
Additive Heuristic for Four-Connected Gridworlds

Kenneth Anderson
March Networks

303 Terry Fox Drive
Ottawa, Ontario, Canada

Abstract
Memory-based heuristic techniques have been used to
effectively reduce search times in implicit graphs. Re-
cently, these techniques have been applied to improving
search times in explicit graphs. This paper presents a
new memory-based, additive heuristic that can be used
on a type of explicit graph: the four-connected grid-
world. The heuristic reduces the number of expanded
nodes by up to five times, reduces execution time by
up to 29 times, and can efficiently accommodate graph
changes.

Introduction
The single-agent search community continually strives to
make search techniques more efficient. One effective ap-
proach is to improve the heuristics used to guide the search.
The improvement of heuristics has received attention be-
cause of its general applicability, relative independence to
the search technique, and dramatic performance gains. Also,
as long as certain conditions are met, A* (or other similar
search algorithms) can guarantee finding an optimal (mini-
mal cost) path from a start node to a goal node, if one ex-
ists (Hart, Nilsson, and Raphael 1968).

On implicit graphs such as Rubik’s Cube, the 15 sliding-
tile puzzle, and the K-Pancake puzzle, memory-based
heuristic lookup tables are often used to improve IDA*
search. Abstraction is used to reduce the graph to a more
manageable size; then the abstract graph is solved and the
result is stored in memory (Culberson and Schaeffer 1998).
Combining multiple memory-based heuristics by adding
them together is particularly effective for a variety of puz-
zle domains (Korf and Felner 2002; Yang et al. 2008).

When searching explicit graphs, such as GPS navigation,
pathplanning in games, and robotic motion planning, the A*
search algorithm is used quite frequently. Unlike the puzzle
domains, however, optimal search in explicit graphs using
memory-based heuristics has only recently started to show
promising results (Sturtevant et al. 2009).

This paper will present a new abstraction-based, admissi-
ble heuristic technique for four-connected gridworlds. The
main contributions are threefold. (1) The new heuristic tech-
nique is described. (2) Various methods of calculating this

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

heuristic on-demand are compared. (3) This technique is
proposed for dynamically changing graphs.

Using the additive heuristic technique in A* search is four
times faster than using the Manhattan Distance heuristic on
video game graphs and 29 times faster on room graphs. The
memory requirements are modest and graph updates can be
accommodated quickly.

The remainder of the paper discusses relevant previous
work, describes the new additive heuristic, experimentally
compares on-demand heuristic calculation methods, and
proposes areas open for future development.

Background
Pattern databases (PDBs) dramatically improve search per-
formance on the 15-sliding tile puzzle by using a combina-
tion of backward search and graph abstraction to improve
heuristic values (Culberson and Schaeffer 1998). By ab-
stracting the full graph representing the 15 sliding-tile puz-
zle to a smaller graph, they are able to completely solve the
smaller graph and store the costs to the goal in a database.
Using these costs as a heuristic in the forward search reduces
the number of node expansions by three orders of magni-
tude.

Additive pattern databases further improve upon PDBs
by leveraging multiple abstractions to build multiple
PDBs (Korf and Felner 2002; Yang et al. 2008). Fur-
thermore, the databases are cleverly designed to enable the
heuristics to be added together admissibly. Additive PDBs
provide an impressive performance boost and are currently
state-of-the-art on many puzzle testbeds.

The main drawback of PDBs is the computation required
to calculate the PDBs. On puzzle domains, this cost can
often be amortized over all the forward searches because the
goal node is fixed. However, in most explicit graph searches,
such as those in computer games and GPS route planning,
the goal node changes for every search instance. In such
cases, one of the following two techniques can be used: true
distance heuristics or on-demand heuristic calculation.

True distance heuristics (Sturtevant et al. 2009) precom-
pute a database of costs in the original graph. Then they
combine database queries with simple arithmetic to produce
an admissible heuristic between any two nodes in the graph.
When used for pathfinding in an eight-connected gridworld,
they achieve a 29-fold reduction in node expansions. The

10

Proceedings of the  Third Annual Symposium on Combinatorial Search (SOCS-10)



precomputation of the database of costs, however, involves
multiple searches in the original graph. As a result, the time
required to build this database is even more significant than
for PDBs. Thus, there is an implicit assumption that the
original graph does not change.

