
Search Space Reduction Using Swamp Hierarchies

Nir Pochter
School of Engineering and Computer Science

The Hebrew University, Jerusalem, Israel
nirp@cs.huji.ac.il

Aviv Zohar
School of Engineering and Computer Science

The Hebrew University, Jerusalem, Israel
and Microsoft Israel R&D Center Herzlia, Israel

avivz@cs.huji.ac.il

Jeffrey S. Rosenschein
School of Engineering and Computer Science

The Hebrew University, Jerusalem, Israel
jeff@cs.huji.ac.il

Ariel Felner
Information Systems Engineering

Ben-Gurion University, Be’er-Sheva, Israel
felner@bgu.ac.il

Abstract

In various domains, such as computer games, robotics, and
transportation networks, shortest paths may need to be found
quickly. Search time can be significantly reduced if it is
known which parts of the graph include “swamps”—areas
that cannot lie on the only available shortest path, and can
thus safely be pruned during search. We introduce an al-
gorithm for detecting hierarchies of swamps, and exploit-
ing them. Experiments support our claims of improved ef-
ficiency, showing significant reduction in search time.

Introduction

A common direction in heuristic search is to develop tech-
niques for very large combinatorial domains (e.g., permuta-
tion puzzles) where the state space is defined only implicitly,
due to its exponential size. However, there are many do-
mains, such as map-based searches (common in GPS nav-
igation, computer games, and robotics) where the entire
state-space is given explicitly. Optimal paths for such do-
mains can be found relatively quickly with simple heuris-
tics, especially when compared to the time it takes to ex-
plore exponentially large combinatorial problems. Relative
quickness, however, might still not be fast enough in certain
real-time applications, where further improvement towards
high-speed performance is especially valued. We present
an approach that relies on preprocessing techniques that can
dramatically reduce search costs, and do not compromise
search optimality.1 Our preprocessing determines the lo-
cation of swamps, namely areas that can always be safely
pruned, as long as they do not contain the start or end state.
This approach is particularly useful when maps are known
in advance and are used for multiple searches.

To understand the intuition behind swamps, think of an
agent traversing a maze. A certain corridor in the maze may
be a long path to the target or even a dead end, and thus
may be useless for constructing short paths. A search al-
gorithm may still look inside this corridor, especially if the
heuristic indicates that this corridor is in the general direc-
tion of the target, and should be explored before other op-

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1A full version of this work appears in (Pochter et al. 2010).

tions. Only when the corridor is further explored will the
algorithm learn that it does not lead to the target quickly.
We automatically identify such areas in the graph during the
preprocessing stage, and allow the search algorithm to ex-
plore them only under very specific circumstances: when
the search originates or terminates within them.

Swamps

A swamp is formally defined as follows:

Definition 1. A swamp S in a graph G = (V, E) is a set of
states S ⊆ V such that for each v1, v2 ∈ V \ S, there exists
a shortest path P1,2 that connects v1 and v2 and traverses
only nodes in V \ S.

Note that in general, a swamp does not have to be a con-
nected subset of states. We will use the term contiguous-
swamp to specify a connected subset of states that is a
swamp. We will often denote it in this paper by C.

The exploitation of swamps during search occurs as fol-
lows: when a search is performed between two states, both
of which are outside of a swamp S, all nodes belonging to S
can be considered blocked, and do not have to be expanded.

Modular Swamps

To improve savings during search, we would of course like
to increase the number of pruned nodes, i.e., increase the
number of nodes inside the swamp. On the other hand, a
swamp that itself contains the start or target state cannot
be pruned, and thus larger swamps will be used less often.
To handle this issue, we detect a set of small contiguous-
swamps that cover as much of the graph as possible, but can
also be used together. We call such sets modular-swamps.

Definition 2. A modular-swamp M is a set of disjoint
contiguous-swamps M = {C1, . . . , Ck} ∀i 6= j Ci ∩
Cj = ∅, such that any subset of them forms a swamp. That

is, if M′ ⊆ M then
⋃

C∈M′

C is a swamp.

Within the context of modular-swampM, let C(v) denote
the contiguous-swamp within M that contains state v.

