
Adding Diversity to Classical Heuristic Planning

Carlos Linares López and Daniel Borrajo
Departamento de Informtica

Universidad Carlos III de Madrid
28911 - Leganés (Madrid), Spain

e-mail:{carlos.linares, daniel.borrajo}@uc3m.es

Abstract

State spaces in classical planning domains are usually quite
large and can easily be extended to larger unmanageable sizes
that do often exceed the capacity of many solvers. In this con-
text, heuristic planning provides a powerful mean for solving
rather difficult instances. However, it has been empirically
observed that the performance significantly drops in the most
difficult domains where the heuristic function induces large
plateaus or unrecognized dead-ends. Therefore, a large effort
has been invested in improving heuristic functions while only
a few contributions have been made to the selection of the
search algorithm. Thus, we review the choice of the search
algorithm and show that some improvements are still feasible
for various kinds of domains, especially the harder ones. In
order to do so, we add diversity to the heuristic search in the
hope that severe plateaus and/or dead-ends will be avoided or
that shorter plans will be found. Also, with the aim of mak-
ing the reporting of results more clear, a technique based on
cumulative distribution functions is advocated.

Introduction

Heuristic search has been largely recognized as a general
problem-solving technique for more than four decades and
has been widely applied to many different domains which
suffer from combinatorial explosion. Since planning tasks
can be easily formulated like path-finding problems, single-
agent search algorithms can also be applied to solve a wide
variety of planning tasks. This has been shown at the
various International Planning Competitions (IPCs) since
1998, at the IPC2, where HSP was shown to be compet-
itive with state-of-the-art planners at that time (Bonet and
Geffner 2001). Two years later, another heuristic planner,
FF, showed an outstanding performance in the fully auto-
mated track (Hoffmann and Nebel 2001). Since then, heuris-
tic planning has been applied to many other cases, not only
classical planning, but also temporal planning, cost-based
planning or conformant planning just to cite a few.

Originally, HSP was endowed with a heuristic hill-
climbing algorithm. Since hill-climbing is an incomplete
algorithm, the authors also tried another version, HSP2,
with best-first search in order to overcome this difficulty.
As a result, HSP2 was able to solve more problems or to

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

solve them faster or with better quality (Bonet and Geffner
2001). On the other hand, FF introduced a variation in the
selection of the local search algorithm, called enforced hill-
climbing (EHC for short), which automatically resorts to a
best-first search in case of failure. Actually, the enforced
hill-climbing approach was recognized by the authors as an
important component of the base architecture of FF (Hoff-
mann and Nebel 2001).

Still, if one compares the current performance of search
algorithms in the heuristic search community with those in
the heuristic planning community, a large gap is observed.
Nevertheless, it is the case that the planning community
can significantly profit from the latest advances in heuristic
search.

In this work, we focus our attention on another idea ex-
plored in the heuristic search community: diversity, and
discuss its applicability in classical heuristic planning prob-
lems. Diversity can be seen as the ability to switch to com-
pletely different paths during the search, therefore avoiding
large errors in the heuristic function. In this context, improv-
ing search through diversity is expected to enhance signifi-
cantly current state-of-the-art planners.

The paper is arranged as follows: next section briefly
discusses different existing approaches to diversity, either
depth-first or best-first, and justifies the convenience of a
particular choice for solving planning tasks. Next, an exper-
imental evaluation technique founded in statistical notions
often seen in other fields is proposed for the reporting of re-
sults shown immediately after. The paper ends with some
concluding remarks.

Diversity in planning

One of the first attempts to fight heuristic errors shall be
acknowledged to Harvey and Ginsberg who introduced the
Limited Discrepancy Search (LDS) (Harvey and Ginsberg
1995). The key observation was that, in most cases, failing
to find a goal node can be explained by a small number of
erroneous decisions along the current path. Therefore, LDS
explores the left-most child at a given depth as suggested
by the current heuristic function, i.e., with no discrepancies.
If no solution is found, all leaf nodes which differ in just
one decision point from the advice of the heuristic func-
tion are tried. The algorithm proceeds iteratively with in-
creasing larger discrepancies until a solution is found. How-

73

Proceedings of the Third Annual Symposium on Combinatorial Search (SOCS-10)

ever, the original LDS reexamines the nodes considered by
the previous iterations. Korf proved that this is unnecesary
and showed how to avoid that many re-expansions introduc-
ing an improved version of the same algorithm known as
Improved Local Discrepancy Search (ILDS) (Korf 1996).
However, both LDS and ILDS have only been applied to
either boolean problems or the number partitioning problem
with two descendants per node, where a right and wrong
choice can be easily identified. Further research is still
needed to apply the same idea to a more general numerical
setting with an arbitrary number of descendants.

Another interesting idea is Interleaved Depth-First Search
(IDFS) (Meseguer 1997). It searches a path until a leaf node
is found and if it is not a goal node, it starts another probe
from the root node but following a different path, thus ensur-
ing that different trajectories are traversed in every iteration.