Another technique for finding optimal solutions for any
start and goal node is to only calculate the heuristics as
needed. We refer to this as on-demand heuristic calcula-
tion. An instance-dependent pattern database (IDPDB) can
be used to calculate a heuristic on-demand (Felner and Adler
2005). For each search instance, an IDPDB is calculated by
using a backward search in the abstract space. This database
stores heuristic values that are used in the forward search.

Hierarchical search also calculates heuristics on-demand
by using multiple, hierarchical graph abstractions (Holte et
al. 1996). For each heuristic requested, a forward search in
the abstract space calculates the cost. This abstract search
may, in turn, request heuristic values from another abstrac-
tion level, prompting further forward searches. Both tech-
niques have proven effective in puzzle domains.

If there is a desire to accommodate changing graphs, such
as with GPS route planning or the fog-of-war in computer
games, then rebuilding the databases from the ground up
must be avoided. Although explicit, dynamic graphs are not
examined, IDPDBs and hierarchical search should be able
to efficiently accommodate graph changes.

Additionally, there are abstraction-based techniques that
can handle graph changes (Sturtevant and Buro 2005; Botea,
Müller, and Schaeffer 2004). With these techniques, a hi-
erarchy of abstractions is used to quickly find suboptimal
paths. A change in the original graph is efficiently dealt with
by propagating changes to nearby neighbors and up the hi-
erarchy. Unfortunately, these techniques cannot guarantee
finding optimal paths.

The following section introduces a novel, additive,
memory-based, heuristic technique for finding optimal paths
on a four-connected gridworld. The heuristic technique can
efficiently deal with graph changes.

Additive Heuristic for Gridworld
The domain under consideration is a four-connected grid-
world. Each location on the 2-D grid is either ‘unoccupied’
or ‘occupied’ (by a wall). This world is represented as a
graph, G, where each unoccupied grid location is a node.
Each node can be connected to up to four other neighboring
nodes (North, South, East, or West) by an undirected edge
of weight one. A path from a start node, t, to a goal node, g,
consists of a series of edges connecting the two nodes. The
path’s cost is the sum of the weights of the edges on the path.
Our objective is to find a minimal-cost path from t to g (see
Figure 1(a)).

A* search is a popular search technique used in explicit
graphs. A* expands nodes in priority, based on the sum of
the cost from the start node and a heuristic (an estimate of
the cost to the goal). As long as the heuristic is admissi-
ble (does not overestimate the cost to the goal), A* is guar-
anteed to find an optimal path (Hart, Nilsson, and Raphael
1968). Furthermore, if the heuristic is consistent (does not

(a) The original graph, G (b) G′
y showing hy

(c) G′
x showing hx (d) Additive Heuristic, hx+y

Figure 1: The original graph (a) shows the goal node. The
abstract graphs (b) and (c) show the abstract goal nodes and
heuristic values. The final graph (d) shows the result of
adding the heuristics together.

change more than the weight of an edge between two nodes),
it will expand the minimum number of nodes possible for
that heuristic (Dechter and Pearl 1985).

The Manhattan Distance heuristic, hMD, is a simple,
commonly used heuristic in gridworlds. It is admissible and
consistent, making it a good heuristic for A* search. The
Manhattan Distance from any node n to the goal node g
can be computed by taking the sum of the positional dif-
ferences in the x and y directions. For example, if the
position of t is (0, 2) and the position of g is (5, 1), then
hMD(t, g) = |0− 5|+ |2− 1| = 5 + 1 = 6.

The new heuristic presented in the following is similar to
hMD in that there are two heuristics, hx and hy , that are
added together admissibly.

X-Heuristic
To create hx, first construct an abstract graph, G′

x by taking
into account only the x direction.

• Select any node in the graph G and merge this node with
its neighbor nodes in the y direction (North and South),
if they exist, to create an abstract node. Repeat until no
further merges are possible. All duplicate edges between
any two abstract nodes are merged to create an abstract
edge whose weight is equal to the lowest weighted edge
(in this case the weight is one).

• Create a mapping from each node n ∈ G to its corre-
sponding abstract node n′

x ∈ G′
x, including g to g′

x. Sim-
ilarly, map each edge e ∈ G to its corresponding abstract
edge e′

x ∈ G′
x.

• Find the cost of each abstract node in G′
x to the abstract

goal using a breadth-first search.

11



For any node n in G, there is a mapping to an abstract node
n′

x in G′
x, where the cost from n′

x to g′
x is an underestimate

of the cost from n to g (see Figure 1(c)). This cost is called
hx(n, g).

