
GPU Exploration of Two-Player Games with Perfect Hash Functions

Stefan Edelkamp and Damian Sulewski
University of Bremen

{edelkamp,sulewski}@tzi.de

Cengizhan Yücel
Dortmund University of Technology
cengizhan.yuecel@googlemail.com

Abstract

In this paper we improve solving two-player games by com-
puting the game-theoretical value of every reachable state.
A graphics processing unit located on the graphics card is
used as a co-processor to accelerate the solution process. We
exploit perfect hash functions to store the game states effi-
ciently in memory and to transfer their ordinal representation
between the host and the graphics card.
As an application we validate Gasser’s results that Nine-Men-
Morris is a draw on a personal computer. Moreover, our so-
lution is strong, while for the opening phase Gasser only pro-
vided a weak solution.

Introduction
Thanks to a continuous improvement algorithms, but also
because of the increasing powers of the central process-
ing units (CPUs), search engines have been able to success-
fully cope with complexity and tackle a wide range of prob-
lems. Unfortunately, it seems that we cannot rely anymore
on Moore’s law that predicts doubling of the efficiency of
the hardware each 18 months. The answer of the manufac-
turers to the Moore’s law failure is focusing on further devel-
opment of multi-core CPU systems that essentially contain
multiple processors in one. These parallel processors are
already part of the standard desktops and laptops. Such a
parallelism for the masses offers immense opportunities for
the improvement of search algorithm.

In the last few years there is a rising trend to exploit the
graphics processing unit (GPU) not only for image process-
ing but as a co-processor to support the CPU. A suitable
graphics processor is frequently referred to as a general pur-
pose graphics processing unit.

While current multi-core CPUs have up to 12 processor
cores, current many-core GPUs comprise several hundreds
of cores. To exploit their parallel processing power, pro-
gramming interfaces like CUDA, Stream, or OpenCL have
been developed. Significant speed-ups wrt. CPU calcula-
tions have been obtained in mathematics (Göddeke et al.
2008) or medicine (Owens et al. 2007).

In this work we strongly solve one prominent two-player
zero-sum game on the GPU, i.e., assuming optimal play,

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

the solvability status of each reachable state is computed.
We use perfect hash functions to save memory demands and
to exchange the state information with the GPU efficiently.
As far as the perfect hash function and its inverse are effi-
ciently computable and the bitvector representation of the
state space at least partially fits in RAM, the approach of
ranking, unranking, expanding, and evaluating states on the
GPU is general to many two-player zero-sum board games.
As our application domain, we provide a strong solution
to the game Nine-Men-Morris utilizing the GPU. For this
problem ordinary hashing with full state storage would very
likely exceed RAM. Space-efficient alternatives like Bloom
filters (1970) are lossy and may yield a wrong result, while
state vector sharing, e.g., in BDDs (Bryant 1986), often in-
duces unacceptable large run times.

The paper is structured as follows. First, we recall perfect
hashing that will be used to address states space-efficiently
and to move state information between the host and the
graphics card. In this context we introduce perfect hashing
with multinomial coefficients and prove its correctness. To
motivate the design of this approach we briefly review the
architecture of modern GPUs. Next, we apply parallel BFS
on the GPU and turn to solving Nine-Men-Morris with par-
allel retrograde search. We compare exploration results on
the GPU with ones on the CPU and draw conclusions.

Perfect Hashing
Game states are often represented as a vector of variable as-
signments, which – considering a huge number of states –
can consume a sizable amount of space. An apparent al-
ternative are perfect hash functions (Knuth 1998, S. 513 ff.),
which reduce the vector representation to an ordinal number.

More formally, a hash function is a mapping h of a set of
all possible game states U to {0, . . . ,m− 1} with |U | ≥ m.
The set of reachable game states S ⊆ U is often smaller.
A hash function h : S 7−→ {0, . . . ,m − 1} is perfect, if it
is injective, and minimal, if |S| = m, i.e., minimal perfect
hash functions bijectively map m states to {0, . . . ,m− 1}.

The inverse of a perfect hash function is well defined
through the injectivity of the mapping, for practical pur-
poses, similar to computing the hash function itself, it should
also be determined efficiently; best in time linear to the state
vector size for a fast reconstruction given a hash value. In
the case of invertible perfect hash functions, we often speak

23

Proceedings of the  Third Annual Symposium on Combinatorial Search (SOCS-10)



of ranking and unranking.
As hash conflicts are avoided, the state information can

also be assigned implicit to the address of a bitvector yield-
ing a state space representation with only 1 bit per state.

Perfect hash functions have been used to compress state
vectors for permutation games like the (n2 − 1)-Puzzle and
the Pancake Problem (Korf and Schultze 2005; Myrvold
and Ruskey 2001; Mares and Straka 2007), and selection
games like Peg Solitaire and Frogs-and-Toads (Edelkamp,
Sulewski, and Yücel 2010). In the latter work binomial hash
functions as a precursor to multinomial hashing is applied.

