k − 2 and 2k−1 + 1, or,
normalized, 2(1− ε) and 1 + ε.

Cost-based search is the clear loser on this problem. To
analyze such problems, assume h = 0 (or complicate the
problem until it appears as given despite the heuristic).
While both approaches prove optimality in exponential time
(O(2k)), size-based discovers the optimal plan in constant
time. Of course 2k − 2 is chosen to best illustrate the trap.
So consider the discovery problem for other goals: from
2k[0, 1

2] cost-based search is twice as fast, from 2k[12 , 2
3] the

performance gap narrows to break-even, and from 2k[23 , 1]
the size-based approach takes the lead — by an enormous
margin. Note that between 2k[23 , 3

4] there is a tradeoff: size-
based finds a solution before cost-based, but cost-based finds
the optimal solution first.

Then, even across all goals, cost-based search is still quite
inferior: the margins of victory either way are extremely
lopsided. To illustrate, consider ‘large’ k, say, k = 1000.
Even the most patient reader will have forcibly terminated
either search long before receiving any useful output —
except if the goal is of the form 0 ± f(k) for some sub-
exponential f(k). Both approaches discover and prove the
optimal solution in the positive case in time O(f(x)). In
the negative case, only the size-based approach manages to
discover a solution before being killed (and does so in time
O(f(k))). Moreover, while it will fail to produce a proof
before death, we, based on superior understanding of the do-
main, can show it to be posthumously correct (and already
have: 2k − f(k) + 1 > 2k 3

4 for large k).

Search Topology
We view evaluation functions (f), as topological surfaces
over states, so that states are expanded in order of f -
altitude.4 Fix some admissible estimate of cost-to-go, hc()
(and let fc(s) = gc(s) + hc(s)). Consider the minimum
altitude of a goal — all states with lower altitude comprise
the cost-optimal footprint. Enumerating all such states is a

2Even negative weights arise naturally: selling versus buying.
3This problem may appear contrived, even pathological, as it

breaks the semantics of a counter. Consider that the space is just a
simple cycle with one expensive edge — a model of, for example,
Bait-and-Switch or paying in installments rather than up-front.

4With inconsistent heuristics, it is more accurate to think in
terms of a slow flood of the surface.

(minimum) proof of optimality, relative to using (only) hc().
Observe that every branch-and-bound search is equivalent if
the optimal solution is known: all that remains is to exhaust
the cost-optimal footprint. This can be done in any order.
By using fc(s) to prune, one is free to use any other f to
direct search.

Given this, admissible cost-based topology is the worst
possible choice: such a search cannot be usefully interrupted
since its first solution is also its final solution. In contrast
the size-based approach will take guesses at the optimal so-
lution long before terminating; indeed, after discovering the
optimal solution the numerous longer but cheaper plans still
need to be investigated. So size-based branch-and-bound
search is interruptible — and asymptotically best possible
assuming PSPACE 6= P. That is, the approach is a reason-
able baseline, but there remains lots of room for improve-
ment. (As a first step, let the size-based heuristic estimate
the size of the best, rather than smallest, continuation.)

Plateaus in g are important; though not due to implying
search plateaus (an inconsistent h could create a very bumpy
f -surface). Instead, the minimum gradient in g imposes
an upper bound on search effort: the number of states that
could conceivably fit beneath a given f -altitude. For uni-
formly branching trees this upper bound is bf(s) min∇g . So,
for size-based f , O(bd) bounds the discovery problem. For
cost-based, we instead arrive at O(bdε−1

) in the worst case.
Tighter bounds (and more appropriate models than uniform
trees) can be formulated, but the basic idea is that cost-based
topology (admissible or otherwise) allows search to wander
a factor of 1

ε deeper into the space — much too deep.5

Practice
Actual planners are much more complicated than A∗ with
some heuristic. Conceivably one of the many other tech-
niques being employed interacts better with a cost-based
(rather than size-based) evaluation function. We tested vari-
ants of SapaReplan and LAMA against a limited set of sim-
ple ZenoTravel tasks — many other (comprehensive) studies
are available, e.g., the IPC results.

2 Cities 3 Cities
Mode Score Rank Score Rank

Hybrid 88.8% 1 43.1% 2
Size 83.4% 2 43.7% 1
Cost 77.8% 3 33.3% 3

Table 1: IPC metric on SapaReplan variants in ZenoTravel.

Results: Size-based evaluation functions find better plans
faster than Cost-based. Hybrid evaluation functions (size +
normalized cost) also do relatively well.

In conclusion, cost-based branch-and-bound search digs
its own (1

ε deep) grave. The size-based approach can be
taken as a baseline; albeit, balancing exploration (size) with
exploitation (cost) is far more attractive.

5In the full version we elaborate on “why” search becomes
trapped. Key concepts are fairness and exploitation vs exploration.

141

