
Objective Functions for Multi-Way Number Partitioning

Richard E. Korf
Computer Science Department

University of California, Los Angeles
Los Angeles, CA 90095

korf@cs.ucla.edu

Abstract

The number partitioning problem is to divide a set of integers
into a collection of subsets, so that the sum of the numbers in
each subset are as nearly equal as possible. There are at least
three natural objective functions for number partitioning. One
is to minimize the largest subset sum, another is to maximize
the smallest subset sum, and the third is to minimize the dif-
ference between the largest and smallest subset sums. I show
that contrary to my previous claims, no two of these objec-
tive functions are equivalent for partitioning numbers three or
more ways. Minimizing the largest subset sum or maximizing
the smallest subset sum correspond to different practical ap-
plications of number partitioning, and both allow a recursive
strategy for finding optimal solutions that is very effective in
practice. Finally, a completely new version of this recursive
strategy appears to reduce the asymptotic complexity of the
algorithm, and results in orders of magnitude improvement
over the best previous results for multi-way partitioning.

Introduction: Number Partitioning

Given a multiset of integers, the number partitioning prob-
lem is to divide them into a collection of mutually exclusive
and collectively exhaustive subsets, so that the sum of the
numbers in each subset are as nearly equal as possible. For
example, if we divide the integers {13,9,9,6,6,6} into the
subsets {13,6,6} and {9,9,6}, the sum of the numbers in the
subsets is 25 and 24, respectively, which is optimal in this
case. This is also a perfect partition. If the sum of all the
numbers is divisible by the number of subsets, in a perfect
partition all subsets will have the same sum. Otherwise they
will differ by at most one. I focus here on optimal solutions.

Number partitioning is perhaps the simplest NP-complete
problem to describe. It represents a very simple schedul-
ing problem, often referred to as “multi-processor schedul-
ing”(Garey and Johnson 1979). Given a set of jobs, each
with an associated completion time, and two or more iden-
tical processors, assign each job to a processor to minimize
the total time to complete all the jobs, assuming that each
job must run on a single processor without interruption.

A recent application of number partitioning is to voting
manipulation (Walsh 2009). Assume an election with three

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

or more candidates, where each voter vetoes one of the can-
didates, and different voters have different weights. The
winner is the candidate with the smallest total weight of
vetoes. The question is how can a subgroup of the voters,
known as the manipulators, guarantee the election of their
chosen candidate, assuming that they know the votes of all
the non-manipulators. The best strategy for the manipula-
tors is to distribute the weights of their votes among the
other candidates, so that the minimum total weight of vetoes
received by the other candidates is greater than the weight
of vetoes received by their chosen candidate from the non-
manipulators. This is also a number partitioning problem.

Number Partitioning Objective Functions

There are at least three natural objective functions for num-
ber partitioning: minimizing the largest subset sum, maxi-
mizing the smallest subset sum, and minimizing the differ-
ence between the largest and smallest subset sums.

For two-way partitioning, all three of these objective func-
tions are equivalent. The sum of the two subset sums in any
two-way partition always equals the sum of all the numbers.
Thus, given a two-way partition, reducing the largest sub-
set sum must increase the smallest subset sum, and also re-
duce the difference between them. Similarly, increasing the
smallest subset sum must reduce the largest subset sum, and
also reduce the difference between them. Finally, reducing
the difference between the largest and smallest subset sums
requires increasing the smallest subset sum and decreasing
the largest subset sum. Thus, optimizing any one of these
objectives simultaneously optimizes the other two.

For three or more way partitioning, I previously assumed
and reported that minimizing the largest subset sum was
equivalent to minimizing the difference between the largest
and smallest subset sum. For example, (Korf 1998) mini-
mizes the difference between the largest and smallest subset
sums, and states that, “This also minimizes the largest subset
sum.” (pp. 196). (Korf 2009) makes the same assumption.

For partitioning three or more ways, however, all three
objective functions are distinct. For example, consider parti-
tioning {13,9,9,6,6,6} three ways. Let partition x be {13,6},
{9,6}, and {9,6}, with subset sums of 19 and 15. Partition x
maximizes the smallest subset sum (15). Let partition y be
{13}, {9,9} and {6,6,6}, with subset sums of 13 and 18. Par-
tition y minimizes the largest subset sum (18), even though

71

Proceedings of the Third Annual Symposium on Combinatorial Search (SOCS-10)

its minimum subset sum (13) is less than that of partition x
(15). Thus, minimizing the largest subset sum is not equiva-
lent to maximizing the smallest subset sum. Partition x also
minimizes the difference between the largest and smallest
subset sums (19 − 15 = 4). Since the subset sum difference
of partition y is greater (18 − 13 = 5), minimizing the dif-
ference between the largest and smallest subset sum is not
equivalent to minimizing the largest subset sum.