Multinomial coefficients can be used to compress state
vectors sets with a fixed but permuted value assignment, e.g.,
board games state (sub)sets where the number of pieces for
each player does not change. For example, all state vec-
tors of length 6 with 3 bits set result in the following perfect
mapping:

Rank State Rank State Rank State Rank State
0 111000 5 101010 10 011100 15 010011
1 110100 6 101001 11 011010 16 001110
2 110010 7 100110 12 011001 17 001101
3 110001 8 100101 13 010110 18 001011
4 101100 9 100011 14 010101 19 000111

The intuition is that ranking adds numbers of remaining
paths in a directed grid graph. Any state corresponds to a
path that starts from root (6, 3) and ends in sink (0, 0) and
each node is assigned to some binomial coefficient, deter-
mining the number of remaining paths to (0, 0). Given a
path, its ordinal representation can be inferred by accumu-
lating the numbers that label nodes below it, where below
is defined as following an edge for zero-bit when the state
vector enforces following an edge for a one-bit.

For p players in a game on n positions we use ki with
1 ≤ i ≤ p to denote the number of game pieces owned by
player i, and kp+1 for the remaining empty positions.
Definition 1 For n, k1, k2, . . . , km ∈ N with n = k1 +k2 +
. . . + km the multinomial coefficient is defined as(

n

k1, k2, . . . , km

)
:=

n!
k1! · k2! · . . . · km!

.

Since
∑p+1

i=0 ki = n we can deduce value kp+1 given
k1, k2, . . . , kp. We present multinomial hashing for p = 2
but the extension to three and more players is intuitive.

We will write
(

n
k1,k2

)
for
(

n
k1,k2,k3

)
with k3 = n− (k1 +

k2) and distinguish pieces by enumerating their colors with
1, 2, and 0 (empty).

Let Sk1,k2 be the set of all possible boards with k1 pieces
of color 1 and k2 pieces in color 2. The computation of
the rank for states in Sk1,k2 is provided in Algorithm 1.
As above, the intuition for procedure Rank is to walk down
through a 3-dimensional grid graph while accumulating the
number of paths below the current one that reaches the sink.
It defines hk1,k2 via counting with multinomial coefficient.
For each position i we check, if a 2 (line 3), a 1 (line 5) or a
0 (line 9) is present in the state vector.
• If a 2 is found, the value in variable ltwos is decremented

by 1, while r remains unchanged.

Algorithm 1 Rank
Input: Game state vector: state[0, . . . , n− 1],

number of pieces in color 1: lones ,
number of pieces in color 2: ltwos

Output: Rank: r ∈ {0, . . . , |S|}
1: i ← 0, r ← 0
2: while i < n do
3: if state[i ] = 2 then
4: ltwos ← ltwos − 1
5: else if state[i ] = 1 then
6: if ltwos > 0 then
7: r ← r +

(
n−i−1

lones ,ltwos−1

)
8: lones ← lones − 1
9: else

10: if ltwos > 0 then
11: r ← r +

(
n−i−1

lones ,ltwos−1

)
12: if lones > 0 then
13: r ← r +

(
n−i−1

lones−1,ltwos

)
14: i ← i + 1
15: return r

• In case of a 1, with the according multinomial coefficient
we count the number of assignments, that have been vis-
ited and that contain a 2 at the current position. This is
done only if there are still remaining 2s (ltwos > 0). Since
we have seen a 1, variable lones is decremented by one.

• If a 0 is processed, we skip all visited 2s as long as ltwos >
0, and all 1s up to the current position, if lones > 0.

Theorem 1 The hash function defined in Algorithm 1 is bi-
jective.

Proof Let hk1,k2 : Sk1,k2 7−→ N be the hash function de-
fined by Algorithm 1. We show: 1) for all s ∈ Sk1,k2

we have 0 ≤ hk1,k2(s) ≤
(

n
k1,k2

)
− 1; and 2) for all

s, s′ ∈ Sk1,k2 : s 6= s′ implies hk1,k2(s) 6= hk1,k2(s′).
1) As r is initialized to 0 and increases monotonically, we

only show the upper bound. The values that are added to
r are value1 =

(
n−i−1

ltwos ,lones−1

)
and value2 =

(
n−i−1

ltwos−1,lones

)
.

These values depend on the position (i + 1) of the cur-
rently considered state vector entry and on the number of
non-processed pieces of color 1 (lones ) and color 2 (ltwos ).
We additionally observe that the number of non-processed
pieces referred to in the bottom line of the expressions de-
creases monotonically.

Similar to binomial coefficients, the coefficients of the ex-
pansions (a + b + c)n also form a geometric pattern. In
this case the shape is a three-dimensional triangular pyra-
mid, or tetrahedron. Each horizontal cross section of such
tetrahedron is a triangular array of numbers, and the sum of
three adjacent numbers in each row gives a number in the
following row. In this structure we easily observe that for all
n ∈ N+, and all k1, k2, k3 ∈ N with n = k1 + k2 + k3 we
have (

n

k1, k2, k3

)
≥
(

n− 1
k1, k2, k3

)

24



and for all n, k1 ∈ N+, k2, k3 ∈ N with n = k1 + k2 + k3 :(
n

k1, k2, k3

)
≥
(

n− 1
k1 − 1, k2, k3 + 1

)
,

Hence, value1 and value2 are maximized, if the first posi-
tion of the state vector entry is maximized, followed by the
second and so forth. Hence r is maximal, if at the first k3 po-
sitions we have only 0s, while in the following k1 positions
we have only 1s and the remaining k2 positions contain 2s.