However, preliminary experiments with the Improved Lo-
cal Discrepancy Search algorithm in our research yielded
discouraging results and, in general, it seems to us that al-
gorithms adding diversity in a depth-first fashion are rather
difficult to be applied to solve planning tasks efficiently.

More recently, K-Best-First Search (k) (KBFS) (Felner,
Kraus, and Korf 2003) has been introduced and described
as a generalization of Best-First Search. KBFS (k) expands
the first k nodes in the OPEN list and only after merging
the descendants in increasing order of the cost function into
the OPEN list, the next iteration is started, until a solution
is found. This algorithm provides a simple way to add di-
versity since at every iteration many nodes on completely
different paths will be simultaneously expanded: the larger
k, the more paths will be simultaneously considered. On the
other hand, it does not impose any significant overhead and
the processing time per node will remain the same. It shall
be easy to notice that KBFS (1) = BFS and that KBFS (∞)
results in the breadth-first search algorithm.

On the other hand, considering one of the most spread
search algorithms in heuristic planning, EHC (also known
as First Iterative Improvement (FII) in the specialized bib-
liography in Stochastic Local Search algorithms (Hoos and
Stützle 2005)), its main drawback is that it deterministically
pursues the same paths, trying to escape from local minima
using a breadth-first search. An alternative consists of dy-
namically restarting the search, as in LPG (Gerevini and Se-
rina 2002) or IdentIdem (Coles, Fox, and Smith 2007), but
once again these algorithms implement irrevocable policies,
as EHC —i.e., once it finds a successor which is better than
the current node, it commits to it and it will never review its
decision in the current search. Another option, implemented
in KBFS (k), consists of simultaneously traversing differ-
ent paths and switching from one to the other when a local
minimum is encountered —recall that only when the first k
nodes have been expanded and merged in the OPEN list, a
new iteration is started.

In most domains, diversity with admissible heuristic func-
tions would not be expected to provide any significant im-
provements since after expanding the best nodes, a mini-
mum value of the heuristic function would be reached, so
that chronological backtracking would eventually return to
the descendants of the first node lying on the optimal path. In

other words, the order in which nodes are expanded may not
be relevant in those cases. However, this is true in domains
like the sliding-tile puzzle or the Rubik’s cube which have a
unique goal state and are solved using admissible heuristic
functions. In contrast:

• When solving planning tasks, heuristics are often based
upon Relaxed Planning Graphs (RPGs), an idea originally
introduced in FF (Hoffmann and Nebel 2001), which can
result very easily in non-admissible estimates.

• Planning tasks can be realized by reaching any state
among an arbitrarily large set of goal states, so that diver-
sity serves for exploring simultaneously different paths to
solve the same problem with different goal states.

Moreover, in any case, KBFS (k) with a sufficiently large
width k can avoid traversing large plateaus: everytime a path
reaches a plateau, its heuristic value will not decrease for an
arbitrarily large number of iterations, until it finds an exit.
Other paths currently stored within the best k in OPEN can
use these iterations to try other alternatives, eventually dis-
placing the paths that led to the plateau behind them in the
OPEN list. This observation does not only apply to local
minima, but also to unrecognized dead-ends since they al-
ways have to end in a valley.

In summary, it is not only true that KBFS (k) turns out
to be a natural means for ranging from breadth-first search
to BFS, but it also provides a simple scheme for pursuing
different paths simultaneously. With a suitable parameter,
KBFS (k) is expected to behave better than BFS, especially
in the most difficult domains where the heuristic functions
provide a rather poor assessment, leading to either local min-
ima or, even worse, unrecognized dead-ends.

Experimental evaluation

The easiest class of search algorithms to compare against
each other are deterministic admissible search algo-
rithms (Pearl 1984), since in this case all solutions are
known to have the same cost, being optimal. In addition,
since admissibility necessarily implies completeness they
are all expected to find a solution in a finite amount of time.
Therefore, it usually suffices to compare run times for all
problems.

However, if the algorithms to compare are either non-
deterministic (so that different runs of the same algorithm on
the same instance usually result in different solutions with
different run times) or inadmissible (so that the algorithms
are likely to find solutions with different quality with respect
to the optimal cost), comparisons become far more diffi-
cult. The solution usually adopted in the first case (which is
the typical scenario of the stochastic local search algorithms
community) consists of computing empirical run-time and
solution-quality distributions. When the algorithms to com-
pare are inadmissible, as it usually happens in the planning
community, most results consist of pictures with raw data
(i.e., figures with run-time and/or solution-quality per solved
instance) and some descriptive statistics including the num-
ber of solved problems, mean, median and standard devia-
tion occasionally accompanied by the first and third quar-

74

tiles. However this technique cannot be deemed as very use-
ful when comparing many search algorithms because:

• Different algorithms often solve a different number of in-
stances. Taking only the subset of problems being simul-
taneously solved by the algorithms under consideration
clearly lacks of a key observation: what problems are
more difficult for what algorithms. Precisely those not
being simultaneously solved make the real difference.

