
Bootstrap Learning of Heuristic Functions

Shahab Jabbari Arfaee
Computing Science Department

University of Alberta
Edmonton, AB Canada T6G 2E8

(jabbaria@cs.ualberta.ca)

Sandra Zilles
Computer Science Department

University of Regina
Regina, SK Canada S4S 0A2

(zilles@cs.uregina.ca)

Robert C. Holte
Computing Science Department

University of Alberta
Edmonton, AB Canada T6G 2E8

(holte@cs.ualberta.ca)

Abstract

We investigate the use of machine learning to create effective
heuristics for search algorithms such as IDA* or heuristic-
search planners. Our method aims to generate a strong heuris-
tic from a given weak heuristic h0 through bootstrapping.
The “easy” problem instances that can be solved using h0

provide training examples for a learning algorithm that pro-
duces a heuristic h1 that is expected to be stronger than h0.
If h0 is too weak to solve any of the given instances we use a
random walk technique to create a sequence of successively
more difficult instances starting with ones that are solvable
by h0. The bootstrap process is then repeated using hi in
lieu of hi−1 until a sufficiently strong heuristic is produced.
We test our method on the 15- and 24-sliding tile puzzles,
the 17- and 24-pancake puzzles, and the 15- and 20-blocks
world. In every case our method produces a heuristic that
allows IDA* to solve randomly generated problem instances
extremely quickly with solutions very close to optimal.

Introduction

Modern heuristic search and planning systems require good
heuristics. The main approach to creating heuristics for
a state space is abstraction: from the state space descrip-
tion one creates a description of an abstract state space that
is easier to search; exact distances in the abstract space
give estimates of distances in the original space (Culberson
and Schaeffer 1996; Haslum and Geffner 2000; Bonet and
Geffner 2001). One limitation of this approach is that it is of-
ten memory-intensive. This has led to the study of compres-
sion schemes (Edelkamp 2002; Samadi et al. 2008), disk-
based methods (Zhou and Hansen 2005), and distributed
methods (Edelkamp, Jabbar, and Kissmann 2009). These
methods extend the range of problems to which abstraction
is applicable, but since combinatorial problems grow in size
exponentially it is easy to imagine problems so large that,
with the computers of the foreseeable future, even the best
heuristics created by these systems will be too weak to en-
able arbitrary instances to be solved reasonably quickly.

A second limitation of abstraction is that it can only be
applied to state spaces given in a suitable declarative form.
Sometimes there is no such state-space description, for ex-
ample, if a planner is controlling a system or computer

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

game, or when such a description would be vastly less ef-
ficient than a “hard-coded” one, or when the state space is
described declaratively but in a different language than the
abstraction system requires. We call such representations
opaque. With an opaque representation, a state space is de-
fined by a successor function that can be called to compute a
state’s children but cannot otherwise be reasoned about. By
definition, abstraction cannot be applied to create heuristics
when the state space is represented opaquely.

A way of creating heuristics that sidesteps these limita-
tions is to apply machine learning to a set of states with
known distance-to-goal (the training set) to create a func-
tion that estimates distance-to-goal for an arbitrary state, i.e.,
a heuristic function. This idea has been applied with great
success to the 15-puzzle and other state spaces of similar
size (Ernandes and Gori 2004; Samadi, Felner, and Scha-
effer 2008) but could not be applied to larger spaces, e.g.,
the 24-puzzle, because of the infeasibility of creating a suf-
ficiently large training set containing a sufficiently broad
range of possible distances to goal. To overcome this ob-
stacle, (Samadi, Felner, and Schaeffer 2008) reverted to the
abstraction approach: instead of learning a heuristic for the
24-puzzle directly they learned heuristics for two disjoint ab-
stractions of the 24-puzzle and added them to get a heuristic
for the 24-puzzle. This approach inherits the limitations of
abstraction mentioned above and, in addition, is not fully au-
tomatic: the crucial choices of which abstractions to use and
how to combine them are made manually.

Ernandes and Gori (2004) proposed a different way of ex-
tending the machine learning approach to scale to arbitrar-
ily large problems, but never implemented it. We call this
approach “bootstrap learning of heuristic functions” (boot-
strapping, for short). The contribution of the present paper is
to validate their proposal by supplying the details required to
make bootstrapping practical and fully automatic and show-
ing experimentally that it succeeds, without modification or
manual intervention, on both small (e.g., the 15-puzzle) and
large problems (e.g., the 24-puzzle). The measure of suc-
cess of our system is not that it produces better heuristics
than previous methods but rather that it produces heuristics
that are almost as good from a much weaker starting point.

Bootstrapping is an iterative procedure that uses learning
to create a series of heuristic functions. Initially, this pro-
cedure requires a (weak) heuristic function h0 and a set of

52

Proceedings of the Third Annual Symposium on Combinatorial Search (SOCS-10)

states we call the bootstrap instances. Unlike previous ma-
chine learning approaches, there are no solutions given for
any instances, and h0 is not assumed to be strong enough
to solve any of the given instances. A heuristic search algo-
rithm is run with h0 in an attempt to solve the bootstrap in-
stances within a given time limit. The set of solved bootstrap
instances, together with their solution lengths (not necessar-
ily optimal), is fed to a learning algorithm to create a new
heuristic function h1 that is intended to be better than h0.
After that, the previously unsolved bootstrap instances are
used in the same way, using h1 as the heuristic instead of
h0. This procedure is repeated until all but a handful of the
bootstrap instances have been solved or until a succession
of iterations fails to solve a large enough number of “new”
bootstrap instances (ones that were not solved previously).