As for such maximal r we have 0s for the first k3 po-
sitions, the according values lones and ltwos in the corre-
sponding multinomial coefficient are constant. These posi-
tions thus add the following offset ∆0,max to r (k1 = lones

and k2 = ltwos ):
k3∑

i=1

((
n− i

k1, k2 − 1, k3 + 1− i

)
+
(

n− i

k1 − 1, k2, k3 + 1− i

))
At the following k1 positions for such maximal r all 1s

are scanned, while the value k2 remains constant at ltwos .
Value lones matches k1 initially and is decremented by 1 for
each progress in i. Obviously, 0s are no longer present, such
that the offset ∆1,max equals

k1∑
i=1

(
n− k3 − i

k1 + 1− i, k2 − 1, 0

)
As the multinomial coefficient can be expressed as a product
of binomial coefficients.(

n

k1, k2, . . . , kr

)
=
(

k1 + k2

k2

)
·. . .·

(
k1 + k2 + . . . + kr

kr

)
we rewrite the summands for ∆0,max to

k3∑
i=1

((
k1 + k2 − 1

k2 − 1

)(
n− i

k3 + 1− i

))
and

k3∑
i=1

((
k1 + k2 − 1

k2

)(
n− i

k3 + 1− i

))
.

For binomial coefficients we have(
n

k

)
=
(

n− 1
k − 1

)
+
(

n− 1
k

)
and

k3∑
i=1

(
n− i

k3 + 1− i

)
=

k3∑
i=1

(
n− k3 − 1 + i

n− k3 − 1

)
.

Using the identity
∑n

i=k+1

(
i
k

)
=
(
n+1
k+1

)
−1 this implies that

∆0,max is equal to

k3∑
i=1

((
n− i

k3 + 1− i

)
·
((

k1 + k2 − 1
k2 − 1

)
+
(

k1 + k2 − 1
k2

)))

=
k3∑

i=1

((
n− i

k3 + 1− i

)(
k1 + k2

k2

))
=

(
k1 + k2

k2

)
·
((

n

n− k3

)
− 1
)

Algorithm 2 Unrank
Input: Rank r,

number of pieces in color 1: lones ,
number of pieces in color 2: ltwos

Output: Game state vector: state[0 . . . n− 1]
1: i ← 0
2: while i < n do
3: if ltwos > 0 then
4: value2 ←

(
n−i−1

lones ,ltwos−1

)
5: else
6: value2 ← 0
7: if lones > 0 then
8: value1 ←

(
n−i−1

lones−1,ltwos

)
9: else

10: value1 ← 0
11: if r < value2 then
12: state[i ]← 2
13: ltwos ← ltwos − 1
14: else if r < value1 + value2 then
15: state[i ]← 1
16: r ← r − value2

17: lones ← lones − 1
18: else
19: state[i ]← 0
20: r ← r − (value1 + value2)
21: i ← i + 1
22: return state

and ∆1,max is equal to

k1∑
i=1

((
k1 − i + 1
k1 − i + 1

)(
k1 + k2 − i

k2 − 1

)(
k1 + k2 − i

0

))

=
k1∑

i=1

(
k1 + k2 − i

k2 − 1

)
=

(
k1 + k2

k2

)
− 1.

Hence, the maximal possible value for r is

rmax = ∆0,max + ∆1,max

=
(

k1 + k2

k2

)
·
((

n

n− k3

)
− 1
)

+
(

k1 + k2

k2

)
− 1

=
(

k1

k1

)(
k1 + k2

k2

)(
n

k3

)
− 1

=
(

n

k1, k2, k3

)
− 1.

2) Consider two states s1, s2 ∈ Sk1,k2 and the smallest
possible index in which the two states differ, i.e.,

i ′ := min {i | 0 ≤ i ≤ (n− 1) ∧ states1 [i ] 6= states2 [i ]}
The values of r computed up to i′ are the same. Let

k′1 ≤ k1 and k′2 ≤ k2 be the remaining pieces of the re-
spective color. We have rs1,i′ = rs2,i′ , where rs,i′ denotes

25



the value r computed for state s before evaluating position
i′. At position i′ we have the following three cases.

In the first case, states1 [i ′] = 0 and states2 [i ′] = 1. The
difference of the r values is

rs1,i′+1 = rs2,i′+1 +
(

n− i′ − 1
k′1 − 1, k′2

)
Following the above derivations, we know that rs2 increases
by at most

(
n−i′−1

k′1−1,k′2

)
− 1 in the (n − i ′ − 1) remaining

positions with (k′1−1) and k′2 pieces of the according color,
such that rs1,j 6= rs2,j for j > i ′.

In the second case, we have states1 [i ′] = 0 and
states2 [i ′] = 2. This implies

rs1,i′+1 = rs2,i′+1 +
(

n− i′ − 1
k′1 − 1, k′2

)
+
(

n− i′ − 1
k′1, k′2 − 1

)
Value rs2 increases by at most

(
n−i′−1

k′1,k′2−1

)
−1 on the remain-

ing (n − i ′ − 1) positions with k′1 and (k′2 − 1) pieces of
the according color. We again have rs1,j 6= rs2,j for j > i ′.