• Algorithms being compared always behave differently for
different sorts of instances —distinguished by their diffi-
culty or other parameters related to the problem size. Cer-
tainly, these observations cannot be easily derived from
lines that mix up in the same picture and statistics that
bind all samples.

In contrast, the approach followed in the study of stochas-
tic local search seems more methodological and follows up
more easily to other potentially interesting questions or for
identifying general trends in the behaviour of the algorithms
being compared. The discussion introduced herein is aimed
at filling this goal.

While in the stochastic local search algorithms commu-
nity, algorithms are run many times for solving the same in-
stance, this does not make sense when applying determinis-
tic algorithms like the ones considered in this paper for solv-
ing planning tasks. Thus, the following definition, slightly
modified from that suggested by Hoos and Stützle (2005), is
proposed for the comparison of heuristic search algorithms
in planning:

Definition 1 Consider a heuristic algorithm A for solving
a finite and known set of problems in the planning domain
D, and let P (RTA,D ≤ t) denote the probability that
A finds a solution for one of these instances in time less
or equal than t. The Run-Time Distribution (or RTD, for
short) of A on D is the probability distribution of the ran-
dom variable RTA,D, which is characterized by the Run-
Time Distribution function rtd : R

+ 7→ [0, 1] defined as
rtd(t) = P (RTA,D ≤ t)1

These distributions are defined with respect to some re-
source bounds. Other variables might be memory usage,
heuristic evaluations . . . As a matter of fact, Plan-Length
Distributions, pld(t) will be also considered in the next sec-
tion. Similar figures have been provided by other researchers
—e.g., (Haslum, Bonet, and Geffner 2005)

Now, plotting one cumulative distribution function (ab-
breviated as cdf), for one algorithm against another, with
respect to the same random variable, gives a more clear pic-
ture of the relative performance of each one. For example,
consider Figure 1 which shows the Run-Time distributions,
rtd(t), of EHC and EKBFS (5) —to be discussed later.
Firstly, instead of providing observed values of the random
variable (e.g., time or plan length) per instance, the general
behaviour is characterized by showing how the probability
accumulates for given bounds. For instance, Figure 1 shows

1In short, while Hoos and Stützle consider the RTD for solving
a single instance, an attempt is made here to characterize the RTD
for a whole planning domain.

Figure 1: Run-Time Distribution of EHC and EKBFS (5) in
Freecell

a steep increment in the number of problems solved around
t = 10 for EKBFS (5). Secondly, the procedure is sensitive
to the number of problems solved by each algorithm, since
the probabilities are computed with respect to the size of the
testset but it does not strictly rely on the number of problems
solved by each algorithm, but how fast the random variable
progresses with the instances being solved. In the preceding
figure, a noticeable observation is that EKBFS (5) clearly
solves more problems than EHC, since it gets far closer to
1. Thirdly, and more remarkably, two cumulative distribu-
tion functions can be compared one against each other by
computing the intervals of the random variable where one
cdf dominates the other, i.e., documenting the cross-over
points where one is more likely to provide better results than
the other with respect to the independent random variable
been observed. Once again, the previous figure shows that
the cross-over point happens somewhere near 10 seconds —
more exactly, 15.85 seconds as shown in Table 4, page 5.
Since EHC dominates the RTD of EKBFS (5) before this
point, it can be concluded that the former is more likely to
find solutions for those problems that do not take much time.
Once this time has been elapsed, EKBFS (5) is more likely
to find solutions and, in the end, it solves more problems.

In short, the experimental evaluation technique followed
in the next section consists of the following steps:

1. Measure the independent variable of interest for each al-
gorithm A under study for a bunch of problems in the
same planning domain, D. Since the algorithms consid-
ered herein are all deterministic, one run shall suffice.

2. Compute the probability distribution function,
P (XA,D = x), where XA,D is the random variable
under study and x are the values observed, so that
P (XA,D = x) = nx

n
, where nx is the number of times

that X = x was observed and n the overall number of

75

samples.

3. Accumulate the probability function to obtain the cu-
mulative distribution function, P (XA,D ≤ x) =∑

y≤x

P (XA,D = y).

4. Plot both cumulative distribution functions and compute
the intervals within the range of the observed variable
where either one cdf dominates the other or only one of
them exists.

Nevertheless, the following shall be noted:

• It might happen that a significant variation in which prob-
lems are solved by different algorithms does not show up
in the resulting distributions. Indeed, two different algo-
rithms that solve different instances in exactly the same
running time would have identical distributions.

• An underlying assumption is that the instances selected
for making the evaluation are randomly distributed over
the set of all instances of the domain.

