Proceedings of the Third Annual Symposium on Combinatorial Search (SOCS-10)

Heuristic Contraction Hierarchies with Approximation Guarantee

Robert Geisberger and Dennis Schieferdecker
Karlsruhe Institute of Technology, Institute for Theoretical Computer Science, 76128 Karlsruhe, Germany
{geisberger, schieferdecker}@kit.edu

Abstract

We present a new heuristic point-to-point shortest path algo-
rithm based on contraction hierarchies (CH). Given an ¢ > 0,
we can prove that the length of the path computed by our al-
gorithm is at most (1 +) times the length of the optimal
(shortest) path. Exact CH is based on node contraction: re-
moving nodes from a network and adding shortcuts to pre-
serve shortest path distances. Our heuristic CH tries to avoid
adding shortcuts even when a replacement path is (1 + ¢)
times longer. However, we cannot avoid all such shortcuts,
as we need to ensure that errors do not stack. Combinations
with goal-directed techniques bring further speed-ups.

Introduction

The point-to-point shortest path problem in static road net-
works is essentially solved. There exist fast algorithms that
are exact (Delling et al. 2009). However, for other graph
classes, these algorithms do not work very well. Also, when
several objective functions should be supported within a
road network current algorithms face some problems since
the inherent ‘hierarchy’ of the graph changes with the used
edge weights, e.g. time and distance. One possibility to
alleviate these problems is to drop the exactness of the al-
gorithms and allow some error. We show how to adapt con-
traction hierarchies (CH) (Geisberger et al. 2008) so that we
can guarantee a multiplicative error of £ and extend it to use
in combination with goal-directed techniques (Bauer et al.
2010b). CH adds shortcuts to the graph to reduce the query
search space. But when too many shortcuts are needed, as
on some graph classes, the positive effect of them signifi-
cantly decreases. Thus, our idea is to avoid some shortcuts
by allowing a small error. It is straightforward to change
the node contraction so that shortcuts are only added when
a potential replacement path (witness) is more than a factor
(1 + ¢€) longer. Our non-trivial contribution is how to ensure
that errors do not stack during the contraction, and how to
change the query algorithm so that it is still efficient.

Related Work

The classic shortest path algorithm for nonnegative edge
weights is Dijkstra’s algorithm that computes from one

Copyright (© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

31

source node the shortest paths to all other nodes. During the
execution of it, a node is either: unreached, reached (= open)
or settled (= closed). It iteratively settles the reached node
with the smallest tentative distance and updates the tentative
distances of its neighbors by relaxing the edges of the settled
node (= expanding the node).

However, on large graphs it is rather slow, so more so-
phisticated speed-up techniques have been developed. There
has been extensive work on speed-up techniques for road
networks (Delling et al. 2009). All these techniques have
in common that they perform precomputation to speed up
shortest paths queries. We can classify current algorithms
into three categories: hierarchical algorithms, goal-directed
approaches and combinations of both.

Our algorithm is based on CH, a very efficient hierarchi-
cal algorithm. A CH orders the nodes by ‘importance’ and
contracts the nodes in this order. A node is contracted by re-
moving it from the network and adding shortcuts to preserve
shortest paths distances. The original graph augmented by
all shortcuts is the result of the preprocessing. A slightly
modified bidirectional Dijkstra shortest path search then an-
swers a query request, touching only a few hundred nodes.
For our algorithm, we modify the node contraction, i.e. the
decision which shortcuts we have to add, and the query.

Transit node routing (Bast et al. 2007) is the only faster
hierarchical algorithm than CH. The most successful goal-
directed algorithms are ALT (Goldberg and Werneck 2005)
based on A* and landmarks, and Arc-Flags (AF) (Lauther
2004). For AF, the graph is partitioned into cells, and
each edge stores one flag (bit) per cell indicating whether
this edge lies on a shortest path to this cell. Combinations
of goal-direction and hierarchy are extensively studied by
(Bauer et al. 2010b), including CHASE, a combination of
CH and AF, and CALT, a combination of simple node con-
traction and ALT. We show how to extend CHASE to our
heuristic scenario and introduce CHALT, a combination of
CH and ALT with faster query times than CALT.

Weighted A* (Pohl 1970) is a heuristic variant of A*,
where the heuristic function is weighted with (1 4 ¢) and
guarantees an error of €. (Pearl 1984) gives an overview of
further heuristic variants.

Heuristic Node Contraction

CH performs precomputation on a directed graph G =
(V, E), with edge weight function ¢ : E — R... Each node
is assigned an one-to-one importance level, i.e. I(u) = 1..n.
Then, the CH is constructed by contracting the nodes in the
above order. Contracting a node « means removing u from
the graph without changing shortest path distances between
the remaining (more important) nodes.

In the exact scenario, we want to preserve all shortest path
distances. When we contract u, this is ensured by preserving
the shortest path distances between the neighbors of u. So,
given two neighbors v and w with edges (v, u) and (u, w),
we should find the shortest path P between v and w avoiding
u. When the length of P is longer than the length of the path
(v, u,w), a shortcut edge between v and w is necessary with
weight ¢(v,u) + ¢(u,w). Otherwise, P is witness that no
shortcut is necessary.