If the initial heuristic h0 is too weak to solve even a few
of the given bootstrap instances within the given time limit
we enhance h0 by a random walk method that automatically
generates bootstrap instances at the “right” level of difficulty
(easy enough to be solvable with h0, but hard enough to
yield useful training data for improving h0).

As in the earlier studies (Ernandes and Gori 2004;
Samadi, Felner, and Schaeffer 2008), which may be seen
as doing one step of the bootstrap process with a very strong
initial heuristic, the learned heuristic might be inadmissible,
i.e., it might sometimes overestimate distances, and there-
fore IDA* is not guaranteed to find optimal solutions with
the learned heuristic. With bootstrapping, the risk of exces-
sive suboptimality of the generated solutions is much higher
than with the one-step methods because on each iteration
the learning algorithm might be given solution lengths larger
than optimal, biasing the learned heuristic to even greater
overestimation. The suboptimality of the solutions gener-
ated is hence an important performance measure in our ex-
periments.

We test our method experimentally on six problem do-
mains, the 15- and 24-sliding-tile puzzles, the 17- and 24-
pancake puzzles, and the 15- and 20-blocks world, in each
case (except the 15-puzzle) starting with an initial heuristic
so weak that the previous, one-step methods would fail be-
cause they would not be able to generate an adequate train-
ing set in a reasonable amount of time. In all the domains,
bootstrapping succeeds in producing a heuristic that allows
IDA* to solve randomly generated problem instances ex-
tremely quickly with solutions that are very close to optimal.
On these domains our method systematically outperforms
Weighted IDA* and BULB (Furcy and König 2005).

Method and implementation

The input to our system consists of a state space, a fixed goal
state g, a heuristic function hin, and a set Ins of states to be
used as bootstrap instances. We do not assume that hin is suf-
ficiently strong that any of the given bootstrap instances can
be solved using it. Our bootstrap procedure, Algorithm 1,
proceeds in two stages.

In the first stage, for every instance i in Ins, a heuristic
search algorithm is run with start state i and hin as its heuris-
tic (line 6). Every search is cut off after a limited period of

Algorithm 1

1: procedure Bootstrap(hin, Ins): hout

2: uses global variables tmax, t∞, insmin, g
3: create an empty training set TS
4: while (size(Ins) ≥ insmin) && (tmax ≤ t∞) do
5: for each instance i ∈ Ins do
6: if Heuristic Search(i, g, hin, tmax) succeeds then
7: for each state s on i’s solution path do
8: Add (feature vector(s), distance(s,g)) to TS
9: end for

10: end if
11: end for
12: if (#(new bootstrap instances solved) > insmin) then
13: hin := learn a heuristic from TS
14: remove the solved instances from Ins
15: clear TS
16: else
17: tmax := 2 × tmax

18: end if
19: end while
20: return hin

time (tmax). If i is solved within that time then some user-
defined features of i, together with its solution length, are
added to the training set. In addition, features and solution
lengths for all the states on the solution path for i are added
to the training set (lines 7 and 8). This increases the size of
the training set at no additional cost and balances the train-
ing set to contain instances with long and short solutions.

The second stage examines the collected training data.
If “enough” bootstrap instances have been solved then the
heuristic hin is updated by a learning algorithm (line 13).
Otherwise the time limit is increased without changing hin

(line 17). Either way, as long as the current time limit (tmax)
does not exceed a fixed upper bound (t∞), the bootstrap pro-
cedure is repeated on the remaining bootstrap instances with
the current heuristic hin. “Enough” bootstrap instances here
means a number of instances above a fixed threshold insmin

(line 12). The procedure terminates if tmax exceeds t∞ or if
the remaining set of bootstrap instances is too small.

There are no strong requirements on the set Ins of boot-
strap instances – it may be any set representative of the in-
stances of interest to the user. However, for the bootstrap
process to incrementally span the gap between the easiest
and hardest of these instances, Ins must contain instances at
intermediate levels of difficulty. At present this is an infor-
mal requirement for which we have no proof of necessity.

It can happen that the initial heuristic hin is so weak that
the heuristic search algorithm is unable to solve enough in-
stances in Ins, using hin, to get a sufficiently large set of
training data. For this case, we need a procedure that gen-
erates bootstrap instances that are (i) easier to solve than the
instances the user provided but (ii) harder to solve than in-
stances solvable by simple breadth-first search in acceptable
time (to guarantee a high enough quality of training data).

This is done using random walks backwards from the

53

Algorithm 2 In a random walk we always disallow the in-
verse of the previous move.

1: procedure RandomWalk (hin, Ins, length++): hout

2: uses global variables tmax, t∞, insmin, g
3: length := length++

4: while (hin is too weak to start the Bootstrap process on
Ins) && (tmax ≤ t∞) do

5: RWIns := generate instances by applying “length”
many random moves backward from the goal

6: hin := Bootstrap(hin, RWIns)
7: length := length + length++

8: end while
9: return Bootstrap(hin, Ins)

goal1 of a suitably chosen length to generate instances. As
described in Algorithm 2, we first test whether the initial
heuristic is strong enough to solve a sufficient number of the
user-provided instances (line 4). If so, the bootstrap pro-
cedure can be started immediately (line 9). Otherwise, we
perform random walks backward from the goal, up to depth
“length”, and collect the final states as special bootstrap in-
stances (RWIns). The bootstrap procedure is run on these
special instances (line 6) to create a stronger heuristic. This
process is repeated with increasingly longer random walks
(line 7) until it produces a heuristic strong enough for boot-
strapping to begin on the user-given instances or fails to pro-
duce a heuristic with which sufficiently many instances in
RWIns can be solved within time limit t∞.