Thus, special care shall be taken when selecting problems
to guarantee that they are all of increasing difficulty and es-
sentially different.

Results
In this section, KBFS (k) is compared with the current
search strategies implemented in FF, namely: Enforced Hill-
Climbing and Best-First Search. Although FF is not any-
more the current state-of-the-art, it is a good representative,
usually employed as the baseline planner at different IPCs,
serving often as a starting point for building new planners.
In FF, the EHC algorithm is accompanied by a series of
important enhancements, mainly a goal agenda which de-
cides, for every planning task, the order in which the goals
shall be fulfilled, and helpful actions, a powerful forward
pruning technique which aims at focusing in the relevant ac-
tions, ignoring the rest. In case that EHC with these en-
hancements fails to find a plausible plan, FF resorts to BFS
turning off all these add-ons. Therefore, two versions of K-
Best-First Search have been coded to make the comparisons:
one where all these enhancements are turned off and another
one which counts with the goal agenda and helpful actions.
The first one is just termed KBFS (k) whereas the second
one will be denoted as Enhanced KBFS (k) or EKBFS (k)
for short. While EKBFS shall be compared with EHC, com-
parisons of KBFS will be done with respect to BFS. No di-
versified version of EHC is provided, since the goal of this
research is not to test diversifying by itself but reviewing the
search strategy implemented in FF with the aim of overcom-
ing its main difficulties.

For making the experiments as meaningful as possible,
various domains with rather different topologies have been
selected. According to Hoffmann (2005) the complexity of
various planning domains can be distinguished according to
various structural properties in two directions: on one hand,
domains where the heuristic function is likely to have local
minima are proven to be more than a challenge in compari-
son with those where the maximal exit distance (roughly, the
maximal number of steps to exit from a plateau) is bounded

Blocksworld Freecell Pipesworld Rovers
(61) (60) (50) (40)

EHC 51 48 4 40

EKBFS (5) 58/51 59/48 23/4 40/40

EKBFS (10) 57/50 59/48 21/4 40/40

EKBFS (50) 57/50 60/48 22/4 35/35

EKBFS (100) 56/49 59/48 23/4 34/34

BFS 45 59 20 21

KBFS (5) 44/41 58/57 20/19 20/20

KBFS (10) 47/43 58/57 20/19 20/20

KBFS (50) 50/45 59/58 18/17 21/20

KBFS (100) 52/45 59/58 17/17 21/20

Table 1: Number of problems solved (absolute/wrt) – hard-
est domains.

by some constant c; on the other hand, domains are clas-
sified in decreasing difficulty as follows: with unrecognized
dead-ends, recognized dead-ends, harmless and finally undi-
rected. We have selected domains falling in each case.

Since we are mainly interested in the hardest part of this
taxonomy with regard to exit distance, the following do-
mains where the FF heuristic estimation function is known
to induce local minima have been selected: Blocksworld-
arm, Pipesworld, Rovers and Freecell, everyone belonging
to a different class, namely: undirected, harmless, recog-
nized dead-ends and unrecognized dead-ends respectively.

Also, we examine whether E/KBFS (k) is still competitive
in the easiest cases with regard to exit distance, where FF
has previously shown an outstanding performance: Logistics
and Schedule. The first domain falls into the category of
undirected graphs and the latter has been tagged as having
recognized dead-ends.

On the other hand, KBFS (k) and EKBFS (k) were tested
with different widths, namely k = {5, 10, 50, 100}. All al-
gorithms were given 30 minutes per instance and were al-
lowed to use up to 1,8 Gb of RAM. Experiments were per-
formed with a monoprocessor Intel Pentium 2.9 GHz run-
ning Linux. The code running EHC and BFS is FF 2.3
which has been compiled with gcc and the optimization
flags turned on. KBFS and EKBFS were also programmed
on the same version of FF, just replacing the search algo-
rithms in search.c and leaving all the rest untouched.

Table 1 shows the number of problems solved in the more
difficult domains selected with every search algorithm. The
numbers shown for EHC and BFS denote the number of
problems solved in each domain. However, for EKBFS (k)
and KBFS (k) two numbers are given: the first one is the
absolute number of problems solved by the algorithm spec-
ified whereas the second is the number of problems solved
also by either EHC or BFS. Recall that while EKBFS shall
be compared with EHC, comparisons of KBFS will be done
with respect to BFS. Bold face typesetting has been selected
to highlight the best results.