Y-Heuristic
hy is created similarly; graph G′

y is constructed by paying
attention to only the y direction. The costs in G′

y are used as
the heuristic hy (see Figure 1(b)).

Additive Heuristic
The new heuristic hx+y is created by adding together the
costs in the abstract graphs (Figure 1(d)):

hx+y(n, g) = d(n′
x, g′

x) + d(n′
y, g′

y)

where d is the cost in the corresponding abstract graph from
abstract node n′ to the abstract goal node g′. Also, n ∈ G
maps to n′

x ∈ G′
x and n′

y ∈ G′
y . Similarly, g ∈ G maps to

g′
x ∈ G′

x and g′
y ∈ G′

y .
The hx+y is admissible because the set of edges that maps

from G to G′
x does not overlap with the set of edges that

maps from G to G′
y . Therefore, the edges are not counted

more than once in the abstract graph.
The hx+y is also consistent. The heuristic hx is equal to

the cost to g′
x in the abstract graph G′

x. Fundamentally, so-
lution costs in the abstract graph are consistent: for any two
abstract nodes connected by an abstract edge, the change in
the solution cost to the abstract goal is not more than the
weight of the connecting abstract edge. The same is true
with hy and G′

y . Any edge in G maps to one and only one
edge in either G′

x or G′
y . Therefore, the heuristic hx+y be-

tween any two connected nodes cannot change more than
the weight of an abstract edge. Because the weight of any
edge in G, G′

x, or G′
y is one, the heuristic is consistent.

Finally, hx+y is at least as informative as hMD. hMD can
actually be viewed as a simplified case of hx+y , where all
nodes with the same y-coordinate map to the same abstract
node in G′

x, and all nodes with the same x-coordinate map
to the same abstract node in G′

y .

On-Demand Heuristic Calculation
The additive heuristic is generated by performing a back-
ward search in each abstract space. There are multiple
methodologies that can be used for generating the heuris-
tic. The first technique is to completely solve the full space
using either breadth-first or depth-first search, and store the
costs to the abstract goal node. This technique is used
for PDBs (Culberson and Schaeffer 1998; Korf and Felner
2002). The database covers the entire abstract graph (Figure
2).

However, careful consideration will reveal that calculat-
ing heuristic values over the entire abstract graph is not nec-
essary. Only the heuristic values for the nodes that actu-
ally occur in the forward search need to be calculated. This
observation is important because the time spent calculating
the heuristic is being considered as part of the search time.
An alternative is to use partial pattern databases (PPDBs),
whereby the backward search is started and paused when

Figure 2: Coverage of on-demand heuristics

it reaches the abstract node that requested the heuristic
value (Anderson, Holte, and Schaeffer 2007). This imple-
mentation is slightly different than originally described be-
cause the backward search resumes after receiving a request
for an unexpanded node (Figure 2).

IDPDBs, also called Reverse-Resumable A*, take this ap-
proach further by using an available heuristic to focus the
search effort (Felner and Adler 2005; Silver 2005). IDPDBs
use a heuristic while searching backward from the abstract
goal to an abstract start. The key is to resume the search by
expanding nodes with the same heuristic (the start and goal
remain the same). The search continues to progress until the
requested abstract node is closed, yielding a minimal-cost to
the abstract goal. If the search in the original graph mimics
the backward search in the abstract graph, then this process
should be efficient (Figure 2).

IDPDBs are able to leverage heuristics, if they exist in the
abstract graph. For the graph abstractions G′

x and G′
y , ad-

missible, consistent heuristics do indeed exist. The heuristic
for G′

x is the x component of the Manhattan Distance heuris-
tic. The heuristic for G′

y is likewise the y component of the
Manhattan Distance heuristic.

It should be noted that using PDBs, PPDBs, or IDPDBs
results in exactly the same heuristic values; it is merely the
technique used to calculate the heuristic that varies. Ad-
ditionally, in puzzle domains it is typical to stop the back-
ward search when memory is full. However, because the
explicit graph is already held in memory, enough memory
is assumed to be available to perform a search of the full
abstract space.

Results
For these tests, three types of graphs are compared: room
graphs, maze graphs, and video game graphs (Figure 3).
The room graphs (a) consist of 256 connected rooms on a
512x512 gridworld. The maze graphs (b) consist of corri-
dors of width three, on a 512x512 gridworld. The video
game graphs (c) are from Baldur’s Gate (BioWare Corp
1998), and range in size from 52x54 to 320x320. All graphs
are four-connected.