The remaining case is states1 [i ′] = 1 and states2 [i ′] = 2
with

rs1,i′+1 = rs2,i′+1 +
(

n− i′ − 1
k′1, k′2 − 1

)
,

where the argumentation of the second case applies. �

Algorithm 2 is the inverse of Algorithm 1 and used to
compute h−1

k1,k2
in form of assignments to a state vector. As

the Unrank procedure subtracts the multinomial coefficients
that match the ones that have been added in Rank, the inverse
h−1

k1,k2
is computed correctly.

GPU Basics
Starting from the 1970s where computing devices displayed
text only, graphics standards have grown over the years. In
1987, SVGA and resolutions of 800×600 together with sev-
eral colors have been obtained, followed by XVGA, UVGA,
SXGA and UXGA etc. (Eickmann 2007). To cope with the
computational requirements, in 1999, NVIDIA presented
a graphics accelerator that autonomously transformed data
into a 2D image. Enlarging the capabilities of the trans-
formations has lead to highly parallel systems. In about
2002/03 first ideas were born to use GPUs for more than
only graphics processing1.

Current GPUs obey a SIMD-architecture (Single Instruc-
tion, Multiple Data), that is, all processors execute the same
code on different portions of the data. The cores are called
streaming processors (SP). Take for example the NVIDIA
GeForce GTX 285 architecture, where a streaming multi-
processor (SM) is composed of 8 SPs and every 3 SMs give
a TPC unit (Texture/Thread Processing Cluster). One GPU
has 10 TPC units. For the computation, each SP has one
Floating Point Unit and two Arithmetic Logic Units, while
a SM contains two Special Function Units and local shared
memory, the SRAM, that is exclusively used by its SPs. Ad-
ditionally, each SP has its own registers, which allow an in-
dependent execution of so-called Threads within one SM.

1
www.extremetech.com/article2/0,2845,1091392,00.asp

Algorithm 3 GPU Breadth-First Search
Input: Set hashcpu , initialized with hash value of initial

state
1: while hashcpu 6= ∅ do
2: hashgpu ← hashcpu

3: for all r ∈ hashgpu do in parallel
4: s← Unrank(r)
5: for all s′ ∈ successors(s) do
6: successorsgpu ← successorsgpu ∪Rank(s′)
7: hashcpu ← successorsgpu

8: for all r ∈ hashcpu do
9: Update information on BFS-Layer

10: Remove duplicates from hashcpu

11: return

The top level memory, called video RAM (VRAM), is often
limited to 1.5 GB and preferably accessed streamed2 The
number of instructions per second as well as the throughput
of data are considerably large (NVI 2008).

Based on the GPU’s parallel hardware design and on its
hierarchical memory, there are limitations to GPU program-
ming. E.g. due to the SIMD architecture large conditional
branches should be avoided.

CUDA, a programming interface from NVIDIA, uses a
hierarchy of threads that are clustered into thread blocks,
which in turn are clustered into a grid. Threads within a
block can be synchronized. The instructions are written in a
kernel, whose call has to specify the dimensions of the grid.
In order to select individual data items to work on, threads
can extract their own ID.

State Space Search on the GPU
The design of a search algorithm (and the subsequent retro-
grade analysis) is related to how parallelism should be ex-
ploited on a GPU. Hash tables are good if they distribute,
so that we prefer them not to stay on the graphics card. On
the other hand, the computation of values (at least consid-
ering this amount of data) is a localized, comparably hard
operation that should be parallelized. Duplicate detection is
delayed. Moreover, depth-first search is inherently sequen-
tial, so that we prefer a breadth-first exploration for which
all successors in a layer can be computed in parallel.

On the CPU we, therefore, maintain a set hashcpu , that
contains all hash values for the actual BFS layer, which is ei-
ther maintained in RAM or on external media. On the GPU,
we maintain hashgpu and a multi-set successorsgpu with
hash values of the generated successors in the VRAM.

Cooperman and Finkelstein (1992) have shown that 2 bits
per state are sufficient to distinguish four types of infor-
mation, unreached, reached-and-to-be-processed, reached-
and-to-be-processed-later and reached-and-processed in a
BFS algorithm. Algorithm 3 sketches such BFS on the GPU,
where duplicates are eliminated by the CPU using a bitvec-

2There are NVIDIA offerings, e.g., NVIDIA Tesla C1060
comes with 4 GB of VRAM.

26



Figure 1: Nine Men’s Morris.

tor representation of the state space.3 In the I/O setting, also
investigated by Korf (2008), we sort successor ranks before
merging them with the information stored on disk.

Nine-Men-Morris
The game Nine Men’s Morris (see Fig.1) has a board of three
concentric squares that are connected at the mids of their
sides. The 12 corner and 12 side intersections are the game
positions (see Figure). Initially, each player picks 9 pieces
in one color. The game divides into an opening (I), a middle
(II) and an ending (III) phase. In all phases a player may
close mills, i.e., align three pieces in his color horizontally
or vertically, ever across the diagonals where no lines are
marked. In this case, he can remove one of the opponent’s
pieces from the board provided that it is not contained in a
mill (for the case of having two mills closed in one move,
only one piece can be taken, and if the opponent only has
mills, they can be destroyed). Once a piece is removed from
the board it takes no further part in the game. The game
ends when one player is reduced to two pieces and so can no
longer form a mill. A player who is blocked, i.e. is unable
to move any piece, also loses the game.