The choice of “length++” is an important consideration.
If it is too large, the instances generated may be too diffi-
cult for the current heuristic to solve and the process will
fail. If it is too small, a considerable amount of time will be
wasted applying the bootstrap process to instances that do
not substantially improve the current heuristic. In the next
section we describe a method for automatically choosing an
appropriate value for “length++”.

Experiments

Our experiments ran on a 2.6 GHz computer with 32GB of
RAM. Except where explicitly stated otherwise, IDA* was
the search algorithm used. We never attempted fine-tuning
of any of the settings used in our experiments.

Domains. Although our motivation for creating the boot-
strap method was to have a technique that could be ap-
plied when existing techniques could not—either because
of memory limits, having only an opaque representation,
or there being no feasible way to create a training set good
enough for the one-step methods to succeed—the domains
we have chosen for our experiments do not have these prop-
erties. There are two reasons for this. First, it is very impor-
tant in this study to be able to determine the suboptimality of
the solutions our method produces. This requires choosing
domains in which optimal solution lengths can be computed
in a reasonable amount of time, which typically requires that

1Given uninvertible operators, this needs a predecessor func-
tion, not just the successor function from an opaque representation.

the domain is solvable by existing heuristic search methods
or that there exists a hand-crafted optimal solver for the do-
main. The second reason for our choice of domains is the
desire to compare the solutions produced by bootstrapping,
with a very weak initial heuristic, with those produced by
existing methods when they are given much stronger heuris-
tics. This necessarily entails giving bootstrapping an ar-
tificially weak starting point. We will consider bootstrap-
ping successful if the heuristics it produces, given its much
weaker starting point, are almost as good as those produced
by existing systems.

Based on these considerations, we chose the following do-
mains for our experiments. (i) sliding-tile puzzle. We used
the 15- and 24-puzzles. (ii) n-pancake puzzle (Dweighter
1975) – In the n-pancake puzzle, a state is a permutation
of n numbered tiles and has n − 1 successors, with the lth

successor formed by reversing the order of the first l + 1 po-
sitions of the permutation. n = 17 and n = 24 were used in
our experiments. (iii) n-blocks world (Slaney and Thiébaux
2001) – We used the 3-action handless blocks world with
n = 15 and n = 20 blocks.

Learning algorithm and features. The learning algo-
rithm used in all experiments was a neural network (NN)
with one output neuron representing distance-to-goal and
three hidden units trained using backpropagation and mean
squared error (MSE). Training ended after 500 epochs or
when MSE < 0.005. It is well known that the success of
any machine learning application depends on having “good”
features. The issue of automatically creating good features
for learning search control knowledge has been studied, in
the context of planning by (Yoon, Fern, and Givan 2008). In
our experiments we did not carefully engineer the features
used, exploit special properties of the domain, or alter our
features on the basis of early experimental outcomes or as
we scaled up the problem. The input features for the NN are
described separately for each domain below; most of them
are values of weak heuristics for the respective problems.

Initial heuristics. The initial heuristic h0 for each do-
main was defined as the maximum of the heuristics used as
features for the NN. After each iteration of our method, the
new heuristic was defined as the maximum over the output
of the NN and the initial heuristic.

Bootstrap instances. Ins always consisted of either 500
or 5000 solvable instances generated uniformly at random.

Numeric parameters. In all experiments, insmin = 75,
tmax = 1sec, t∞ = 512sec, and the size of the set RWIns
was 200. For RandomWalk, length++ was set as follows.

1. Run a breadth-first search backward from the goal state
with a time limit given by the initial value of tmax. Let S
be the set of states thus visited.

2. Repeat 5000 times: Do a random walk backwards from
the goal until a state not in S is reached. Set length++ to
be the floor of the average length of these random walks.

The tables below summarize the results on our test do-
mains, which are based on a set of test instances gener-
ated independently of the bootstrap instances. In the tables,
the column “h (Algorithm)” denotes the heuristic used; the
search algorithm, if different from IDA∗, is given in paren-

54

theses. The symbol #k indicates that the same heuristic is
used in this row as in row k. “Subopt” indicates the subop-
timality of the solutions found (Subopt=7% means the so-
lutions generated were 7% longer than optimal on average).
“Nodes” is the average number of nodes generated to solve
the test instances. “Time” is the average search time (in sec-
onds) to solve the test instances. Unless specifically stated,
no time limit was imposed when systems were solving the
test instances. Each row gives the data for a system that we
tried or found in the literature. The run-times taken from the
literature are marked with an asterisk to indicate they may
not be strictly comparable to ours. All weighted IDA∗ (W-
IDA∗, W is the weight by which h is multiplied) and BULB
results are for our own implementations. Hyphenated row
numbers “row-y” indicate Bootstrap results after iteration y.
The last Bootstrap iteration shown represents the termina-
tion of the Bootstrap process, either due to having fewer than
insmin many instances left (15-puzzle, 17- and 24-pancake
puzzle, 15-blocks world and the 20-blocks world using 5000
bootstrap instances) or due to tmax exceeding t∞ (24-puzzle,
20-blocks world with 500 bootstrap instances).

15-puzzle

For the 15-puzzle the input features for the NN were Man-
hattan distance (MD), number of out-of-place tiles, position
of the blank, number of tiles not in the correct row, number
of tiles not in the correct column, and five heuristics, each
of which is the maximum of two 4-tile pattern databases
(PDBs, (Culberson and Schaeffer 1996)). Except for the last
row in Table 2, all the results in Tables 1 and 2 are averages
over the standard 1000 15-puzzle test instances (Korf and
Felner 2002), which have an average optimal cost of 52.52.