Definition 2 provides a natural way to conduct a search
over a graph, within which a modular-swamp M is known:

155

Proceedings of the Third Annual Symposium on Combinatorial Search (SOCS-10)

whenever we search for a path between states v1, v2, we will
block access to all contiguous-swamps in M, except per-
haps C(v1) and C(v2)—the contiguous-swamps that contain
nodes v1 and v2. The remaining contiguous-swamps form a
swamp together, and can thus be considered blocked for the
purpose of the search.

Swamp-Hierarchies

Once we find a modular-swamp, we can recursively search
for another modular-swamp on the remaining graph. This
stage introduces dependencies between contiguous-swamps,
as illustrated by the following example:

Figure 1: An example of a swamp-hierarchy

Example 1. Figure 1 depicts a graph with two contiguous
sets of states, C1 and C2. C1 is a contiguous-swamp that is
composed of states 5 and 6. The reader can easily verify
that these two states do not participate in the shortest path
between nodes outside of C1.

On the other hand, C2 is not a contiguous-swamp if con-
sidered on its own (it is, in fact, on the shortest path between
state 6 and state 3). However, if the nodes in C1 are consid-
ered blocked, then C2 is a contiguous-swamp.

We say that C2 above depends on C1. Whenever we search
for a shortest path on the graph, we can safely consider C1

as blocked (unless our search starts or ends inside it), and
(given that C1 is considered blocked) we will consider C2 as
blocked unless our search begins or ends in C1 ∪ C2.

To generalize the example above, we will define a partial
order � on contiguous-swamps: intuitively, C1 � C2 if C2

depends on C1, in the same manner as the example above.

We define the closure of a set of contiguous-swamps T ⊆
H under � as the following set:

T� = {C ∈ H | C � C′ for some C′ ∈ T }
That is, T� is the set T extended with all contiguous-

swamps on which members of T depend.

We are now ready to formally define a swamp-hierarchy:

Definition 3. A swamp-hierarchy in a graph G is a tuple
(H,�) where H is a set of disjoint contiguous-swamps:

H = {C1, . . . , Ck} ∀i 6= j Ci ∩ Cj = ∅

and � is a partial order on them such that the closure of any
subset of contiguous-swamps from H forms a swamp in G;
i.e., ∀ T ⊆ H we have that S =

⋃
C∈T� C is a swamp in G

For a more detailed description of the algorithms used for
detecting swamps, see (Pochter et al. 2010).

Figure 2: Search time on mazes with and without swamps

Nodes Time Swamp% #Searches

Mazes (400 × 400) 3.41% 4.36% 100% 362

Rooms 15.27% 13.53% 88.40% 865

Baldur’s Gate 34.58% 41.18% 73.58% 874

Random Grids 32.04% 33.45% 79.26% 2111

Delaunay Graphs 47.83% 42.70% 57.84% 1011

Random Graphs 94.12% 94.61% 6.27% 2319600

Table 1: A
∗ performance comparison with and without swamps.

Nodes: percentage of nodes expanded using swamps, compared to
A

∗ without swamps; Time: time it took to search with swamps as a
percentage of time to search without swamps; Swamp%: percent-
age of states that are part of some contiguous-swamp; #Searches:
number of searches it took to recover detection cost.

Experimental Results

To explore our method’s effectiveness, we ran experiments
in several domains: random grids, random graphs, Delau-
nay graphs, random mazes, room maps, and maps from the
computer game Baldur’s Gate. For each graph, we ran our
swamp detection algorithms, and conducted A∗ searches be-
tween 10,000 randomly selected pairs of states. For compar-
ison, searches were also conducted without swamps.

For each domain we examined the average number of ex-
panded nodes, the average time per search and the number
of searches it took to recover the computational costs of the
preprocessing stage. For grid-based domains we assumed

8-neighbor connectivity (a diagonal move’s cost is
√

2), and
used the octile distance heuristic; for Delaunay Graphs, we
used the Euclidean distance heuristic. For random graphs
no heuristic exists. Results are summarized in Table 1; in all
these domains with the exception of random graphs (which
are particularly difficult), swamps enabled considerable re-
duction in both the number of nodes expanded by A∗, as
well as search run-time. For some domains, savings increase
dramatically as the graph grows (see Figure 2).

Acknowledgments

This research was supported in part by Israel Science Foun-
dation grants #898/05 and #305/09.

References

Pochter, N.; Zohar, A.; Rosenschein, J. S.; and Felner, A.
2010. Search space reduction using swamp hierarchies. In
The Twenty-Fourth National Conference on Artificial Intel-
ligence. To appear.

156