In the heuristic scenario, we will not preserve the short-
est path distances, but we still want to guarantee an error
bound. Intuitively, we also want to avoid a shortcut be-
tween v and w, when the path P is just a bit longer than
(v, u,w). To guarantee a maximum relative error of ¢, we
need to ensure that the errors do not stack when a node on
P is contracted later. We call this algorithm approximate
CH (apxCH) (Algorithm 1). When a witness P prevents
a shortcut, even though in the exact scenario the shortcut
would be necessary, the witness must remember this. We let
the edges (z,y) of the witness P remember this by storing
a second edge weight é(x, y), so that Lemma 1 is fulfilled,
and ¢(P) < &(v, u)+¢é(u, w) (Lines 9-11). Intuitively, ¢(P)
stores the minimal length of a shortcut that P prevented as
witness.

Lemma 1 For each edge (v, w) holds

c(v, w)
1+e

A simple way to implement ¢ is to proportionally dis-
tribute the difference between ¢(P) and c(v,u) + ¢(u, w)
among all edges of the witness. Example: Path (u,v,w)
with ¢(u,v) = 8, ¢(v, w) = 4 prevents a shortcut of length
11. Thus, é(u,v) = 8/12 - 11, é(v,w) = 4/12 - 11 unless
é(u,v) or é(v, w) are already smaller. However, we could
distribute it differently or even try to find other potential wit-
nesses. Also, avoiding a shortcut can lead to more shortcuts
later, as every shortcut is a potential witness later.

< é(v,w) < c(v,w) .

Heuristic Query

The basic apxCH query algorithm is the same as for
CH. It is a symmetric Dijkstra-like bidirectional proce-
dure performed on the original graph plus all shortcuts
added during the preprocessing. However, it does not re-
lax edges leading to nodes less important than the cur-
rent node. This property is reflected in the upward
graph Gy:= (V, Ey) with Eqy:= {(u,v) € E | I(u) < I(v)}
and, analogously, the downward graph G|:= (V,E|) with
E\:= {(u,v) € E| I(u) > I(v)}).

We perform a forward search in G'; and a backward search
in G|. Forward and backward search are interleaved, we

32

keep track of a tentative shortest-path length and abort the
forward/backward search process when all keys in the re-
spective priority queue are greater than the tentative shortest-
path length (abort-on-success criterion).

Both search graphs Gt and G| can be represented in a sin-
gle, space-efficient data structure: an adjacency array. Each
node has its own edge group of incident edges. Since we per-
form a forward search in G'; and a backward search in G|,
we only need to store an edge in the edge group of the less
important incident node. This formally results in a search
graph G* = (V, E*) with E| := {(v,u) | (u,v) € E,|} and
E* := E; UE)|. Finally, we introduce a forward and a back-
ward flag such that for any edge e € E*, 1 (e) = true iff
e € Ey and | (e) = trueiff e € E|. Note that G* is a
directed acyclic graph (DAG).

In Lemma 2 we construct from an arbitrary path, a re-
placement path that can be found by our query algorithm.

Lemma?2 Let G = (V, E) be the graph after apxCH pre-
processing with I and €. Let P be an s-t-path in G. Then
there exists an s-t-path P’ in G of the form (s = uy,
UL, ooy Up, ..., Uqg =ty withp,q € N, I(u;) < I(uiq1) for
i € Nyi <pandI(u;) > I(ujq1) forj € Nyp < j <gq,
called path form (PF). For P’ holds ¢(P') < é(P).

Proof. Given a shortest s-t-path P = (s = ug,uq,...,
Up, ..., uqg =t) withp,q € Nand I(u,) = max I(P), that
is not of the form (PF). Then there existsa k € N, k < ¢ with
I(ug) < I(ug—1),I(ug) < I(ugs1). We will recursively
construct a path of the form (PF).

Let Mp = {I(uk) | I(uk) < I(uk_l), I(uk) <
I(ugy1)} denote the set of local minima excluding nodes
s, t. We show that there exists an s-t-path P’ with Mp: = ()
or min Mp < min Mp,.

Let I(up):= min Mp and consider the two edges
(ug—1,ur), (ug,upg+1) € E. Both edges already exist
at the beginning of the contraction of node ug. So there
is either a witness path @ = (ug—1,...,uk+1) consist-
ing of nodes more important than wuj with ¢(Q) < (1 +
e)(¢(uk—1,ur) + é(ug, ug+1)) or a shortcut (wp—1,up41)
of the same weight is added. So the subpath Py, _, v, .,
can either be replaced by @ or by the shortcut (ug_1, ugt1)-
If we replace the subpath by (), our construction ensures
that ¢(Q) < ¢(Pluy_, —uy.,)- Also if we added a shortcut,
c(ug—1,ups1) < ¢(Pluy_,—uy,,) holds. So the resulting
path P’ consists of nodes more important than wuy and has
the property ¢(P’) < é(P). Since n < oo, there must ex-
ist an s-t-path P” with Mp.» = (), is therefore of the form
described in (PF), and ¢(P") < é(P). O

Theorem 1 proves the correctness of our basic query al-
gorithm by guaranteeing an error bound.