Two main heuristics are compared in these tests: the
Manhattan Distance heuristic (hMD), which is considered
the baseline, and the additive heuristic (hx+y). The ad-
ditive heuristic, however, can be calculated using any of

12



(a) Room (b) Maze (c) Video game

Figure 3: Example graph types tested.

the following techniques: hPDB
x+y , which uses full, breadth-

first backward searches; hPPDB
x+y , which uses on-demand

breadth-first backward searches; hIDPDB
x+y , which uses on-

demand A* backward searches.
Table 1 shows the averaged results of A* search using

different heuristics on different graph types. The graph types
are shown in column one. Column two shows the heuristic
used for each test. For each row, one hundred graphs are
tested with one hundred search instances (randomly selected
start and goal nodes), totaling 10,000 search instances each.

Abstract Graph and Heuristic Properties

Column three in Table 1 shows the average abstract graph
size of a single abstract graph in relation to the original graph
size. This size gives us an idea of how much effort would be
required to search the abstract graph in order to construct
the additive heuristic; smaller abstract graph sizes usually
indicate less search effort to calculate the heuristic. Keep in
mind, however, that there are two abstract graphs (G′

x and
G′

y).
The Manhattan Distance heurisitic is simple to calculate

and does not require an abstract graph at all, so its abstract
graph size is zero. The abstract graph size of the additive
heuristic tends to be smaller when the graph has large open
(unwalled) areas. Open areas cause more nodes to map to
each abstract node, leading to smaller abstract graphs, as is
the case with video and room maps. However, the maze
graphs do not have any open areas and suffer from large ab-
stract graph sizes.

Column four in Table 1 shows the average heuristic value
over the entire graph for each search instance. Higher
heuristic values usually lead to fewer node expansions dur-
ing search. As previously mentioned, the heuristic values of
the additive heuristic are always higher than Manhattan Dis-
tance. However, for the room and maze graphs the average
heuristic value is almost two times the value of the Manhat-
tan Distance heuristic.

The following section will examine the number of nodes
expanded. Based on this initial analysis, additive heuristic
should be most effective on the room graphs because of the
small abstract graph sizes and the high heuristic values.

Nodes Expanded
Column five in Table 1 shows the average number of nodes
expanded during the search instances; this number includes
nodes expanded in the forward search on the original graph
as well as the nodes expanded in the backward searches on
the abstract graphs.

As expected, using the additive heuristic expands fewer
nodes on average than using the Manhattan Distance heuris-
tic on room graphs. Most notably, using IDPDBs expands
five times fewer nodes than search using the Manhattan Dis-
tance heuristic. This reduction is caused by the small ab-
stract graph sizes and the high heuristic values.

On maze and video game graphs, using the full PDBs ac-
tually expands more nodes than using the Manhattan Dis-
tance heuristic. This increase is primarily because each ab-
stract graph is searched entirely to calculate the heuristics.
The heuristic calculation dominates the search effort and re-
sults in poor performance. When using PPDBs, the average
number of nodes expanded improves to about the same as
using Manhattan Distance. Using IDPDBs gets the fewest
average number of nodes expanded, about half as many as
search using the Manhattan Distance heuristic.

Figure 4 examines the number of nodes expanded as a
function of solution cost. The search instances are grouped
together according to their solution cost (buckets of size
50). The number of nodes expanded is averaged within each
group. Only the room graph results are shown, as all the
graph types had similar results.

The number of nodes expanded using the Manhattan Dis-
tance heuristic increases steeply as the solution cost in-
creases. This behavior is expected, as longer solution costs
are generally more difficult.

The number of nodes expanded when using PDBs, how-
ever, increases very slowly. When compared to using the
Manhattan Distance heuristic, using PDBs expands many
more nodes on the small search instances, but expands many
fewer nodes on the larger instances. This behavior is caused
by the heuristic calculation being independent of the solu-
tion cost; the full PDBs are calculated even if the solution
cost is one! Once the heuristic is calculated, the number of
nodes expanded by the forward search (shown by hx+y) is
very small. Therefore, the search effort is dominated by cal-
culating the heuristic.