The opening phase begins with an empty board. Each
player has nine pieces which are placed one at a time in turn
on any vacant point on the board until both have played all
nine. The middle phase starts when all the pieces have been
used. Play continues alternately with the opponents moving
one piece to any adjacent point.

Once a piece is removed from the board it takes no fur-
ther part in the game. Firstly, once a mill is formed it may
be opened by moving one piece from the line and closed by
returning it to its original position in the next move. Alterna-
tively, in a running mill opening one mill will close another
one so that an opponent’s piece is removed on every turn.

The ending phase allows a player with only three pieces
to jump, i.e. to move one piece to any empty point on the
board regardless of position. The other player must continue
to move normally unless both are reduced to three pieces.

By an exhaustive enumeration on a parallel architecture,
the game was shown to be a draw by Gasser (1996), but his
results have never been validated (Gasser himself called for

3Experiments show that storing the bitvector on the GPU yields
inferior results, since random access to the VRAM is slow.

Figure 2: Partitioning for Phases II and III.

an independent proof). He partitioned the state space in sets
Sk1,k2 , which contains k1 pieces of the first player, k2 pieces
of the second player and n− (k1 + k2) empty intersections.
Obviously, Sk1,k2 and Sk2,k1 are symmetrical, so that it is
sufficient to consider Sk1,k2 with k1 ≥ k2 only. We inherit
Gasser’s organizational structure, but address states in the
sets Sk1,k2 via multinomial perfect hash functions.

After generating the state space, the game is solved
bottom-up. As the number of pieces in the phases II and
III can only decrease, Gasser has applied such retrograde
analysis to these two phases. For phase I, however, he ap-
plied AlphaBeta pruning, which weakly solved the game.
In contrast, we strongly solve it, and determine the game-
theoretical value for each reachable game state.

While for acyclic two-player games 2 bits are sufficient to
encode won, lost and draw positions and to conduct a retro-
grade analysis, Nine-Men-Morris requires a progress mea-
sure to avoid infinite computations. We adapt Gasser’s 1
byte encoding.

The partitioning in Fig. 2 indicates that for i, j ∈ {1, 2}
and i 6= j predecessors of Sk1,k2,i (Player i to move) are
contained either in Sk1,k2,j or, if player j has closed a mill,
in Sk1+1,k2,j (given i = 1) or Sk1,k2+1,j (given i = 2).

Scanning Fig. 2 from left to right may be interpreted
as a variant of space-efficient frontier search (Korf 1999;
Korf and Zhang 2000). To analyse Sk1,k2 with k1 > 3 or
k2 > 3 we thus only require the results left to Sk1,k2 to be
present. Due to symmetry, Sk1,k2 with k1 < k2 needs not to
be considered again, so that a copy from Sk1,k2 suffices to
evaluate a state.

For the encoding of a rank r, 34 bits are sufficient, so
that a 64-bit integer suffices to contain all state information.
This integer actually stores pairs (r, v) with the additional
state information v having 8 bits. The remaining bits are

27



Algorithm 4 BFS for Phase I
1: reached ← ∅
2: for t← 1 to 4 do
3: reached ← reached ∪ (d t

2e, b
t
2c, t)

4: Mark all states in bitsd t
2 e,b

t
2 c,t with reached

5: for t← 5 to 18 do
6: for all (k1, k2, t

′) ∈ reached with t′ = t− 1 do
7: rankscpu ← ∅
8: for i← 0 to

(
n

k1,k2

)
− 1 do

9: if bitsk1,k2,t′(i) = reached then
10: rankscpu ∪Rank(i)
11: expandGPU (ranksgpu)
12: for all r′ ∈ rankscpu do
13: Determine k′1, k

′
2 according to r′

14: if (k′1, k
′
2, t) /∈ reached then

15: reached ← reached ∪ (k′1, k
′
2, t)

16: Initialize vector bitsk′1,k′2,t with ’not reached’
17: Mark r′ in bitsk′1,k′2,t with ’reached’

used to store numbers of successors. The GPU expects pairs
(r, v) for expansion and returns triples (r′, v′, c), where c is
the number of successors for the state represented in r′ (still
fitting into 64 bits). The CPU reads value c if needed for
encoding r′ more efficiently.

Phase I is not completely analyzed in Gasser (1996). Ar-
guing that closing mills is unfortunate, his analysis was re-
duced to games with 8 or 9 of the 9 pieces for each player. In
contrast, we analyze this phase completely. The BFS starts
for phase I with an empty board and determines for all depth
t ∈ {1, . . . , 18} which sets Sk1,k2,t are to be considered and
which states are then reached in that set. The partition into
sets Sk1,k2,t is different to the one obtained in the other two
phases and respects that some partitions may be encountered
in different search depth.