Theorem 1 Given a source node s and a target node t.
Let d(s,t) be the distance computed by the apxCH algo-
rithm with € > 0 and let d(s,t) be the optimal (shortest)
distance in the original graph. Then d(s,t) < d(s,t) <
(14 ¢e)d(s,t).

Proof. Let (G = (V,E),I,¢) be an apxCH with ¢ >
0. Let s,t € V be the source/target pair of a query. It
follows from the definition of a shortcut, that the shortest

Algorithm 1: SimplifiedHeuristicConstructionProcedure(G = (V, E),I,¢)

c=c;

foreach u € V ordered by I(u) ascending do
foreach (v, u) € E with I(v) > I(u) do
foreach (u, w) € E with I(w) > I(u) do

ifc(P) > (1+¢)(¢(v,u) + é(u,w)) then

else

o XN RE W -

vi= = C(PN) -1:
T e(v,u)+é(u,w) ’
foreach (z,y) € P do

L 5($, y):: min {5(17, y)7 cﬁr,;yy) };

—
i

// store second weight per edge
// contract all nodes in order

find shortest path P = (v, ..., w) using only nodes = with I(z) > I(u);

| E:=FEU{(v,w)} (use weight c¢(v, w):= c(v,u) + c(u, w), é(v, w):= é(v, u) + &(u, w));

/) e(P) = (147)(v,u) + &(u,w))

path distance between s and ¢ in the apxCH is the same as
in the original graph. So we will never find a shorter path
in the shortcut-enriched graph, thus d(s,t) < d(s,t) holds.
Every shortest s-t-path in the original graph still exists in the
apxCH but there may be additional s-t-paths. However since
we use a modified Dijkstra algorithm that does not relax all
incident edges of a settled node, our query algorithm does
only find particular ones. In detail, exactly the shortest paths
of the form (PF) are found by our query algorithm. From
Lemma 2, we know that if there exists a shortest s-t-path P
then there also exists an s-t-path P’ of the form (PF) with
¢(P") < é(P). Because of Lemma 1, we know that Cl(—f;) <
¢(P') and é(P) < ¢(P) so that ¢(P’) < (14 ¢)e(P). So
our query algorithm will either find P’ or another path, that
is not longer than P’. O

Although we use ¢ in the proof, the query algorithm does
not use it at all. So we only require ¢ during precomputation
but we do not need to store it for the query. Also note that
the correctness does not depend on the importance level I(-).
However, in practice, the choice of I(-) has a big impact on
the performance, see (Geisberger et al. 2008).

Heuristic Stall-on-Demand

In the previous section, we proved that the basic heuristic
query algorithm does not need any changes compared to the
exact scenario. However, there are changes necessary for
the stall-on-demand technique, an important ingredient of a
practically efficient implementation of CH. This single im-
provement brings additional speed-up of factor two or more.
We will first explain how exact stall-on-demand stalls nodes
that are reached with suboptimal distance. While a regular
Dijkstra search would never do that, it can happen during a
CH query since we do not relax edges leading to less im-
portant nodes. We call a path leading only upwards being
an upward path. Our query algorithm can only find upward
paths. There is a simple trick that allows us to check whether
the currently settled node u is reached via a suboptimal up-
ward s-u-path P = (s =wvq,...,v; = u): for each more
important neighbor v of u with edge (v, u) that was already
reached by an upward path (s, ...,v), we inspect the s-u-

33

Figure 1: The stalling condition of the exact query fails, as
node z is never reached in the forward search from s, since
the path (s, z,y, v) to node v is stalled by the path via .

path P/ = (s,...,v,u). As P’ is no upward path, P’ could
be shorter than P. In this case, if ¢(P) > ¢(P’), we stall
node u, i.e. we do not relax its incident edges. This is cor-
rect, as our exact CH query is correct and the suboptimal
path P would never be part of an optimal path. We further
try to even stall the reached neighbors w of w, if the path
via v is shorter than their current tentative distance. For cor-
rectness, unstalling such a reached node w can be necessary
when the search later finds a shorter upward path than the
path via v.

However, in the heuristic scenario with ¢ > 0, we would
destroy the correctness of our algorithm when we would ap-
ply the same rule, as our query algorithm no longer com-
putes optimal paths. Consider as example the graph in Fig-
ure 1. During the contraction of u, no shortcut for the path
(x,u,v) is added since the path (z,y, v) is a witness that is
just a factor (1 + ¢) larger. The forward search starting at s
should settle the nodes in the order s, x, y, u, v, z. However,
if we would not change the stalling condition, we would stall
u while settling it because the path (s, u) is longer than the
path (s, z, u), which is not an upward path. Furthermore,
we would propagate the stalling information to v, so node v
reached via upward path P = (s, x,y, v) gets stalled by the

Algorithm 2: HeuristicQuerySOD(s,t)

// stall uw with stalling distance d,.[v] +
// stop relaxing edges of stalled node u