Blocksworld

61 problems have been taken from the IPC2 (2000), Track 1
(Typed). Figure 2 shows the RTDs of EHC vs EKBFS (5).
Alternatively, Table 2 shows the intervals where either one

76

Figure 2: Run-Time Distribution of EHC and EKBFS (5) in
Blocksworld

Interval EHC EKBFS (5)

[0.00 , 0.20] (42, 0.02 , 0.03) (42, 0.06 , 0.07)

[0.22 , 5.41] (6 , 2.39 , 2.01) (6 , 0.47 , 0.31)

[6.43 , 6.55] (1 , 6.43 , –) (1 , 6.55 , –)

[18.25 ,1075.60] (2 ,554.16,737.42) (8 , 126.39 , 131.97)

[1510.05,1510.05] (0 , – , –) (1 ,1510.05, –)

Table 2: Blocksworld – Run-Time Distribution (#, µ, σ)

rtd(t) dominates the other or only one exists. In all tables,
data is shown as a triplet specifying the number of prob-
lems solved (#), mean (µ) and sampled standard deviation
(σ) of the random variable under study. Once again, bold
face typesetting has been used to highlight the dominating
distribution.

As it can be seen, after solving the easiest instances, EHC
is expected to be about 5 times slower than EKBFS (5).
More remarkably, EHC is only able to solve one problem be-
yond 32 seconds and it takes it 1075 seconds. Beyond that
point, EHC gets stagnated and does not solve more prob-
lems. In contrast, EKBFS clearly dominates EHC and solves
problems far faster for those cases that take more than 18.25
seconds: whereas EHC solves only the two aforementioned
cases, EKBFS (5) succeeds at solving 8 cases four times
faster. Moreover, it does still succeed at solving another very
difficult instance five minutes from the time bound, which
was unsolvable for EHC.

Of the 10 problems not solved by EHC, only 2 failed be-
cause the time bound was reached. The other 8 were termi-
nated because they took all the available memory, entirely
different to EKBFS (5) who never took all the memory but
failed on time. In other words, EHC suffers from severe
stagnation in this domain, so that the algorithm never re-
sorted to BFS for solving these problems. However, even
in that case, a diversified version, KBFS (100) is better than

Interval BFS KBFS (100)

[0.00 , 1.58] (30, 0.12 , 0.26) (30, 0.30 , 0.37)

[1.62 ,1021.17] (13, 220.78 , 288.31) (22, 140.62, 270.90)

[1282.22,1741.04] (2 ,1511.63, 324.43) (0 , – , –)

[6.00 , 12.00] (7 , 9.43 , 2.51) (7 , 9.43 , 2.51)

[16.00 , 258.00] (30, 98.73 , 60.99) (45, 84.93 , 65.34)

[266.00 , 348.00] (8 , 294.00 , 28.43) (0 , – , –)

Table 3: Blocksworld – Run-Time Distribution (above) and
Plan-Length Distribution (below) (#, µ, σ)

Interval EKBFS (5) EHC

[0.00 , 0.01] (0 , – , –) (6 , 0.01 , 0.01)

[0.02 , 15.85] (46, 4.12 , 5.02) (40, 2.01 , 3.77)

[16.01 , 40.00] (6 , 22.11 , 4.77) (2 , 37.52 , 3.51)

[54.39 ,976.23] (7 , 329.74, 386.57) (0 , – , –)

EKBFS(50) EHC

[8.00 ,105.00] (56, 40.86 , 24.97) (48, 42.67 , 26.68)

[106.00,132.00] (4 , 119.50, 14.46) (0 , – , –)

KBFS(100) BFS

[8.00 , 9.00] (5 , 8.40 , 0.55) (5 , 8.40 , 0.55)

[12.00 ,111.00] (54, 47.19 , 27.10) (50, 50.62 , 27.94)

[114.00,152.00] (0 , – , –) (4 , 129.75, 15.97)

Table 4: Freecell – Run-Time Distribution (above), Plan-
Length Distribution (middle and below) (#, µ, σ)

BFS in the number of problems solved (52 vs. 45) as shown
in Table 1 and also in run time and plan length as shown in
Table 3.

Freecell

The dataset with 60 problems from the IPC2 (2000, Typed)
was used. In this case, EHC fails at solving 20% of the
problems, as shown in Table 4. However, in all cases but
one, EHC exits with no solution instead of getting stagnated.
Hence, BFS is given an opportunity for solving those prob-
lems. Although EKBFS (5) is the fastest algorithm for the
most difficult instances (as shown in Figure 1, page 3), if
EKBFS (50) would have been employed (since this is the
one providing the best solution quality, as shown in the mid-
area of Table 4), it turns out that EKBFS (50) would have
taken 1.4 times, in the mean, more time than the combina-
tion EHC–BFS, just for solving those problems2. But, as Ta-
ble 4 shows, EKBFS (50) finds plans which are far shorter
than those found by either EHC or BFS.

In short, using just one algorithm, EKBFS (50), all prob-
lems are solved usually faster than its counterpart, EHC,
and yielding shorter plans. On the other hand, instead of
resorting to BFS, resorting to KBFS (100) seems far more
beneficial as shown in Table 4. Indeed, for plans having
more than 12 operators, the mean length found by BFS is
(50 × 50.62 + 4 × 129.75)/54 = 56.48, almost 10 steps
larger than those found by KBFS in the same interval, 47.19.