Table 1 shows the results for bootstrapping on the 15-
puzzle. The initial heuristic (h0) was sufficient to begin
the Bootstrap process directly, so no random walk iterations
were necessary. Row 1 shows the results when h0 is used by
itself as the final heuristic. It is included to emphasize the
speedup produced by Bootstrapping. The next three rows
(2-0 to 2-2) show the results for the heuristic created on each
iteration of the Bootstrap method when it is given 500 boot-
strap instances. The next four rows (3-0 to 3-3) are analo-
gous, but when 5000 bootstrap instances are given. In both
cases, there is a very clear trend: search becomes faster in
each successive iteration (see the Nodes and Time columns)
but suboptimality becomes worse. In either case, bootstrap-
ping produces very substantial speedup over search using
h0. For instance, using 500 bootstrap instances produces a
heuristic in 11 minutes that makes search more than 4000
times faster than with h0 while producing solutions that are
only 4.5% (2.4 moves) longer than optimal.

There are two key differences between using 500 and
5000 bootstrap instances. The most obvious, and in some
settings by far the most important, is the total time required
for the bootstrap process. Because after every iteration an
attempt is made to solve every bootstrap instance, having
10 times as many bootstrap instances makes the process
roughly 10 times slower. The second difference is more
subtle. The larger bootstrap set contains a larger number
of more difficult problems, and those drive the bootstrap

row iteration Subopt Nodes Time

1 h0 0% 132,712,521 116.478

500 bootstrap instances
Total Time to create the final heuristic = 11m

2-0 0 (first) 1.1% 422,554 0.424

2-1 1 2.7% 76,928 0.075

2-2 2 (final) 4.5% 32,425 0.041

5000 bootstrap instances
Total Time to create the final heuristic = 1h 52m

3-0 0 (first) 1.2% 388,728 0.379

3-1 1 2.6% 88,235 0.087

3-2 2 5.4% 21,800 0.022

3-3 3 (final) 7.7% 10,104 0.010

Table 1: 15-puzzle, Bootstrap.

process through additional iterations (in this case one ad-
ditional iteration), producing, in the end, faster search but
worse suboptimality than when fewer bootstrap instances
are used. There is clearly a rich set of time-suboptimality
tradeoffs inherent in the bootstrap approach. In this paper
we do not address the issue of how to choose among these
options, we assume that a certain number of bootstrap in-
stances are given and that the heuristic produced by the final
bootstrap iteration is the system’s final output.

Table 2 shows the results of other systems applied to
the same test instances (except for the last row). Rows 1
through 4 are when our initial heuristic (h0) is used with W-
IDA∗ and BULB. Both algorithms are dominated by Boot-
strap, i.e., if W and B (BULB’s beam width) are set so that
W-IDA∗ and BULB compare to Bootstrap in either one of
the values Subopt or Nodes, then the heuristic obtained in
the final Bootstrap iteration (Table 1, Row 3-3) is superior
in the other value.

row h (Algorithm) Subopt Nodes Time

1 h0 (W-IDA*,W=1.6) 8.9% 310,104 0.194

2 h0 (W-IDA*,W=2.3) 41.9% 10,734 0.007

3 h0 (BULB,B=250) 7.7% 26,013 0.017

4 h0 (BULB,B=90) 12.7% 10,168 0.006

Results from previous papers

5 Add 7-8 0% 136,289 0.063*

6 #5 + reflected lookup 0% 36,710 0.027*

7 #6 + dual lookup 0% 18,601 0.022*

8 NN using tile positions
+#6+MD (RBFS) 3.3% 2,241 0.001*

9 PE-ANN version of #8
(RBFS) 0.2% 16,654 0.014*

10 NN “A” 3.5% 24,711 7.380*

Table 2: 15-puzzle, other methods.

The next three rows in Table 2 show state-of-the-art re-
sults for optimally solving the 15-puzzle. Rows 5 and 6 re-
fer to (Korf and Felner 2002), where the maximum of two
disjoint 7-8 PDBs, and their reflections across the main di-
agonal are the heuristics. Row 7 is from (Felner et al. 2005),
where the heuristic is as in Row 6, augmented with dual
lookup (in both the regular and the reflected PDB). Boot-
strap with 5000 bootstrap instances (Table 1, Row 3-3) out-

55

performs all of these systems in terms of Nodes and Time.
The last three rows of Table 2 show state-of-the-art results

for the one-step heuristic learning systems described in the
introduction. Rows 8 and 9 are taken from (Samadi, Felner,
and Schaeffer 2008). Row 8 uses the tile positions as fea-
tures for the NN along with the heuristic from Row 6 and
Manhattan Distance. Row 9 is the same as Row 8 but using
a modified error function during the neural net training to
penalize overestimation. This drives suboptimality almost
to 0, at the cost of substantially increasing the search time.
Row 10 shows the results for the NN in (Ernandes and Gori
2004) that generated the fewest nodes (“A”). These are av-
erages over 700 random instances with an average optimal
solution length of 52.62, not over the 1,000 test instances
used by all other results in this section. The NN input fea-
tures are the positions of the tiles and the initial heuristic.