// tentative distances
// priority queues

- 1=| and = |=]
// u is settled and new candidate

// do not relax edges of a stalled node
// relax edges of u

// shorter path found

// update tentative distance

// update priority queue

// interleave direction,

// path via v is shorter

(14¢)c(e)

1 dy:= {(00,...,00); dt[s]:=0;d):= (00,...,00); d|[t]:=0, d:i= o0;
2 Q) = 10,515 @) = (0. 0)):rm 1
3 while (Q; #0or Q| # 0) and (d > min {min Q;, minQ, }) do
4 if Q-, # () then r:= —r;
5 (-, u):= Qy.deleteMin(); d:= min {d, d;[u] + d [u]};
6 if isStalled(r, u) then continue;
7 foreach e = (u,v) € E* do
8 if r(e) and (d, [u] + c(e) < d,[v]) then
9 d,[v]:=d,[u] + c(e);
10 \; Q..update(d,.[v],v);
11 if isStalled(r, v) then unstall(r, v);
12 if (-r)(e) Adr[v] + (1 +¢€)c(e) < dy[u] then
13 L stall(r, u, dy-[v] + (1 + €)c(e));
14 break;
15 return d;

shorter path P’ = (s, x,u,v). Thus, node v is stalled and
we would never reach node z with the forward search and
therefore could never meet with the backward search there.

To ensure the correctness, we change the stalling condi-
tion. We split the path s-u-path P’ in paths P| and P} so that
P/ is the maximal upward subpath starting at s. Let 2 be the
node that splits P’ in these two parts, i.e. P{ = P’|;_,, and
P} = P’|;—. Then we stall u only if node z is reached by
the forward search and

c(P)) + (14 ¢)e(P3) < ¢(P) (1)

The symmetric condition applies to the backward search, see
Algorithm 2 for pseudo-code. Note that for ¢ = 0, this algo-
rithm corresponds the the exact query algorithm with stall-
on-demand.

To prove that stall-on-demand with (1) is correct, we will
iteratively construct in Lemma 3 a new path from a stalled
one.

Lemma 3 Let (P, v, w) be astall state triple (SST): P being
an s-t-path of the form (PF), node v being reached by the
Sforward search by P|,_,, and not stalled and node w being
reached by the backward search by P|.,—: and not stalled.
Define a function g on an SST:

9(P,v,w) = e(Pls—) + (14 £)&(Plu) + e(Plu—).

If one of the nodes in P|,_., becomes stalled, then there
exists an SST (Q, x,y) with

9(Q,z,y) < g(P,v,w).

Proof. Letu € PJ,_,,, be the node that becomes stalled.
W.Lo.g. we assume that P|,_,, is an upward path, i.e. the
stalling happens during the forward search. Then there ex-
ists an s-u-path P’ that is split in P; and P} as defined in (1)
so that ¢(Py) + (1+¢)c(Ps) < ¢(P|s—u)- Let z be the node
that splits P’ into these two subpaths. Let R be the path of
form (PF) that is constructed following Lemma 2 from the
concatenation of Py and P, Let Q be the concatenation
of P/, R and P|,,—,; and y:= w. By construction, (Q, z,y) is

34

a SST and we will prove that it is the one that we are looking
for:

(Q,x y)

= (Qls—z) + (14 €)e(Qlamy) + c(Qly—t)

i o(P[) + (1 +e)e(R) + c(Plu—t)

L% o(Pl) + (1 +¢e)(e(P3) + e(Plu—w)) + c(Pluw—t)

2P+ (1t el + (14)ePlun)

0 +C(P|w—>t)

< (Plsmu) + (14 €)E(Plu—w) + c(Plw—t)

= (Pls—v) + c(Plo—u) + (1 +€)e(Plu—w)

. +C(P|w—>t)

< e(Pls—o) + (14 8)&Plo—u) + (1 +£)&(Pluw)
+e(Pluw—t)

= g(Pv,w)

O

With Lemma 3 we are able to prove the correctness of
heuristic stall-on-demand (1) in Theorem 2.

Theorem 2 Theorem 1 still holds when we use heuristic
stall-on-demand (1).

Proof. The proof will iteratively construct SSTs with
Lemma 3 starting with the path P found in the proof of The-
orem 1/Lemma 2 and the nodes s and ¢. Obviously, at the
beginning of the query, both nodes s and ¢ are reached and
not stalled, so (P, s,t) is an SST and

g(P,s,t)
= (Pls—s) +
= (1+¢)é(P)
< (1+e)d(s,t) .
We will prove that after a finite number of applications of
Lemma 3, we obtain an SST (Q, z,y) so that @ is found by
our query with stalling. For this path) holds:

(1+&)é(Pls—t) + c(Plit)

Figure 2: Stalling may increase the observed error (¢ =
10%). Node u gets stalled while being on the shortest path
of form (PF).

c(Q) = c(Qls—z) + c(Qlz—y) + c(Qly—t)
< dQlsma) + (1 +8)EQlamy) + c(Qly—t)
= 9(Q,z,y)
< g(Ps,t)
< (1+e)d(st)

Since our graph is finite, and due to the “<” in Lemma 3,
we can apply Lemma 3 only finitely many times. The final
SST (Q, z, y) will be found by our query algorithm since
is reached in the forward search and not stalled, y is reached
in the backward search and not stalled. And since this is the
final SST, no node on the path Q|w_,y will be stalled. Thus,
our query will find the path @ or a shorter path. 0

Note that stall-on-demand can still increase the observed
error of the query, we just proved that it will never be larger
than €. Look at the example in Figure 2. The shortest s-
t-path (s, v, u,x,t) has length 112. During the contraction
of node u, no shortcut (v, 2) was added as the existing edge
is less than 10% longer. During the query from s to ¢, path
(s,v,u) of length 11 stalls node u reached with length 12.
So the query does not find the path (s, u, 2, t) of length 113
but instead the path (s, v, x, t) of length 121 having an error
of 8%.