2This data is not shown in the tables and has been computed by
hand solely for those problems where EHC resorted to BFS.

77

Interval BFS EKBFS (5)

[0.00 , 0.01] (2 , 0.00 , 0.00) (2 , 0.01 , 0.01)
[0.02 , 0.02] (1 , 0.02 , –) (2 , 0.02 , 0.00)
[0.03 , 0.03] (2 , 0.03 , 0.00) (1 , 0.03 , –)
[0.04 , 0.05] (1 , 0.04 , –) (1 , 0.05 , –)
[0.09 ,1054.06] (14,214.63,327.94) (16, 37.06 , 44.43)
[1484.92,1484.92] (0 , – , –) (1 ,1484.92, –)

BFS EKBFS (100)

[5.00 , 5.00] (1 , 5.00 , –) (1 , 5.00 , –)
[8.00 , 10.00] (3 , 9.00 , 0.00) (4 , 8.75 , 0.71)
[11.00 , 110.00] (16, 36.80 , 23.23) (18, 36.39 , 24.55)

Table 5: Pipesworld – Run-Time Distribution (above) and
Plan-Length Distribution (below) (#, µ, σ)

Pipesworld

For making experiments in this domain, the propositional
dataset from IPC5 (2006) that contains 50 problems was
used.

In this domain, both EKBFS (5) and EKBFS (100) are
the algorithms, amongst all, that solve most problems, 23
in total, as shown in Table 1. More remarkably, they al-
most solve 6 times more problems than EHC. However, it
is worth noting that in this domain, EHC usually exits al-
most immediately without finding any solution (most of the
times in less than a second, though a few times it takes more
than a minute and in one case, almost 25 minutes) thus, giv-
ing BFS an opportunity for solving those problems. In other
words, EHC never experiences stagnation. This is not the
case, however, for BFS that is only able to solve 20 cases,
this is, 40% of the problems. It has been observed that the
problems solved by EHC are also solvable by BFS, so that
the final number of problems that can be solved with the
combination EHC–BFS is exactly 20. Hence, just using one
algorithm, either EKBFS (5) or EKBFS (100), 3 additional
problems can be solved. Since EHC solves so few prob-
lems, a direct comparison is made between an EKBFS (k)
algorithm and the combination EHC–BFS.

Figure 3 shows the Run-Time Distribution of BFS and
EKBFS (5). As it can be seen, EKBFS (5) can be expected
to be immediately faster (i.e., even for low values of the run
time) than BFS. Table 5 shows the RTD and PLD of BFS
versus EKBFS (5) and EKBFS (100) respectively. The vast
majority of problems solved by BFS and EKBFS (5) fall
within the interval of time [0.09, 1054.06] seconds. Before
that, the time differences could not be considered signifi-
cant (because they happen before the first 0.1 second) and
within the aforementioned interval, EKBFS (5) is almost 6
times faster than BFS. Also, EKBFS (100) provides solu-
tion lengths which are slightly better than those provided by
BFS.

Rovers

In this case, the experiments were performed with the propo-
sitional dataset of the IPC5 (2006) that is made of 40 differ-
ent planning tasks.

It turned out that in this domain, EHC succeeds at solv-
ing all problems, as shown in Table 1. Therefore, BFS is

Figure 3: Run-Time Distribution of BFS and EKBFS (5) in
Pipesworld

Interval EKBFS(5) EHC

[0.00 , 57.45] (33, 4.71 , 12.30) (33, 3.39 , 9.97)
[73.75 , 652.65] (7 ,381.86 ,245.23) (3 , 279.22 ,281.27)
[784.77,1397.37] (0 , – , –) (4 ,1088.26, 264.36)

EKBFS(10) EHC

[8.00 , 10.00] (3 , 8.67 , 1.15) (3 , 8.67 , 1.15)
[11.00 , 22.00] (4 , 17.50 , 4.65) (4 , 18.00 , 3.74)
[26.00 , 28.00] (2 , 27.00 , 1.41) (2 , 28.00 , 0.00)
[31.00 , 41.00] (6 , 34.33 , 3.88) (5 , 35.40 , 2.70)
[42.00 , 380.00] (25, 134.40, 97.23) (26, 141.84 ,107.84)

Table 6: Rovers – Run-Time Distribution (above) and Plan-
Length Distribution (below) (#, µ, σ)

never invoked over any planning task3. Thus, a compari-
son is performed solely between EHC and EKBFS (k). Fig-
ure 4 shows how the difference between EHC and EKBFS
(5) diminishes with time. The cross-over point happens at
t = 57.45 seconds. From that point on, EKBFS (5) is able to
solve the remaining cases (which are the most difficult ones)
in 381.86 in the mean. However, EHC takes, just for solving
these problems (3× 279.22+ 4× 1088.26)/7 = 741.52. In
other words, while EHC seems better suited for those prob-
lems that are expected to take less than a minute, EKBFS
is far better suited for solving the most difficult instances.
Besides, EKBFS (10) is able to get plans which are slightly
better in all cases as shown in Table 6.