Bootstrap with 5000 bootstrap instances (Table 1, Row
3-3) outperforms all of these systems in terms of Nodes
and Time except for Row 8, which also outperforms Boot-
strap in terms of suboptimality. To prove that its superior
performance is simply the result of having vastly stronger
heuristics as input features to the NN, we reran our Boot-
strap system with 5000 bootstrap instances, exactly as de-
scribed above, but with the following features replacing the
weak PDB features used above: the value of the 7- and 8-
tile additive PDBs individually, for both the given state and
its reflection, and the maximum of the sum of 7- and 8-tile
PDB values for the state and its reflection. With these in-
put features, and the corresponding h0, Bootstrap solved all
5000 bootstrap instances on its first iteration, and the heuris-
tic it produced, when used with RBFS, solved the 1000 test
instances with an average suboptimality of 0.5% while gen-
erating only 9,402 nodes on average. We thus see that Boot-
strap, when given a heuristic that is strong enough that it can
solve all bootstrap instances in the given time limit is equiv-
alent to the one-step systems previously reported. But, as
was seen in Table 1, its iterative RandomWalk and Bootstrap
processes take it beyond the capabilities of those systems by
enabling it to perform very well even when the initial heuris-
tic is not strong enough to solve the bootstrap instances.

24-puzzle

Table 3 shows our results on the 50 standard 24-puzzle test
instances (Korf and Felner 2002), which have an average
optimal cost of 100.78. The input features for the NN are
the same as for the 15-puzzle. Note that here 4-tile PDBs,
though requiring more memory, are much weaker than for
the 15-puzzle. The initial heuristic is sufficiently weak that
eight RandomWalk iterations were necessary before boot-
strapping itself could begin (ten iterations were required
when there were only 500 bootstrap instances). The trends
in these results are those observed for the 15-puzzle: (a)
search becomes faster in each successive iteration but sub-
optimality becomes worse; and (b) having more bootstrap
instances is slower and results in extra bootstrap iterations.

Table 4 shows the results of other systems on the same
test instances. Row 1 reports on W-IDA* for a weight with
which a number of nodes comparable to that using the fi-
nal bootstrap heuristic is achieved. Even if allowed 10 times

row iteration Subopt Nodes Time

500 bootstrap instances
Total Time to create the final heuristic = 2 days

1-0 0 (first) 5.1% 2,195,190,123 4,987.10

1-1 1 5.7% 954,325,546 2,134.78

1-3 3 (final) 6.1% 164,589,698 273.51

5000 bootstrap instances
Total Time to create the final heuristic = 18 days

2-0 0 (first) 5.4% 1,316,197,887 2,439.72

2-4 4 6.9% 115,721,236 214.59

2-7 7 7.9% 29,956,637 55.85

2-10 10 (final) 9.6% 5,221,203 9.83

Table 3: 24-puzzle, Bootstrap.

row h (Algorithm) Subopt Nodes Time

1 h0 (W-IDA*,W=2.6) 80.3% 5,849,910 4.3

2 h0 (BULB,B=18000) 10.5% 6,896,038 22.3

3 h0 (BULB,B=16000) 12.0% 5,286,874 18.2

Results from previous papers

4 Add 6-6-6-6 0% 360,892,479,670 47 hours*

5 #4 (DIDA*) 0% 75,201,250,618 10 hours*

6 #4, Add 8-8-8 0% 65,135,068,005 ?

7 #4, W=1.4 (RBFS) 9.4% 1,400,431 1.0*

8 PE-ANN,
Add 11-11-2 (RBFS) 0.7% 118,465,980 111.0*

9 #8, W=1.2 (RBFS) 3.7% 582,466 0.7*

Table 4: 24-puzzle, other methods.

more time per instance than used by Bootstrap in the final
iteration, W-IDA* could not compete in terms of subopti-
mality. Rows 2 and 3 are when our initial heuristic (h0) is
used with BULB. Bootstrap (Table 3, Row 2-10) dominates
in all cases.

Rows 4 to 6 show the results of state-of-the-art heuristic
search methods for finding optimal solutions. Row 4 shows
the results using the maximum of disjoint 6-tile PDBs and
their reflections across the main diagonal as a heuristic (Korf
and Felner 2002). Row 5 shows the results for DIDA∗ (Za-
havi et al. 2006) using the same heuristic. (Felner and Adler
2005) compute the maximum of this heuristic and a dis-
joint 8-tile PDB (partially created), see Row 6 (Time was
not reported). The very large time required by these sys-
tems shows that the 24-puzzle represents the limit for find-
ing optimal solutions with today’s abstraction methods and
memory sizes. Row 7 (Samadi, Felner, and Schaeffer 2008)
illustrates the benefits of allowing some amount of subopti-
mality, for RBFS with the heuristic from Row 4 multiplied
by 1.4. Although these results are better, in terms of Nodes
and Time, than Bootstrap (Table 3, Row 2-10), they hinge
upon having a very strong heuristic since we have just noted
that W-IDA* with our initial heuristic is badly outperformed
by Bootstrap.

Rows 8 and 9 show the PE-ANN results (Samadi, Felner,
and Schaeffer 2008). As discussed in the introduction, this is
not the same system as was applied to the 15-puzzle because
it was infeasible to generate an adequate training set for a
one-step method. Critical choices for abstracting the 24-
puzzle were made manually to obtain these results. Row 8

56

shows that our fully automatic method (exactly the same as
was applied to the 15-puzzle) is superior to this PE-ANN
by a factor of more than 20 in terms of nodes generated, al-
though it is inferior in terms of suboptimality. Row 9 shows
that if PE-ANN’s learned heuristic is suitably weighted it
can outperform Bootstrap in both Nodes and Subopt.