The BFS traversal is shown in Algorithm 4. For depths 1
to 4 the state space is initialized with reached. Only in depth
t > 4 closing mills is possible, so that the successors of a set
in the two sets of the next depth are possible and, therefore,
a growing number of state spaces are to be considered.

The sets are themselves computed in BFS, utilizing a set
reached of triples (k1, k2, t) with piece counts k1, k2 and
obtained search depth t. An according entry (k1, k2, t) de-
notes that BFS has reached all states in Sk1,k2,t. This allows
us to compute the according state spaces incrementally.

If Sk1,k2,t is encountered for the first time (line 14), prior
to its usage in (line 17) the responsible bitvector is allocated
and initialized as not-reached. In line 13 of the Algorithm 4
the outcomes for different k′1, k

′
2 are combined. If depth t is

odd we have k′1 = k1 + 1 but both k′2 = k2 and k′2 = k2− 1
are possible (depending on a mill being closed or not). We
take an additional bit in the encoding of the ranks to denote
if a mill has been closed to accelerate the determination of
values k′1, k

′
2 of rank r′.

In principle, one bit per state is sufficient. Subsequent
to the BFS a backward chaining algorithm determines the
game-theoretical values. We use two bits per state to en-

Algorithm 5 Retrograde Analysis Phase I
Input: bitsk1,k2,t, reached , bytesk1,k2,i

1: for all (k1, k2, t
′) ∈ reached with t′ = 18 do

2: if k1 ≥ k2 then
3: for all j ∈ {j | bitsk1,k2,t(j) = reached } do
4: bitsk1,k2,t(j)← bytesk1,k2,1(j)
5: else
6: for all j ∈ {j | bitsk1,k2,t(j) = reached } do
7: Compute Rank j′ of the inverted game state for

state with rank j
8: bitsk1,k2,t(j)← bytesk2,k1,2(j′)
9: for t← 17 to 1 do

10: for all (k1, k2, t
′) ∈ reached with t′ = t do

11: rankscpu ← ∅
12: for j ← 0 to

(
n

k1,k2

)
− 1 do

13: if bitsk1,k2,t′(j) = reached then
14: rankscpu ∪Rank(j)
15: ranksgpu ← expandGPU
16: for all r′ ∈ rankscpu do
17: Compute k′1, k

′
2 associated with r′

18: bitsk1,k2,t(r)← bitsk′1,k′2,t+1(r′)

code the four cases not-reached, won-for-player-1, won-for-
player-2, and draw. As we already use 1 bit for state-space
generation, these demands are already allocated.

In the backward traversal described in Algorithm 5, first
all state sets Sk1,k2,t with depth t = 18 are initialized wrt.
the data computed for phases II and III. As player 1 starts
the game, he will also start phase II. For the initialization of
Sk1,k2,t with t = 18 and k1 ≥ k2 we scan the corresponding
bitvector and consider each state marked reached at position
i the value stored with position i in the bytevector inferred
for Sk1,k2,1 from solving phases II and III. Depth and suc-
cessor count information is ignored. We are only interested
in whether a state is won, lost or a draw.

When trying to initialize Sk1,k2,t with t = 18 and
k1 < k2 we observe that no corresponding set Sk1,k2,1 from
phases II and III has been computed. In this case, we tra-
verse the bitvector for Sk1,k2,t, but consider the set Sk2,k1,2

from phases II and III. In each scan of Sk1,k2,t when encoun-
tering a state s marked reached we compute the rank j of its
inverted representation, so that player 1 now plays color 2
and player 2 plays color 1. Similarly, in case Sk1,k2,1 is
not present, we consider position j in the bytevector, while
inverting the state to be considered. For the translation of
states in state vector representation, their inverted represen-
tation and the computation of their ranks j, we use the GPU.

After the initialization we go one step back and work on
the state spaces Sk1,k2,t with t = 17. We generate all succes-
sors of a state reached and determine the game-theoretical
value in the bitvector stored depth 18 by considering all val-
ues at positions that correspond to the successor ranks.

The value of a state is determined by considering all its
successors. If all successors of a state with player 1 to move
are lost, the state itself is lost. If at least one successor is
won, then the state itself is won. In all remaining cases, the
game is a draw. We continue until we reach depth 1.

28



Table 1: Retrograde Analysis of Phases II and III (times in
seconds, sizes given in GB).

Single HDD
Size GPU CPU Ratio Size GPU CPU Ratio

9-9 6.54 31,576 – – 8-4 1.34 749 8,021 10.70
9-8 8.41 62,894 – – 9-3 0.58 933 8,567 9.18
8-8 9.47 36,604 – – 6-5 1.15 601 1,530 2.54
9-7 8.41 31,607 – – 7-4 0.80 487 4,425 9.16
8-7 8.41 80,747 – – 8-3 0.40 707 6,125 8.66
9-6 6.54 21,713 – – 5-5 0.48 36 22 0.61
7-7 6.73 26,429 63,303 2.39 6-4 0.40 178 445 2.50
8-6 5.89 25,077 59,476 2.37 7-3 0.23 398 3,148 7.90
9-5 3.93 2,384 25,216 10.57 5-4 0.16 13 4 0.30
7-6 4.28 4,914 23,170 4.71 6-3 0.11 78 620 7.94
8-5 3.21 1,984 20,239 10.20 4-4 0.05 1 1 1.00
9-4 1.78 949 10,712 11.36 5-3 0.04 18 137 7.61
6-6 2.50 1,293 4,160 3.21 4-3 0.01 4 26 6.50
7-5 2.14 1,404 11,742 8.34 3-3 .003 14 81 5.78