Improved Node Ordering

Node ordering is the process to compute the importance lev-
els I(-). The node ordering is done heuristically, as the com-
putation of an optimal node ordering (i.e. shortcut mini-
mal or query search space minimal) is NP-hard (Bauer et al.
2010a). We assign each remaining node a priority on how
attractive it is to contract this node. The priority is a lin-
ear combination of several terms (Geisberger et al. 2008).
There are terms to keep the number of shortcuts low, e.g.
the edge difference between the number of necessary short-
cuts and the number of incident edges of the node, and to
keep the search spaces small, e.g. the number of contracted
neighbors. We iteratively contract the node with lowest pri-
ority and update the priorities of the remaining nodes. Up-
dating these priorities takes the most time during precom-
putation, as computing the number of necessary shortcuts
takes as much time as computing the set of necessary short-
cuts. Therefore, (Geisberger et al. 2008) already update only
(a) the priorities of the neighbors of the contracted node.
As this does not catch all nodes with affected priority, they
(b) repeatedly update the priority of the node on top of the
priority queue (lazy update) and reinsert it until it does not

35

change anymore. So nodes with increased priority become
updated in time. They further (c) update the priorities of all
remaining nodes when too many of these reinserts happened.
This works very well for road networks, but we observed in
our experiments on other graph classes that we can signifi-
cantly reduce precomputation time by skipping (a) and (c),
and only rely on (b). We call this optimization OLU (only
lazy updates).

Combination with Goal-directed Techniques

The CHASE algorithm combines CH and AF. Its prepro-
cessing computes a CH and then computes AF on a small
core, consisting of the most important nodes. AF prepro-
cessing is usually very time- and space-consuming on a large
graph, much larger than a CH preprocessing. By applying
AF only to a small core, we can get faster queries than CH
or AF alone at only slightly increased preprocessing costs
compared to CH. The CHASE query is performed in two
phases, first a CH query that does not relax edges within the
core, and second a CH query within the core guided by arc
flags. The AF computation partitions the core into & cells.
To set the arc flags, we could compute the backward shortest
path DAG (not a tree due to paths of same length) from each
node and set the arc flag for the cell of the node for exactly
each edge in this DAG. But it is sufficient to only do this
from boundary nodes that have a neighbor in another cell
(Hilger et al. 2009). As we perform a bidirectional query,
we also compute symmetric arc flags using forward shortest
path DAGs.

CHASE can be adapted to our heuristic scenario. Our
apxCHASE preprocessing uses an apxCH, and determines
arc flags by a modified backward search that only consid-
ers paths of the form (PF). For our apxCHASE query, we
need to employ the changes to the stall-on-demand tech-
nique. Additionally, a path P’ can only stall an upward path
P if the target arc-flags are set on all edges of P’.

As on some graphs, ALT is superior to AF, we also pro-
pose to combine apxCH with ALT to obtain the apxCHALT
algorithm. The pattern is the same, we first compute a
apxCH and then apply ALT on a small core. ALT prepro-
cessing selects landmarks L heuristically and then computes
the shortest path distances from/to all nodes u in the core
using Dijkstra’s algorithm. If the target node ¢ is in the
core, the minimum of the distances d(L,t) — d(L,u) and
d(u, L) — d(t, L) is a lower bound on the distance d(u, t)
used for the heuristic function. If not, proxy nodes in the
core are introduced (Goldberg, Kaplan, and Werneck 2007).
It is symmetric to obtain a lower bound from the source
node. The apxCHALT query algorithm uses ALT instead
of AF, but is still performed in two phases.

Experiments

Environment. Experiments have been done on one core
of a dual Xeon 5345 processor clocked at 2.33 GHz with 16
GB main memory and 2 x 2x 4 MB of cache, running SuSE
Linux 11.1 (kernel 2.6.27). The program was compiled by
the GNU C++ compiler 4.3.2 using optimization level 3.