17-pancake puzzle

For the 17-pancake puzzle the input features for the NN
were six 5-token PDBs, a binary value indicating whether
the middle token is out of place, and the number of the
largest out-of-place token. All the results in Tables 5 and 6
are averages over the 1000 test instances used in (Yang et
al. 2008), which have an average optimal solution length of
15.77. Optimal solution lengths were computed using the
highly accurate, hand-crafted “break” heuristic.2

Table 5 shows the results for bootstrapping on the 17-
pancake puzzle. The initial heuristic (h0) was too weak
for us to evaluate it on the test instances in a reasonable
amount of time. The first two rows (1-0 and 1-1) show the
results for the heuristic created on each iteration of the Boot-
strap method using 500 bootstrap instances. The next three
rows (2-0 to 2-2) are analogous, but when 5000 bootstrap in-
stances are given. In both cases, we see the same trends as in
the 15-puzzle: (a) search becomes faster in each successive
iteration but suboptimality becomes worse; and (b) having
more bootstrap instances is slower and results in extra boot-
strap iterations. Note that a suboptimality of 7% here means
the solutions generated are only 1.1 moves longer than op-
timal. When there were 5000 bootstrap instances h0 was
able to solve enough bootstrap instances to begin the Boot-
strap process directly, but when there were only 500 two
iterations of the RandomWalk process were needed before
bootstrapping on the bootstrap instances could begin.

row iteration Subopt Nodes Time

500 bootstrap instances
Total Time to create the final heuristic = 26m

1-0 0 (first) 3.1% 253,964 0.112

1-1 1 (last) 4.6% 75,093 0.034

5000 bootstrap instances
Total Time to create the final heuristic = 2h 23m

2-0 0 (first) 2.4% 15,232,606 6.700

2-1 1 4.8% 76,346 0.034

2-2 2 (final) 7.1% 30,341 0.014

5000 bootstrap instances + duality
Total Time to create the final heuristic = 2h 4m

3-0 0 (first) 2.1% 14,631,867 30.790

3-1 1 4.2% 57,119 0.111

3-2 2 (final) 7.0% 7,555 0.009

Table 5: 17-pancake puzzle, Bootstrap.

The final three rows in Table 5 examine the effect of in-
fusing into the bootstrapping process the domain-specific
knowledge that for every pancake puzzle state s there ex-
ists another state sd, called the dual of s, that is the same

2For details on “break” see http://tomas.rokicki.com/pancake/

distance from the goal as s (Zahavi et al. 2006). To ex-
ploit this knowledge, when training the NN for every train-
ing example (s,cost) we added an additional training exam-
ple (sd,cost), and when calculating a heuristic value for s we
took the maximum of the values produced by the NN when
it was applied to s and to sd. The initial heuristic here was
given by the maximum over the heuristic values occurring in
the feature vectors for s and sd. A comparison of Rows 3-
2 and 2-2 shows that the additional knowledge substantially
reduced search time without affecting suboptimality.

row h (Algorithm) Subopt Nodes Time

1 h0 (W-IDA*,W=2) 7.1% 20,949,730 9.800

2 h0 (W-IDA*,W=8) 201.5% 8,650 0.004

3 h0 (BULB,B=5000) 7.5% 955,015 0.715

4 h0 (BULB,B=10) 155.5% 11,005 0.008

Results from previous papers

5 Add 3-7-7 0% 1,061,383 0.383∗

6 #5 + dual lookup 0% 52,237 0.036∗

7 #6 (DIDA*) 0% 37,155 0.026∗

Table 6: 17-pancake puzzle, other methods.

Table 6 shows the results of other systems. Rows 1 to 4
are when our initial heuristic (h0) and duality is used with
W-IDA∗ and BULB. As was the case for the 15-puzzle, both
algorithms are dominated by Bootstrap (Table 5, Row 3-
2). Rows 5 to 7 are for the state-of-the-art optimal heuris-
tic search methods that have been applied to the 17-pancake
puzzle. Rows 5 and 6 (Yang et al. 2008) use a set of three
additive PDBs, without and with dual lookups. Row 7 uses
dual lookups and dual search (Zahavi et al. 2006). In terms
of Nodes and Time, Bootstrap outperforms these systems
even without exploiting duality (Table 5, Row 2-2).

24-pancake puzzle

The experimental setup for the 24-pancake puzzle is identi-
cal to that for the 17-pancake puzzle, but note that a 5-token
PDB is a much weaker heuristic when there are 24 pancakes.
1000 randomly generated instances, with an average opti-
mal solution cost of 22.75, were used for testing. The initial
heuristic is so weak that four RandomWalk iterations were
necessary before bootstrapping itself could begin. Table 7 is
analogous to Table 5, with rows for selected iterations with
500 bootstrap instances, 5000 bootstrap instances, and 5000
bootstrap instances with duality exploited. All the trends
seen in previous domains are evident here.

No previous system has been applied to this problem
domain, so Table 8 includes results only for W-IDA∗ and
BULB. The results shown are when those algorithms use
duality, so the appropriate comparison is with Row 3-6 of
Table 7. Neither algorithm was able to achieve a “Nodes”
value similar to Bootstrap, so the table just shows the min-
imum number of nodes these two algorithms generated (we
tried 15 values for W between 1.1 and 10, and 15 values
for B between 2 and 20,000). As can be seen, W-IDA∗ and
BULB produce a very high degree of suboptimality when
generating the fewest nodes and are therefore not competi-
tive with Bootstrap. Looking for settings for which W-IDA∗

57

row iteration Subopt Nodes Time

500 bootstrap instances
Total Time to create the final heuristic = 1h 19m

1-0 0 (first) 8.1% 9,502,753 9.70

1-2 2 9.3% 3,189,610 3.20

1-4 4 (final) 10.3% 1,856,645 1.89

5000 bootstrap instances
Total Time to create the final heuristic = 15h

2-0 0 (first) 6.9% 24,488,908 32.68

2-4 4 8.3% 4,389,271 5.65

2-8 8 10.2% 1,547,765 2.19

2-12 12 11.2% 1,285,021 1.82

2-16 16 (final) 12.1% 770,999 0.80

5000 bootstrap instances + dual lookup
Total Time to create the final heuristic = 9h