13



Graph type
Heuristic Avg abstract Avg heuristic Avg nodes Avg time
type graph size value expanded (msec)

Room

hMD 0.00% 363.23 31731.17 870.39
hPDB

x+y 13.28% 730.94 31282.49 133.56
hPPDB

x+y 13.28% 730.94 11301.38 53.42
hIDPDB

x+y 13.28% 730.94 5576.38 30.40

Maze

hMD 0.00% 428.19 27754.58 888.24
hPDB

x+y 33.33% 736.92 66141.69 306.22
hPPDB

x+y 33.33% 736.92 28515.35 136.96
hIDPDB

x+y 33.33% 736.92 12866.90 67.69

Video game

hMD 0.00% 44.90 389.21 4.43
hPDB

x+y 14.75% 55.12 578.27 2.30
hPPDB

x+y 14.75% 55.12 309.90 1.42
hIDPDB

x+y 14.75% 55.12 203.98 1.11

Table 1: Abstract graph size and heuristic value averaged over 100 maps. Number of nodes expanded and execution time
averaged over 10,000 A* search instances.

When using PPDBs, the number of nodes expanded dur-
ing heuristic calculation is reduced. Most notably, for small
search instances few nodes are expanded, which is an im-
provement over using PDBs. In large instances, the num-
ber of nodes expanded using PPDBs approaches, but should
never exceed, the number of nodes expanded using PDBs.

The behavior of search using IDPDBs is similar to that
of the PPDBs, but even better in terms of the number of
nodes expanded. This improvement is using a heuristic in
the backward searches, causing fewer nodes to be expanded.

Timing
Column six in Table 1 shows the average execution time in
milliseconds. The tests were performed on a single-core,
AMD Athlon XP 2500+ (1.83 GHz CPU) with 1.00 GB of
RAM. The implementation was in C++ using the standard
template library.

The timing results show that in all three graph types con-
sidered, the search using the additive heuristic is faster than
the search using the Manhattan Distance heuristic. This
result may seem a little unexpected, considering that the
number of nodes expanded using the PDBs is sometimes
larger than the number of nodes expanded using the Man-
hattan Distance heuristic. Keep in mind, however, that the
number of nodes expanded is the sum of the number of
nodes expanded in the forward search and the two backward
searches. So when using the Manhattan Distance heuristic,
only one large forward search is involved. For the additive
heuristic, however, one small forward search and two mid-
sized backward searches are involved.

A single large (forward) A* search instance will generally
have a larger open list (fringe) than two small (backward)
search instances. In addition, the abstract graphs have a
smaller branching factor (average number of edges) than the
original graph because half of the possible edges are elimi-

nated. This combination of factors causes the forward search
in the original space using the Manhattan Distance heuristic
to have a substantially larger open list than the backward
searches used to calculate the additive heuristic.

In these tests, the implementation of the open list relies on
the standard template library’s priority queue. The access
time for adding and removing nodes from the open list is
therefore dependent on the size of the open list: O(log(m)),
where m is the size of the open list. Since the open list for
the forward search using the Manhattan Distance heuristic
can get quite large, it actually slows down the search algo-
rithm.

The resulting performance difference is most noticeable
in the larger graphs: the average search time using IDPDBs
on maze graphs is 7.6 times faster than when using Manhat-
tan Distance, and on room graphs the average search time is
almost 30 times faster! On the smaller video game graphs,
the average search time is only 4 times faster.

Complexity of Graph Updates
Adding or removing an edge in graph G is trivial. However,
updating the abstract graphs involves remapping nodes from
G to their corresponding abstract nodes in G′

x and G′
y . In a

four-connected gridworld, an edge must be vertical or hor-
izontal. The abstract graphs only retain edges in either the
horizontal or vertical directions. Therefore, the number of
remappings caused by adding or removing an edge is lim-
ited to only one of the abstract graphs.

When adding a new edge, the number of node remappings
is limited to the number of nodes mapped to the same ab-
stract node. The number of node remappings is inversely
proportional to the relative size of the abstract graphs (col-
umn three in Table 1). For room graphs the average number
of node remappings is 7.53 nodes; for maze graphs it is 3.00
nodes; for video game graphs it is 6.78 nodes. The number

14



0 K

20 K

40 K

60 K

80 K

100 K

120 K

140 K

0 20
0

40
0

60
0

80
0

10
00

12
00

14
00

N
od

es
E

xp
an

de
d

Solution Cost

hMD

2222222222222222
222

2
2

2
22

2
2

2
22

hx+y

����������������������������

�

hPDB
x+y

++++++++++++++++++++++++++++

+

hPPDB
x+y

×××××××××
××××××

×××××
××××××××

×
hIDPDB

x+y

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

∗

Figure 4: Average number of nodes expanded vs. solution
cost on room graphs.

of edges that potentially require remapping is limited to two
edges per remapped node.