preproc. query preproc. query

[s] [B/n] | #settled [ms] error [s] [B/n] | #settled [ms] error
sensor average degree 10 average degree 20
bidir. Dijkstra 0 0| 326597 127.1 - 0 0| 327626 181.2 -
CALT 62 165 954 1.4 - 188 432 2616 4.4 -
bidir. AF 8753 322 7002 2.6 - 48055 641 10838 5.2 -
bidir. ALT-a64 194 512 3173 2.8 - 240 512 3852 4.6 -
bidir. WALT-a64-10% 194 512 687 1.3 0.99% 240 512 437 1.5 1.17%
bidir. WALT-a64-21% 194 512 636 1.3 1.86% 240 512 404 1.5 1.86%
unidir. ALT-a64 97 256 8248 4.9 - 120 256 6782 5.5 -
unidir. WALT-a64-10% 97 256 845 0.9 2.59% 120 256 372 0.8 1.62%
unidir. WALT-a64-21% 97 256 692 0.8 4.24% 120 256 327 0.8 2.30%
unidir. A* 0 16 | 57385 36.6 - 0 16 | 31928 312 -
unidir. WA*-10% 0 16 1234 1.0 1.25% 0 16 308 061 1.16%
unidir. WA*-21% 0 16 724 0.7 2.87% 0 16 272 058 1.86%
CH 20578 -2 2816 2.9 - || > 2 days - - - -
CH OLU 1887 0 2969 4.0 - 82243 31 9232 378 -
apxCH-1% 993 -4 2742 2.7 0.16% 14025 -2 7657 176 0.19%
apxCH-10% 474 -18 2584 1.9 2.17% 2767 -48 5496 6.6 1.75%
CHALT 20597 22 257 0.5 - || > 2 days - - - -
CHALT OLU 1907 26 251 0.6 - 82296 57 924 4.1 -
apxCHALT-1% 1011 21 243 0.5 0.15% 14057 22 784 22 0.19%
apxCHALT-10% 489 7 215 03 2.16% 2786 -23 475 1.0 1.75%
apxCHALT-10% W-10% 489 7 102 0.2 3.56% 2786 -23 269 045 3.20%

Table 1: Performance of our approximate algorithms on sensor networks.

Test Instances. We use the largest strongly connected
component of the road network of Western Europe, provided
by PTV AG for scientific use, with 18 million nodes and
42.2 million edges. The second class of instances are unit
disk graphs with 1000000 nodes and with an average de-
gree of 10 and 20, modelling sensor networks with limited
connection range (sensor). We also use grid graphs of 2
and 3 dimensions having 250 000 nodes, with edge weights
picked uniformly at random between 1 and 1 000.

Setup. We report results in Tables 1-3. Graphs are stored
explicitly in main memory as adjacency array. We compare
the algorithms in the three-dimensional space of preprocess-
ing time, preprocessing space and query time. Usually, there
is not a single best algorithm, but there are several ones pro-
viding different tradeoffs between these three dimensions.
The preprocessing space is the space overhead compared
to the space a bidirectional Dijkstra needs. We state it as
Bytes per node [B/n], as for our graph classes, the number of
edges is roughly linear in the number of nodes. The number
of settled nodes, runtime, and error are average over 10 000
shortest path distance queries, selected uniformly at random.
Although the number of settled nodes gives a rough estimate
on the runtime of the query, there can be deviations: Reasons
are cache locality (we observed 20% difference in runtime
by just choosing different node ids), and more shortcuts on
most important nodes, so that settling those is more expen-
sive, and the cost for stall-on-demand. For CH node order-
ing, we use the aggressive variant from (Geisberger 2008) to
determine the node priorities. CHASE uses k& = 128 cells
for AF, CHALT uses 64 avoid landmarks, both on a core of

36

the 5% highest ordered nodes.

Improved node ordering. Adding the OLU optimization
to CH reduces preprocessing time on sensor networks and
the 3-dimensional grid network by one order of magnitude.
We cancelled the normal CH preprocessing of sensor20, it
would probably have taken 10 days. On the road network,
we see a more differentiated picture. For CH, the prepro-
cessing for travel time metric is almost 3 times faster than
for distance metric, both on the same graph. With OLU we
are able to decrease the difference to a factor of 1.2. The
difference is due to the travel time metric featuring a hier-
archy with fast highways and slower roads, so that most of
the long shortest paths use the highways. In contrast, the
distance metric (also used on the sensor networks) does not
necessarily prefer the highways so that more shortcuts are
needed and a larger number of nodes has to be explored dur-
ing a query. But OLU can also decrease the performance,
e.g. the query time with travel time metric increases, and
also the preprocessing time for CHASE, this is because there
are more boundary nodes.

Approximate CH. ApxCH uses OLU, and further de-
creases preprocessing time and space by allowing some er-
ror, although the observed error is much smaller than the
error bound. On sensor20, apxCH-10% (¢ = 10%) reduces
preprocessing time by a factor of 30 and has negative space
overhead. The negative space overhead is possible due to
the adjacency array representation, as a bidirectional edge in
a CH is only stored with the less important endpoint. So,