3-0 0 (first) 8.2% 3,345,657 7.08

3-2 2 10.9% 445,420 0.93

3-4 4 12.1% 226,475 0.37

3-6 6 (final) 14.1% 92,098 0.16

Table 7: 24-pancake puzzle, Bootstrap.

or BULB can compete with Bootstrap in terms of subop-
timality was not successful. Allowing 10 times more time
than IDA* with Bootstrap’s final heuristic needed on each
test instance, W-IDA∗ did not complete any instances at all
and BULB completed too few to allow for a comparison.

row h (Algorithm) Subopt Nodes Time

1 h0 (W-IDA*,W=8) 130.1% 2,128,702 1.88

2 h0 (BULB,B=10) 2726.7% 267,017 1.10

Table 8: 24-pancake puzzle, other methods.

15-blocks world

For the 15-blocks world we used 200 random test instances
in which the goal state has all the blocks in one stack. Their
average optimal solution length is 22.73. We used 9 input
features for the NN: seven 2-block PDBs, the number of out
of place blocks, and the number of stacks of blocks. Opti-
mal solutions were computed using the hand-crafted blocks
world solver PERFECT (Slaney and Thiébaux 2001).

Table 9 shows the bootstrap results. The initial heuristic
is so weak that three RandomWalk iterations were needed
before bootstrapping. The trends are, again, (a) search is
sped up in each iteration but suboptimality increases; and (b)
having more bootstrap instances is slower and requires more
bootstrap iterations. A suboptimality of 7% here means the
solutions generated are about 1.6 moves longer than optimal.

Table 10 shows the results of BULB using our initial
heuristic, which is again dominated by Bootstrap (Table 9,
Row 2-9). An attempt to compare with W-IDA* on the 1-
stack goal failed due to the poor performance of W-IDA*
with time limits 10 times larger than the solving time using
Bootstrap’s final heuristic for each test instance. Varying
the weights between 1.2 and 10, W-IDA* never solved more
than about 70% of the instances (W=8 was best).

We compare our solution quality (Table 9, Row 2-9) to
three hand-crafted suboptimal solvers for the blocks world,

row iteration Subopt Nodes Time

500 bootstrap instances
Total Time to create the final heuristic = 1h 46m

1-0 0 (first) 1.5% 1,157,510,765 2,656.99

1-1 1 2.8% 554,160,659 2,149.07

1-2 2 4.7% 21,289,247 69.37

1-3 3 (final) 6.9% 3,651,438 15.87

5000 bootstrap instances
Total Time to create the final heuristic = 8h

2-0 0 (first) 1.6% 2,253,260,711 5,081.57

2-3 3 3.9% 44,616,679 101.19

2-6 6 6.7% 3,468,436 7.65

2-9 9 (final) 7.3% 155,813 0.35

Table 9: 15-blocks world (1-stack goal), Bootstrap.

row h (Algorithm) Subopt Nodes Time

1 h0 (BULB,B=4000) 7.3% 972,380 2.09

2 h0 (BULB,B=500) 24.4% 177,187 0.46

Table 10: 15-blocks world, other methods.

US, GN1, and GN2 (Gupta and Nau 1992). With an average
solution length of 24.4, Bootstrap performed almost as well
as GN1 (23.88) and GN2 (22.83), and slightly better than
US (25.33), even though US by construction should work
well on 1-stack goal problems.

20-blocks world

The experimental setup for 20 blocks was identical to that
for 15 blocks, but here a 2-block PDB is a much weaker
heuristic than for 15 blocks. We used 50 random test in-
stances with an average optimal solution length of 30.92.
The initial heuristic is so weak that six RandomWalk itera-
tions were necessary before bootstrapping (eight iterations
for 500 bootstrap instances). The trends across bootstrap it-
erations are those observed in all previous experiments.

row iteration Subopt Nodes Time

500 bootstrap instances
Total Time to create the final heuristic = 2 days

1-1 1 1.5% 13,456,726,519 55,213

1-3 3 (final) 3.6% 615,908,785 2,763

5000 bootstrap instances
Total Time to create the final heuristic = 11 days

2-3 3 2.1% 12,771,331,089 52,430

2-5 5 3.3% 941,847,444 3,828

2-7 7 3.9% 789,515,580 3,240

2-10 10 7.6% 11,347,282 47

2-13 13 (final) 9.2% 5,523,983 23

Table 11: 20-blocks world (1-stack goal), Bootstrap.

Bootstrap with an average solution length of 33.78 (Ta-
ble 11, Row 2-13) is again somewhat inferior to GN1 (32.54)
and GN2 (30.94), and slightly better than US (34.58).

Similar to the 15-blocks world, W-IDA* with time limits
10 times larger than the solving time using Bootstrap’s final
heuristic for each test instance failed to solve more than half

58

the test instances (W was varied between 1.2 and 10). In the
best case (W=9) W-IDA* solved 24 of the test instances.

For suboptimality, BULB could not compete with Boot-
strap (Table 11, Row 2-13); we tried 15 values for B between
2 and 20,000. For nodes, BULB (h0, B=2,400) achieved val-
ues of 109.6% (Subopt), 5,809,791 (Nodes), and 32 (Time).