Software RAID
Size GPU CPU Ratio Size GPU CPU Ratio

9-9 6.54 36,598 – – 8-4 1.34 610 8,093 13.26
9-8 8.41 57,057 – – 9-3 0.58 807 8,547 10.59
8-8 9.47 35 441 – – 6-5 1.15 493 1,484 3.01
9-7 8.41 43,003 – – 7-4 0.80 397 4,434 11.17
8-7 8.41 61,750 – – 8-3 0.40 609 6,123 10.05
9-6 6.54 12,174 – – 5-5 0.48 11 23 2.09
7-7 6.73 15,284 52,441 3.43 6-4 0.40 157 439 2.79
8-6 5.89 19,538 57,988 2.96 7-3 0.23 357 3,145 8.80
9-5 3.93 2,045 25,134 12.29 5-4 0.16 5 6 1.20
7-6 4.28 4,914 22,981 4.98 6-3 0.11 69 619 8.97
8-5 3.21 1,805 20,257 11.22 4-4 0.05 1 1 1.00
9-4 1.78 829 10,725 12.93 5-3 0.04 17 137 8.05
6-6 2.50 1,137 4,160 3.62 4-3 0.01 3 26 8.66
7-5 2.14 1,211 11,682 9.64 3-3 .003 12 80 6.66

Experiments
The GPU used is located on a GTX 285 (MSI) graphics
card from NVIDIA, which contains 240 processor cores and
1 GB VRAM. The programming environment is CUDA, a
c-like language linked to ordinary c/c++ and that abstracts
from thread generation and initialization. All experiments
were executed on a system with a Intel Core i7 CPU 920
clocked at 2.67GHz and a 1 TB SATA harddisk (according
to hdparm at about 100 MB/s for sequential reading). We
also experimented with a Linux software RAID(0) with two
SSDs and the above HDD (according to hdparm yielding
about 240 MB/s for sequential reading).

The time and space performances of the retrograde anal-
ysis are shown in Table 1. Since 12 GB were not sufficient
to maintain all responsible sets in RAM, states were sequen-
tially flushed to (and subsequently read from) disk.

The entire classification of the state space for phases II
and III on the GPU required about 4 days and 7 hours on one
HDD and 3 days 19 hours on the software RAID (of three
hard and solid state disks). For both settings, the correspond-

Table 2: Retrograde Analysis in Phase I (time in seconds).

Single HDD
Depth BFS Retrograde Depth BFS Retrograde

1 <1 <1 10 199 193
2 <1 <1 11 444 440
3 <1 <1 12 1,043 1,028
4 <1 <1 13 1,782 1,815
5 <1 <1 14 3,251 3,227
6 1 1 15 4,594 4,521
7 5 5 16 6,737 6,652
8 20 21 17 8,317 8,087
9 62 61 18 - 17,267

Software RAID
Depth BFS Retrograde Depth BFS Retrograde

1 <1 <1 10 171 163
2 <1 <1 11 390 388
3 <1 <1 12 909 885
4 <1 <1 13 1,583 1,554
5 <1 <1 14 2,838 2,828
6 1 1 15 4,047 4,021
7 4 4 16 5,743 5,996
8 17 17 17 7,219 6,996
9 53 52 18 - 16,141

ing CPU computation on one core has not been completed
and terminated after 5 days.

In the table, we see that the results on the software RAID
are generally better than on a single HDD. We observe
speed-ups of more than one order of magnitude (plotted in
bold font), exceeding the number of cores on most current
PCs4. On faster hardware, better speed-ups are possible.
NVIDIA GPUs can be used in SLI and the Fermi architec-
ture (e.g. located on the GeForce GTX 480 graphics card) is
coming out which will go far beyond the 240 GPU cores we
had access to.

For larger levels, we observe that the GPU performance
degrades. When profiling the code, we identified I/O access
as one limiting factor. For example, reading S8,8 from one
HDD required 100 seconds, while the expansion of 8 million
states, including ranking and unranking, required only about
1 second on the GPU. We see that the RAID0 array indeed
led to higher transfer rates and better speed-ups by reducing
the amount of time needed for I/O.

We found some inconsistencies in the GPU performance,
e.g., for the partition 9-7 and 9-9, where the RAID0 was
inferior to the single HDD. According to our calculations,
due to storing intermediate results, 12 GB RAM should be
sufficient for the bitvector for breadth-first and retrograde
analysis in the RAM, so that no further access to HDD for
swapping should have been necessary. But there is addi-
tional memory needed for preparing and postprocessing the
VRAM in RAM for copy purposes. Together with the needs

4This assertion is true for the dual 6-core CPUs available from
Intel, but not on a dual Xeon machine with two quad-core CPUs
creates 16 logical cores due to multi-threading

29



of the operating system this indicated that the system did
swap.