When removing an edge, a new abstract node is poten-
tially created. To accommodate the new abstract node, the
average number of node remappings and edge remappings is
twice the number of remappings required to add a new edge.

For the tested graph types, the number of updates is quite
reasonable and hx+y can be updated very quickly when
adding or removing edges in graph G. It should be noted,
however, that in the worst case (a graph of a straight line) all
nodes might have to be remapped. So the characteristics of
the graph do need to be taken into consideration.

Conclusions and Future Work
In this paper, a new additive heuristic was presented that can
be used to find optimal paths on a four-connected gridworld.
The additive heuristic is very strong; it dramatically reduces
the number of nodes expanded in the forward search. How-
ever, searches in two abstract graphs are required to calculate
the heuristic.

The heuristic can be calculated efficiently using on-
demand techniques. Of the techniques tested, using IDPDBs
is the most effective, reducing the total number of nodes ex-
panded by a factor of five on room graphs and a factor of
two on video game graphs. On maze graphs the heuristic
cannot be calculated as efficiently and the total number of
nodes expanded is reduced by only a factor of 1.9.

Because of the implementation details of A*, the execu-
tion times are even more noteworthy than the number of
nodes expanded. Search on room graphs using the additive
heuristic has a 29-fold reduction in execution time as com-
pared to using the Manhattan Distance heuristic, and search
on maze graphs has a 7.6-fold reduction. Search on video
game graphs reduced the execution time by a factor of 2.5.

The heuristic is so effective in these tests that the search
performance is dominated by the calculation of the heuris-
tic itself. One future course of action is to try to further

reduce the search effort in the abstract graph. As a result
of the abstraction technique, the structure of the abstract
graphs is quite different than the structure of the original
graph. Specifically, the abstract graphs are sparsely con-
nected. This property can be leveraged by using existing
algorithms to further simplify the abstract graphs and speed
up the search (Demyen and Buro 2006).

This type of abstraction technique lends itself quite read-
ily to 2-D graphs in a four-connected gridworld. It has yet to
be seen how well this technique works on eight-connected
worlds where diagonal edges provide an extra complication.
In addition, expanding this technique to larger dimensional
spaces would make it more relevant to other domains such as
robot motion planning, time-based search, and 3-D search.

Acknowledgments
I would like to express my appreciation to the reviewers, to
Robert Holte for his comments, and to Nathan Sturtevant
and BioWare for providing graphs.

References
Anderson, K.; Holte, R.; and Schaeffer, J. 2007. Partial
pattern databases. In SARA, 20–34.
BioWare Corp. 1998. Baldur’s gate. Interplay.
Botea, A.; Müller, M.; and Schaeffer, J. 2004. Near op-
timal hierarchical path-finding. Journal of Game Develop-
ment 1:7–28.
Culberson, J. C., and Schaeffer, J. 1998. Pattern databases.
Computational Intelligence 14(3):318–334.
Dechter, R., and Pearl, J. 1985. Generalized best-first search
strategies and the optimality of A*. Journal of the Associa-
tion for Computing Machinery 32(3):505–536.
Demyen, D., and Buro, M. 2006. Efficient triangulation-
based pathfinding. In AAAI, 942–947.
Felner, A., and Adler, A. 2005. Solving the 24 puzzle with
instance dependent pattern databases. In SARA, 248–260.
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A for-
mal basis for the heuristic determination of minimum cost
paths. IEEE Transactions on Systems, Science, and Cyber-
netics 4(2):100–107.
Holte, R. C.; Perez, M. B.; Zimmer, R. M.; and MacDonald,
A. J. 1996. Hierarchical A*: Searching abstraction hierar-
chies efficiently. In AAAI, 530–535.
Korf, R. E., and Felner, A. 2002. Disjoint pattern database
heuristics. Artificial Intelligence 134(1-2):9–22.
Silver, D. 2005. Cooperative pathfinding. In AIIDE, 117–
122.
Sturtevant, N., and Buro, M. 2005. Partial pathfinding using
map abstraction and refinement. In AAAI, 1392–1397.
Sturtevant, N. R.; Felner, A.; Barrer, M.; Schaeffer, J.; and
Burch, N. 2009. Memory-based heuristics for explicit state
spaces. In IJCAI, 609–614. San Francisco, CA, USA: Mor-
gan Kaufmann Publishers Inc.
Yang, F.; Culberson, J.; Holte, R.; Zahavi, U.; and Felner, A.
2008. A general theory of additive state space abstractions.
JAIR 32(1):631–662.

15