Logistics

The testset used in Track 1 in the IPC2 (2000), Typed, con-
sisting of 79 problems has been used. Table 7 shows the

3Nevertheless, the results shown in Table 1 indicate that KBFS
(k) is still competitive with BFS. In addition, KBFS (5) solves
problems at a similar pace than BFS while KBFS (100) can find
plans which are moderately shorter.

78

Figure 4: Run-Time Distribution of EHC and EKBFS (5) in
Rovers

Schedule Logistics

(84) (79)

EHC 84 79
EKBFS (5) 84/84 77/77
EKBFS (10) 84/84 77/77
EKBFS (50) 84/84 78/78
EKBFS (100) 84/84 75/75

BFS 32 58
KBFS (5) 35/32 60/58
KBFS (10) 36/32 63/58
KBFS (50) 34/26 62/54
KBFS (100) 33/24 55/49

Table 7: Number of solved problems (absolute/wrt) – easiest
domains

number of problems solved in the easiest domains of the
taxonomy suggested by Hoffmann (Hoffmann 2005). The
data are summarized in the same way as in Table 1.

As it can be seen, EHC suffices to solve all problems in
the Logistics domain, so that the results with BFS are given
only for the sake of completeness. Moreover, the algorithm
is far faster than any EKBFS (k) variation. It has been ob-
served that the larger k, the slower the resulting execution
of EKBFS (k). Table 8 shows the differences in run time
with the fastest version of EKBFS (k), EKBFS (5). Clearly,
EKBFS (k) behaves worse for the most difficult instances
and takes longer for solving them. In fact, the difference in
time does not pay off for the improvements on quality. Ta-
ble 8 shows that the differences in solution quality are mod-
erate though EKBFS (50) shows a clear trend to improve on
the harder problems. Indeed, it has been observed that in the
last intervals, EKBFS (50) is able to output plans which are
a few tens shorter.

An explanation to this phenomenon is that while the FF

Interval EHC EKBFS (5)

[0.00 , 15.80] (79, 1.20 , 2.43) (58, 2.04 , 3.18)
[16.35 ,558.60] (0 , – , –) (19, 105.50, 141.62)

EHC EKBFS (50)

[8.00 , 42.00] (16, 25.69 ,10.04) (16, 25.69 , 10.04)
[44.00 , 45.00] (2 , 44.00 , 0.00) (2 , 44.50 , 0.71)
[46.00 ,207.00] (48, 132.77 , 48.31) (48, 127.92, 46.21)
[209.00,211.00] (1 ,209.00 , –) (1 , 211.00 , –)
[213.00,223.00] (3 ,221.00 , 2.00) (3 , 213.67 , 0.58)
[224.00,226.00] (1 ,224.00 , –) (1 , 226.00 , –)
[228.00,250.00] (6 ,241.50 , 6.28) (7 , 235.71 , 7.80)
[251.00,281.00] (2 , 266.00, 21.21) (0 , – , –)

Table 8: Logistics – Run-Time Distribution (above) and
Plan-Length Distribution (below) (#, µ, σ)

Figure 5: Plan-Length Distribution of EHC and EKBFS (50)
in Schedule

heuristic is very well-informed in this domain (so well that
there are no significant big plateaus and no dead-end at all),
the EKBFS (k) algorithm is often losing sight of the goal
switching constantly among paths. This effect is similar to
shuffling the OPEN list and results in a poorer performance.
Nevertheless, the problems that remained unsolved failed on
time. This is, the OPEN list never grew as to exceed the
available memory.

Schedule

The Typed dataset from IPC2 (2000) with 84 problems has
been used in the last set of experiments. As it is shown in
Table 7, EHC and all EKBFS (k) variations succeed at solv-
ing all cases. Hence, FF would have never resorted to BFS
to solve any planning task on this domain. Nevertheless,
the results on the number of problems solved by BFS and
KBFS (k) are given for the sake of completeness —note that
KBFS (k) do always solve more problems than BFS because
Schedule has dead ends so that diversity helps.

As it was observed in the preceding domain, EHC turned

79

out to be the fastest algorithm in this domain. While EHC
solves all problems in 0.07 seconds in the mean, EKBFS
(5) takes 0.43 seconds also in the mean. However, the same
version of EKBFS significantly and consistently improves
the solution quality of all plans found by EHC. Indeed, this
is true for all values of k tested. Figure 5 shows the Plan-
Length Distribution for k = 5 and 100. Other values of k
fell between these two curves.