preprocessing query preprocessing query

[s] [B/n] | #settled [ms] error [s] [B/n] | #settled [ms] error
Europe travel time distance
bidir. Dijkstra 0 0] 4714M 1991 - 0 0| 5309M 1547 -
TNR! 6720 204 N/A 0.0034 - 9720 301 N/A 0.038 -
TNR+AF! 13740 321 N/A 0.0019 - - - - - -
CH 1510 -3 353 0.125 - 4433 0 1628 1.293 -
CH OLU 1050 -1 430 0.206 - 1258 0 1333 1.198 -
apxCH-10% 1099 -2 430 0.199 0.40% 950 0 1248 0.873 1.32%
CHASE 8699 4 44 0.023 - || 72278 12 73 0.062 -
CHASE OLU 13421 7 42 0.028 - || 84759 15 59 0.058 -
apxCHASE-10% 11977 5 42 0.026 0.40% || 33147 10 62 0.048 1.32%
CHALT 1703 22 146 0.114 - 4658 25 192 0.318 -
CHALT OLU 1257 23 149 0.155 - 1491 26 159 0.300 -
apxCHALT-10% 1300 23 153 0.147 0.40% 1163 24 232 0.322 1.32%
apxCHALT-10% W-10% 1300 23 106 0.111 0.65% 1163 24 70 0.116 2.14%

Table 2: Performance of our approximate algorithms on road networks.

when we add fewer shortcuts than there are input edges, we
achieve a negative space overhead.

Node contraction is fast on sparse networks that also stay
sparse in the remaining graph during contraction. But on
sensor networks, slight variations in source and target posi-
tions suddenly make another path the shortest one, so that
CH works bad as a lot of shortcuts are necessary. ApxCH
works very well on these graphs, as there are a lot of similar
paths with similar lengths, so we can omit a lot of short-
cuts by allowing some error. Road networks have a different
structure than sensor networks. Due to the travel time met-
ric, there is hierarchy so that CH works well as we mostly
need shortcuts only for the fast highways. Also, there are
not a lot of similar paths, as most go through these high-
ways, so that apxCH cannot skip a lot of shortcuts and brings
no advantage. The distance metric exhibits less hierarchy,
thus also slow roads become important when they represent
a short path to the target, and there are more similar paths.
So, apxCH shows some improvements over CH there. The
grid networks have some hierarchy due to the random edge
weights, but it is less structured so that apxCH shows only
some improvements, especially in the preprocessing time.

Approximate CHALT. The best query times on the sen-
sor networks are achieved using goal-direction. We report
results for ALT, A* (based on coordinates on the disk) and
CHALT, and also for their weighted variant (marked with
W). The coordinates are stored in two double values (2 X
8 Byte/node). Using ALT is faster than A*, whereas bidi-
rectional ALT is faster than unidirectional ALT. But the
weighted variant has just the opposite order, A* based on
coordinates is the fastest with 0.58 ms on sensor20 using
e = 21%. It seems that having a denser network helps
WA* based on coordinates, as an about 3 times smaller
search space is explored for sensor20 in comparison to sen-
sorl0. So apxCHALT-10% is faster than WA-10% on sen-
sorl0, but slower on sensor20. When we use weighed A*
with CHALT, we get the fastest query time of 0.45 on sen-
sor20, being 20% faster than WA*-21% and even 9 times

37

faster than CHALT OLU. We compare to WA*-21%, as
apxCHALT-10% W-10% has a total error bound of 21% as
the errors multiply. You may note that both have almost the
same number of settled nodes. But as CHALT has fewer
cache misses, due to a node numbering in the adjacency
array based on the importance levels and the upward-only
query, CHALT is faster in practice. The second advantage
of apxCHALT-10% W-10% over WA*-21% is the smaller
space overhead in adjacency array representation.

Approximate CHASE. We only report results for
CHASE on the road and grid networks, as the preprocess-
ing on the sensor networks took more than 2 days. CHASE
has a smaller preprocessing space and query times than
CHALT. Furthermore, on road networks it is the fastest
speed-up technique except for TNR!. However, in compari-
son to CHALT and CH, the preprocessing time is very large,
especially for the distance metric. With apxCHASE-10%,
we are able to reduce the preprocessing time by a factor of 2.

Applications

We described our heuristic for a single edge weight func-
tion and tested it on some graph classes. They should pro-
vide comparable performance on other similar graph classes,
e.g. game networks or communication networks. Other ar-
eas may be time-dependent road networks, where not only
the travel time functions are approximations, but also the
shortcuts. Also, it can help for multi-criteria optimization.
It would be simple to extend it to the flexible scenario (Geis-
berger, Kobitzsch, and Sanders 2010) with two edge weight
functions. There, a lot more shortcuts than in the single-
criteria scenario are added, which significantly increases
preprocessing time and space. As our heuristics reduce the
number of shortcuts, this can bring a big improvement.