Next, consider partitioning {14,9,9,6,6,6} three ways. Let
partition x be {14,6}, {9,6}, and {9,6}, with subset sums of
20 and 15. Partition x maximizes the smallest subset sum
(15). Let partition y be {14}, {9,9} and {6,6,6}, with sub-
set sums of 14 and 18. Partition y minimizes the difference
between the largest and smallest subset sums (18− 14 = 4),
even though its minimum subset sum (14), is less than that
of partition x (15). This example shows that maximizing
the smallest subset sum is not equivalent to minimizing the
difference between the largest and smallest subset sums.

Thus, all three objective functions are different for three-
way partitioning. We can extend either of these counterex-
amples to k-way partitioning by adding k − 3 elements of
size 16 or 17. For example, for four-way partitioning we
would add one element of size 16 or 17 to either example.

Minimizing the largest subset sum corresponds to the
multi-processor scheduling application, since minimizing
the largest subset sum minimizes the time to complete all
jobs. Maximizing the smallest subset sum corresponds to
the voting manipulation application. These two objective
functions are completely analogous to each other, and hence
any algorithm that optimizes one of them can be easily trans-
formed to one that optimizes the other.

Recursive Multi-Way Partitioning
Another property of these two objective functions is that
they allow us to recursively decompose the search for an op-
timal partition (Korf 2009). We iterate over all possible two-
way partitions of all the numbers, and for each, we optimally
partition the two subsets as necessary. If the objective is to
minimize the largest subset sum, or to maximize the smallest
subset sum, then if a given top-level partition is preserved by
any optimal complete partition, then optimally partitioning
the two subsets will result in an overall optimal partition. For
example, if any optimal three-way partition includes a given
subset, then optimally partitioning the remaining elements
two ways will result in an optimal three-way partition.

This principle of optimality does not apply if the objec-
tive is to minimize the difference between the largest and
smallest subset sums. For example, consider partitioning
{13,13,9,9,6,6,6} four ways. The optimal partition is {13},
{13}, {9,9} and {6,6,6}, with subset sums of 13 and 18,
and a partition difference of 18 − 13 = 5. If we first choose
the singleton set {13}, however, and then optimally partition
the remaining elements {13,9,9,6,6,6} three ways using this
same objective function, we get the partition {13}, {13,6},
{9,6}, and {9,6}, with subset sums of 13, 19, and 15, and a
suboptimal overall partition difference of 19 − 13 = 6.

My previous work on multi-way partitioning (Korf 2009)
minimized the difference between the largest and smallest
subset sums. I mistakenly assumed that this objective was

equivalent to minimizing the largest subset sum, and that
this recursive principle of optimality applied to minimizing
the difference between the largest and smallest subset sums.
Thus, some of the four or five-way partitions computed in
those experiments may not be optimal.

The algorithm of (Korf 2009) generated subsets by
searching an inclusion-exclusion binary tree. At each node
one branch included the corresponding number in all de-
scendent subsets, and the other excluded it. The CKK al-
gorithm (Korf 1998) was used for two-way partitioning.

I modified the algorithm of (Korf 2009) to minimize the
largest subset sum, thus guaranteeing optimal solutions with
this objective function, and reran all the experiments. The
modification had very little effect on the running time. The
experimentally observed asymptotic complexity was about
n1.836 for thee-way partitioning, n1.897 for four-way parti-
tioning, and n2.142 for five-way partitioning of n elements.

I also implemented a new recursive algorithm for multi-
way partitioning. Rather than using an inclusion-exclusion
tree and CKK, I started with an algorithm that finds sub-
sets with sums closest to a given target value (Schroeppel
and Shamir 1981). This algorithm was modified to gener-
ate all subsets with sums within a given range. Furthermore,
a different strategy was used for partitioning an odd num-
ber of ways. For example, when partitioning five ways, the
previous algorithm chose a first subset, and then recursively
partitioned the remaining elements four ways. In the new al-
gorithm, the elements are first partitioning into subsets with
sums of approximately two-fifths and three-fifths of the to-
tal, and then the first set is partitioned two ways and the sec-
ond set three ways. The new algorithm reduces the running
time by orders of magnitude in practice, and appears to re-
duce the asymptotic time complexity of optimal multi-way
partitioning. The experimentally observed complexity was
about n1.418 for three-way partitioning, n1.510 for four-way
partitioning, and n1.550 for five-way partitioning, compared
to n1.836, n1.897, and n2.142 for the previous algorithm.

Acknowledgments

This work was supported by NSF grant IIS-0713178.
Thanks to Satish Gupta and IBM for the machine used to
run the experiments.

References

Garey, M. R., and Johnson, D. S. 1979. Computers and
Intractability: A Guide to the Theory of NP-Completeness.
New York, NY: W. H. Freeman.

Korf, R. E. 1998. A complete anytime algorithm for number
partitioning. Artificial Intelligence 106(2):181–203.

Korf, R. E. 2009. Multi-way number partitioning. In Pro-
ceedings of IJCAI-09, 538–543.

Schroeppel, R., and Shamir, A. 1981. A t = o(2n/2), s =
o(2n/4) algorithm for certain np-complete problems. SIAM
Journal of Computing 10(3):456–464.

Walsh, T. 2009. Where are the really hard manipulation
problems? the phase transition in manipulating the veto rule.
In Proceedings of IJCAI-09, 324–329.

72