Conclusions and future work
The search strategy implemented in FF starts by using EHC.
While this algorithm is known to have an outstanding be-
haviour in the easiest domains, it usually either gets stag-
nated or it just exits with no solution in the most difficult
domains and, in case it finds any solution, quality can easily
be improved many times. The explanation for this behaviour
can be succintly summarized as follows: first, because the
only way for EHC to escape from a plateau consists of fully
traversing it so that stagnation can easily happen; and sec-
ondly, because it implements irrevocable selection policies
so that once a node has been chosen the decision is never
reviewed though any of the siblings might have led to a bet-
ter solution. Other researchers have tried to overcome these
difficulties suggesting the use of random restarts along with
other ideas (e.g., LPG (Gerevini and Serina 2002) and Iden-
tIdem (Coles, Fox, and Smith 2007)). In this paper, diversity
is proposed, instead, as a natural mean for overcoming the
same problems. After considering the possibility of using
depth-first algorithms that implement the idea of diversity,
they have been discarded either because further research is
still needed or because our preliminary results were discour-
aging. However, since it has been empirically observed that
memory is not the limiting factor (even with time bounds
of 1800 seconds/problem), an approach based on best-first
search has been suggested instead.

On the other hand, because deriving conclusions from the
raw data generated by the execution of a large number of
algorithms (10 different algorithms were compared in this
work) on a large set of problems (in total, 374 problems in
6 different domains) would be very cumbersome, or even
impossible, a different procedure has been advocated here.
Computing cumulative distribution functions and document-
ing the cross-over points where one cdf dominates another
seems very useful for deriving conclusions on the general
behaviour of the algorithms with regard to a wide variety of
random variables with respect to some resource bounds.

In the experiments, it has been observed that while both
EHC and BFS can suffer from severe stagnation (e.g., the
Blocksworld domain), EKBFS (k) and KBFS (k) do solve
more problems. In the hardest domains, there are always
values of k that significantly improve on the run time and/or
the plan length. More specifically, low values of k seem
better suited for finding solutions faster though the higher
values of k usually led to better solution quality. With re-
gard to the easiest domains (where the minimal exit distance
is bounded), EHC clearly wins being so fast that it leaves no
room for improvement, whereas the presence of dead-ends
in the Schedule domain served for significantly and consis-
tenly improving the solution quality of almost all problems

tested.
Lines currently undergoing research include automatic

ways to dynamically adjust the value of k and to experiment
with other planners, more remarkably with LAMA (Richter
and Westphal 2008).

Acknowledgments

The reviewers of this paper significantly improved the qual-
ity of this work by making an outstanding review both in
terms of quality and quantity. This work has been partially
supported by the Spanish MICINN under project TIN2008-
06701-C03-03

References

Bonet, B., and Geffner, H. 2001. Planning as heuristic
search. Artificial Intelligence 129(1–2):5–33.

Coles, A.; Fox, M.; and Smith, A. 2007. A new local-search
algorithm for forward-chaining planning. In Proceedings
of the Seventeenth International Conference on Automated
Planning and Scheduling (ICAPS-07), 89–96.

Felner, A.; Kraus, S.; and Korf, R. E. 2003. KBFS: K-
best-first search. Annals of Mathematics and Artificial Intel-
ligence 39:19–39.

Gerevini, A., and Serina, I. 2002. LPG: A planner based on
local search for planning graphs. In Proceedings of the Sixth
International Conference on Artificial Intelligence Planning
and Scheduling (AIPS-02), 13–22.

Harvey, W. D., and Ginsberg, M. L. 1995. Limited discrep-
ancy search. In Proceedings of the Fourteenth International
Joint Conference on Artificial Intelligence (IJCAI-95), 607–
613.

Haslum, P.; Bonet, B.; and Geffner, H. 2005. New admis-
sible heuristics for domain-independent planning. In Pro-
ceedings of the Twentieth National Conference on Artificial
Intelligence (AAAI-05), 1163–1168.

Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. Journal of
Artificial Intelligence Research 14:253–302.

Hoffmann, J. 2005. Where ”ignoring delete lists” works:
Local search topology in planning benchmarks. Journal of
Artificial Intelligence Research 24:685–758.

Hoos, H. H., and Stützle, T. 2005. Stochastic Local Search:
Foundations and Applications. San Francisco, CA, USA:
Morgan Kaufmann.

Korf, R. E. 1996. Improved limited discrepancy search. In
Proceedings of the Thirteenth National Conference on Arti-
ficial Intelligence (AAAI-96), 286–291.

Meseguer, P. 1997. Interleaved depth-first search. In Pro-
ceedings of the Fifteenth International Joint Conference on
Artificial Intelligence (IJCAI-97), 1382–1387.

Pearl, J. 1984. Heuristics. Reading MA: Addison-Wesley.

Richter, S., and Westphal, M. 2008. The LAMA planner
using landmark counting in heuristic search. In The Interna-
tional Planning Competition (IPC-08).

80