For analyzing phase I the program required 19 hours
on one HDD and little less than 17 hours on the software
RAID0. Table 2 depicts the individual timings obtained by
the GPU. All 24 states in depth 1 turned out to be a draw
such that the result of Gasser (1996) has been validated.
First non-optimal moves are possible in depth 2.

Conclusions and Discussion
In this paper GPUs have been shown to be effective for solv-
ing the Nine-Men-Morris two-player game. Despite his own
desire, so far Gasser’s computations that ran over weeks
on a cluster of several computers have not been validated.
Additionally, we have invented a class of time- and space-
efficient perfect hash functions that was used to compress
the state space in order to compute a strong solution.

There is increasing interest in GPU programming in
AI, e.g., in answering probabilistic queries over Bayesian
networks (Silberstein et al. 2008) and in state space
search (Edelkamp, Sulewski, and Yücel 2010). This paper,
however, pioneers solving a non-trivial game on the GPU.

Our approach provides a clear, provably efficient, cor-
rect, and extensible design of a hash function. In fact, we
contributed a generic and extensible approach and thorough
study of the class of invertible multinomial perfect hash
functions that can be applied in other state space search ar-
eas as a sub-component. In Appendix B of the technical
report Lake et al. (1993) provide insights to a bitvector en-
coding to construct checkers endgame databases. Their in-
dexing scheme is in essence a multi-nominal hashing with
four different piece types (checkers and kings for both black
and white). In addition, they extend the hashing scheme
to handle splitting the databases into sub-databases based
on both number of different piece types on the board and
by how far down the board the furthest advanced checkers
are. The math becomes more complicated when one gets
up to more pieces and – at least on the first glance – harder
to generalize. Another parallel bitvector retrograde analysis
(without GPU) has been applied to solve Awari (Romein and
Bal 2003). The authors generally talk about Gödel numbers
for states without going into details. In their case, binomial
hashing, a special case of multinomial hashing is applicable.

Acknowledgments Thanks to Deutsche Forschungsge-
meinschaft (DFG) for support in project ED 74/8.

References
Bloom, B. H. 1970. Space/time trade-offs in hash coding
with allowable errors. Commun. ACM 13(7):422–426.
Bryant, R. E. 1986. Graph-based algorithms for Boolean
function manipulation. IEEE Transactions on Computers
35:677–691.
Cooperman, G., and Finkelstein, L. 1992. New methods for
using Cayley graphs in interconnection networks. Discrete
Appl. Math. 37-38:95–118.

Edelkamp, S.; Sulewski, D.; and Yücel, C. 2010. Perfect
hashing for state space exploration on the GPU. In ICAPS,
57–64. AAAI.
Eickmann, U. 2007. Untersuchung der Echtzeitfähigkeit von
Budget-Grafikkarten. München: Grin Verlag.
Gasser, R. 1996. Solving Nine Men’s Morris. Computa-
tional Intelligence 12:24–41.
Göddeke, D.; Strzodka, R.; Mohd-Yusof, J.; McCormick, P.;
Wobker, H.; Becker, C.; and Turek, S. 2008. Using GPUs
to improve multigrid solver performance on a cluster. Inter-
national Journal of Computational Science and Engineering
4(1):36–55.
Knuth, D. E. 1998. Art of Computer Programming, Volume
3: Sorting and Searching. Redwood City: Addison-Wesley
Professional, 3rd edition.
Korf, R. E., and Schultze, T. 2005. Large-scale parallel
breadth-first search. In AAAI, 1380–1385.
Korf, R. E., and Zhang, W. 2000. Divide-and-conquer fron-
tier search applied to optimal sequence alignment. In AAAI,
910–916.
Korf, R. E. 1999. Divide-and-conquer bidirectional search:
First results. In IJCAI, 1184–1189.
Korf, R. E. 2008. Minimizing disk I/O in two-bit-breath-first
search. In AAAI, 317–324.
Lake, R.; Schaeffer, J.; and Lu, P. 1993. Solving large ret-
rograde analysis problems using a network of workstations.
Technical Report 93-13, Department of Computing Science,
University of Alberta.
Mares, M., and Straka, M. 2007. Linear-time ranking of
permutations. In ESA, volume 4698 of LNCS, 187–193.
Springer.
Myrvold, W., and Ruskey, F. 2001. Ranking and unranking
permutations in linear time. Information Processing Letters
79(6):281–284.
NVIDIA. 2008. CUDA Programming Guide 2.0.
http://developer.download.nvidia.com/
compute/cuda/2_0/docs/NVIDIA_CUDA%
_Programming_Guide_2.0.pdf.
Owens, J. D.; Luebke, D.; Govindaraju, N.; Harris, M.;
Krüger, J.; Lefohn, A. E.; and Purcell, T. J. 2007. A sur-
vey of general-purpose computation on graphics hardware.
Computer Graphics Forum 26(1):80–113.
Romein, J. W., and Bal, H. E. 2003. Solving Awari with
parallel retrograde analysis. Computer 36(10):26–33.
Silberstein, M.; Schuster, A.; Geiger, D.; Patney, A.; and
Owens, J. D. 2008. Efficient computation of sum-products
on GPUs through software-managed cache. In 22nd Inter-
national Conference on Supercomputing, 309–318.

30