Related work

Bootstrap learning to iteratively improve an initially weak
evaluation function for single-agent search is an idea due to
Rendell (1983). Our method differs from his in some key
details. Most importantly, Rendell required the user to pro-
vide at least one bootstrap instance per iteration that was
solvable with the current evaluation function. We assume all
bootstrap instances are given at the outset, and if the system
cannot solve any of them it generates its own.

The only other study of bootstrap learning of heuristics
is due to Humphrey, Bramanti-Gregor, and Davis (1995).
Their system SACH learns a heuristic to solve a single in-
stance, while bootstrapping over successive failed attempts.

A related approach is online learning of heuristics as stud-
ied by Fink (2007). Fink proves his learning algorithm has
certain desirable properties, but it has the practical short-
coming that it requires optimal solution lengths to be known
for all states that are generated during all of the searches.

Two previous systems have used random walks to gen-
erate successively more difficult instances to bootstrap the
learning of search control knowledge in a form other than a
heuristic function. Fern et al. (2004) used random walks in
learning policies to control a Markov Decision Process, and
Finkelstein and Markovitch (1998) used them in the context
of learning macro-operators to augment a heuristic-guided
hill-climbing search. In both cases the initial random walk
length and the increment were user-specified.

Conclusions

This paper gives experimental evidence that machine learn-
ing can be used to create strong heuristics from very weak
ones through a fully automatic, incremental bootstrapping
process augmented by a random walk method for generat-
ing successively more difficult problem instances. Our sys-
tem was tested on small and large versions of three different
problem domains and successfully created heuristics that en-
able IDA* to solve randomly generated test instances very
quickly and almost optimally. The total time needed for
our system to create these heuristics strongly depends on
the number of bootstrap instances it is given. Using 500
bootstrap instances, heuristics are produced approximately
10 times faster than using 5000 bootstrap instances. Search
is slower with the heuristics produced using fewer bootstrap
instances, but the solutions found are closer to optimal. This
work significantly extends previous, one-step methods that
fail unless they are given a very strong heuristic to start with.

Acknowledgements

Thanks to M. Samadi and R. Valenzano for sharing their
code, reviewers for their insightful comments, the Alberta
Ingenuity Centre for Machine Learning, and NSERC.

References

Bonet, B., and Geffner, H. 2001. Planning as heuristic
search. Artif. Intell. 129:5–33.

Culberson, J. C., and Schaeffer, J. 1996. Searching with
pattern databases. Advances in Artificial Intelligence (LNAI
1081) 402–416.

Dweighter, H. 1975. Problem E2569. American Mathemat-
ical Monthly 82:1010.

Edelkamp, S.; Jabbar, S.; and Kissmann, P. 2009. Scaling
search with pattern databases. In MOCHART, volume 5348
of LNCS, 49–64. Springer.

Edelkamp, S. 2002. Symbolic pattern databases in heuristic
search planning. In AIPS, 274–283.

Ernandes, M., and Gori, M. 2004. Likely-admissible and
sub-symbolic heuristics. ECAI 613–617.

Felner, A., and Adler, A. 2005. Solving the 24 puzzle
with instance dependent pattern databases. In SARA, vol-
ume 3607 of LNCS, 248–260. Springer.

Felner, A.; Zahavi, U.; Schaeffer, J.; and Holte, R. C. 2005.
Dual lookups in pattern databases. In IJCAI, 103–108.

Fern, A.; Yoon, S.; and Givan, R. 2004. Learning domain-
specific control knowledge from random walks. In ICAPS,
191–199. AAAI Press.

Fink, M. 2007. Online learning of search heuristics. AIS-
TATS 114–122.

Finkelstein, L., and Markovitch, S. 1998. A selective macro-
learning algorithm and its application to the nxn sliding-tile
puzzle. J. Artif. Intell. Res. 8:223–263.

Furcy, D., and König, S. 2005. Limited discrepancy beam
search. In IJCAI, 125–131.

Gupta, N., and Nau, D. S. 1992. On the complexity of
blocks-world planning. Artif. Intell. 56:223–254.

Haslum, P., and Geffner, H. 2000. Admissible heuristics for
optimal planning. In AIPS, 140–149.

Humphrey, T.; Bramanti-Gregor, A.; and Davis, H. W. 1995.
Learning while solving problems in single agent search:
Preliminary results. In AI*IA, 56–66. Springer.

Korf, R. E., and Felner, A. 2002. Disjoint pattern database
heuristics. Artif. Intell. 134:9–22.

Rendell, L. A. 1983. A new basis for state-space learn-
ing systems and a successful implementation. Artif. Intell.
20:369–392.

Samadi, M.; Siabani, M.; Felner, A.; and Holte, R. 2008.
Compressing pattern databases with learning. In ECAI, 495–
499.

Samadi, M.; Felner, A.; and Schaeffer, J. 2008. Learning
from multiple heuristics. AAAI 357–362.

Slaney, J., and Thiébaux, S. 2001. Blocks world revisited.
Artif. Intell. 125:119–153.

Yang, F.; Culberson, J.; Holte, R.; Zahavi, U.; and Felner, A.
2008. A general theory of additive state space abstractions.
Artif. Intell. 32:631–662.

59

Yoon, S.; Fern, A.; and Givan, R. 2008. Learning control
knowledge for forward search planning. J. Mach. Learn.
Res. 9:683–718.

Zahavi, U.; Felner, A.; Holte, R.; and Schaeffer, J. 2006.
Dual search in permutation state spaces. AAAI 1076–1081.

Zhou, R., and Hansen, E. 2005. External-memory pat-
tern databases using structured duplicate detection. In AAAI,
1398–1405.

60