"Experiments done on a 2.0 GHz AMD Opteron running SuSE
Linux 10.0 with 8 GB of RAM and 2x1 MB of L2 cache.

preproc. query preproc. query
[s] [B/n] | #settled [ms] error [s] [B/n] | #settled [ms] error
grid 2-dimensional 3-dimensional
bidir. Dijkstra 0 0| 80168 22.59 - 0 0| 44244 19.78 -
CALT 40 226 445 0.82 - 53 409 598 1.30 -
bidir. AF 622 130 1369 0.34 - 6287 189 1718 0.62 -
bidir. ALT-a64 42 512 1083 0.86 - 55 512 722 1.10 -
CH 59 0 409 0.12 - 9205 14 2207 1.82 -
CH OLU 30 1 408 0.14 - 1088 18 2236 2.54 -
apxCH-10% 26 -1 388 0.13 0.70% 605 8 2124 2.00 0.19%
CHASE 105 11 102 0.04 - || 10051 62 807 0.59 -
CHASE OLU 87 14 91 0.04 - 2344 74 749 0.72 -
apxCHASE-10% 68 9 85 0.04 0.70% 1418 49 777 0.66 0.19%
CHALT 61 25 90 0.06 - 9210 39 524 0.65 -
CHALT OLU 33 26 80 0.07 - 1094 44 494 0.77 -
apxCHALT-10% 28 23 76 0.06 0.70% 610 34 434 0.62 0.19%
apxCHALT-10% W-10% 28 23 55 0.05 1.38% 610 34 361 0.53 0.59%

Table 3: Performance of our approximate algorithms on grid networks.

Conclusion

We developed an approximate version of contraction hier-
archies with guaranteed error bound. In our experimental
evaluation, we showed that on certain graph classes, this new
version is able to reduce preprocessing time and space, and
also query time by an order of magnitude. Query times are
further decreased by combination with AF or ALT.

Continuing work should be done on testing our algorithms
on other graphs. Further tuning on the algorithms is pos-
sible, too. The node ordering priorities are currently opti-
mized for road networks, so there is potential for improve-
ment. Also, the shortcuts are currently avoided in a greedy
fashion. Using smarter approaches may further decrease the
number of necessary shortcuts.

Acknowledgments. Partially supported by DFG Research
Training Group GRK 1194 and DFG grant SA 933/5-1.

References

Bast, H.; Funke, S.; Sanders, P.; and Schultes, D. 2007.
Fast Routing in Road Networks with Transit Nodes. Science
316(5824):566.

Bauer, R.; Columbus, T.; Katz, B.; Krug, M.; and Wagner,
D. 2010a. Preprocessing Speed-Up Techniques is Hard.
In Proceedings of the 7th Conference on Algorithms and
Complexity (CIAC’10), Lecture Notes in Computer Science.
Springer.

Bauer, R.; Delling, D.; Sanders, P.; Schieferdecker, D.;
Schultes, D.; and Wagner, D. 2010b. Combining Hier-
archical and Goal-Directed Speed-Up Techniques for Dijk-
stra’s Algorithm. ACM Journal of Experimental Algorith-
mics 15:2.3. Special Section devoted to WEA’08.

Delling, D.; Sanders, P.; Schultes, D.; and Wagner, D. 2009.
Engineering Route Planning Algorithms. In Lerner, J.; Wag-
ner, D.; and Zweig, K. A., eds., Algorithmics of Large and
Complex Networks, volume 5515 of Lecture Notes in Com-
puter Science. Springer. 117-139.

38

Geisberger, R.; Sanders, P.; Schultes, D.; and Delling, D.
2008. Contraction Hierarchies: Faster and Simpler Hier-
archical Routing in Road Networks. In McGeoch, C. C.,
ed., Proceedings of the 7th Workshop on Experimental Al-
gorithms (WEA’08), volume 5038 of Lecture Notes in Com-
puter Science, 319-333. Springer.

Geisberger, R.; Kobitzsch, M.; and Sanders, P. 2010. Route
Planning with Flexible Objective Functions. In Proceedings

of the 12th Workshop on Algorithm Engineering and Exper-
iments (ALENEX’10), 124-137. SIAM.

Geisberger, R. 2008. Contraction Hierarchies. Master’s
thesis, Universitdt Karlsruhe (TH), Fakultit fiir Informatik.

Goldberg, A. V., and Werneck, R. F. 2005. Computing
Point-to-Point Shortest Paths from External Memory. In
Proceedings of the 7th Workshop on Algorithm Engineering
and Experiments (ALENEX'05), 26-40. STAM.

Goldberg, A. V.; Kaplan, H.; and Werneck, R. F. 2007. Bet-
ter Landmarks Within Reach. In Demetrescu, C., ed., Pro-
ceedings of the 6th Workshop on Experimental Algorithms
(WEA’07), volume 4525 of Lecture Notes in Computer Sci-
ence, 38-51. Springer.

Hilger, M.; Kohler, E.; Mohring, R. H.; and Schilling, H.
2009. Fast Point-to-Point Shortest Path Computations with
Arc-Flags. In Demetrescu, C.; Goldberg, A. V.; and John-
son, D. S., eds., The Shortest Path Problem.: Ninth DIMACS
Implementation Challenge, volume 74 of DIMACS Book.
American Mathematical Society. 41-72.

Lauther, U. 2004. An Extremely Fast, Exact Algorithm for
Finding Shortest Paths in Static Networks with Geograph-
ical Background. In Geoinformation und Mobilitdit - von

der Forschung zur praktischen Anwendung, volume 22. IfGI
prints. 219-230.

Pearl, J. 1984. Heuristics: Intelligent Search Strategies for
Computer Problem Solving. Addison-Wesley.

Pohl, I. 1970. Heuristic Search Viewed as Path Finding in a
Graph . Artificial Intelligence 1(3):193-204.

