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The Canadian Traveler’s Problem
The Canadian Traveler’s Problem (CTP; Papadimitriou and
Yannakakis 1991) is a path planning problem with imperfect
information about the roadmap. We consider its stochas-
tic version, which has drawn considerable attention from
researchers in AI search (e. g., Nikolova and Karger 2008)
and is closely related to navigation tasks in uncertain ter-
rain considered in the robotics literature (e. g., Koenig and
Likhachev 2002; Likhachev and Stentz 2006).1

The objective in the CTP is to travel from the initial lo-
cation v0 to some goal location v? on a roadmap given
as an undirected weighted graph with vertex set V (loca-
tions) and edge set E (roads). Complicating things, only
a subset of roads W ⊆ E, called the weather, is actually
traversable. The weather remains static while the agent tra-
verses the graph. The agent does not know the weather;
however, it does knows with which probability each road
is blocked, and it automatically observes the status of a road
upon reaching one of the incident locations. We speak of
good weather when v0 and v? are connected under weather
W and bad weather otherwise. Instances of the stochastic
CTP are examples of deterministic POMDPs (Bonet 2009),
where partial observability of the initial state (due to un-
known weather) is the only source of uncertainty.

Policies for the CTP
We describe and evaluate four algorithms for computing
policies for the stochastic CTP. More precisely, we describe
four algorithms for computing cost functions for belief states
of the stochastic CTP. Each of these then induces a pol-
icy which acts greedily with respect to the respective cost
function. The first algorithm we consider, which dominates
the literature on the stochastic CTP, is the optimistic pol-
icy (OMT), which is based on what is called the free space
assumption in the robotics literature: as long as it is pos-
sible that a given road is traversable, we assume that it is
traversable. Formally, the optimistic cost function in belief
state b, COMT(b), is the distance from the agent location to
the goal in the optimistic roadmap for b, which is the graph
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1The work described in this extended abstract is presented in
detail in a AAAI 2010 paper (Eyerich, Keller, and Helmert 2010).

that includes all roads that are not known to be impassable in
b. Finding shortest paths in the optimistic roadmap is a stan-
dard shortest path problem without uncertainty, and hence
COMT(b) can be efficiently computed.

Our second approach, which still allows us to reduce cost
estimation to shortest path computation in regular graphs is
hindsight optimization (HOP). For each belief state, N iter-
ations called rollout are performed, where N is a parameter.
In each rollout, a weather W that is consistent with the cur-
rent belief state b is sampled according to the blocking prob-
abilities. If W is bad, the rollout counts as failed. Otherwise,
we compute the goal distance of the agent location in the
graph 〈V,W 〉. The HOP cost estimate CN

HOP(b) for N roll-
outs is the average of the computed distances over all suc-
cessful rollouts. An alternative name for HOP is averaging
over clairvoyance, since its rollouts assume a “clairvoyant”
agent that knows ahead of time which roads are traversable.

This assumption of clairvoyance is the Achilles heel of
HOP. Our third approach, optimistic rollout (ORO) ad-
dresses this issue by modifying how each rollout is per-
formed. While its cost function CN

ORO is also computed by
performing a sequence of N rollouts and averaging over cost
estimates for successful rollouts, rather than using the clair-
voyant goal distance in good weather W , ORO simulates the
optimistic policy on W and uses the cost of the resulting run
as the cost estimate.

The final approach we consider is the UCT algorithm
(Kocsis and Szepesvári 2006). As in ORO, each UCT roll-
out computes an actual run from the agent location to the
goal for the given weather, without using information that
is hidden to the agent, and uses the average cost of suc-
cessful rollouts as the overall cost estimate CN

UCT(b). While
each rollout is independent in HOP and ORO, UCT roll-
outs are correlated: when deciding which successor to pick,
UCT favors those that led to low cost and have been rarely
tried in previous rollouts. To balance these criteria, i. e., the
classical trade-off between exploitation and exploration, it
picks a candidate maximizing the UCT formula, which is de-
signed to select each successor arbitrarily often in the limit
while choosing previously unpromising successors increas-
ingly more and more rarely over time.

The basic or blind UCT algorithm (UCTB) does not take
any problem-specific information into account to bias roll-
outs towards the goal and performs poorly in our experi-
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OMT HOP ORO UCTB UCTO
∅ C20 186.5±2 165.7±2 162.2±2 185.9±2 155.4±2
∅ C50 303.7±3 275.4±3 259.5±3 392.1±6 244.7±2

∅ C100 383.0±5 371.3±4 331.5±4 564.9±10 316.5±3

Table 1: Average travel costs with 95% confidence intervals
for 1000 runs on each of 10 roadmaps with 20, 50, and 100
locations. Best results are highlighted in bold.

ments. Hence, we also consider the optimistic UCT (UCTO)
approach, which modifies UCTB in two ways:

• When extending a partial rollout which has several unvis-
ited successors, pick the one with lowest COMT value.

• When evaluating the UCT formula, pretend that there
were M additional rollouts for each successor, each with
cost COMT(b), where M is an algorithm parameter.

These modifications guide early rollouts towards promising
parts of the belief space while not affecting the behavior in
the limit. Similar extensions to UCT have shown great suc-
cess in the game of Go (Gelly and Silver 2007).

Evaluation
We evaluated the presented CTP algorithms theoretically
and experimentally. A first, fairly direct theoretic results
is that the cost functions of all considered randomized al-
gorithms (HOP, ORO and both UCT variants) converge in
probability, so that it makes sense to speak of the cost func-
tions “in the limit”, which we denote as C∞HOP, C∞ORO and
C∞UCT. (There is no need to distinguish UCTB and UCTO
here, since their behavior in the limit is identical.) Using
these notations, we can present our main result:

Theorem 1 For all CTP instances I and belief states b:

COMT(b) ≤ C∞HOP(b) ≤ C∞UCT(b) = C∗(b) ≤ C∞ORO(b),

where C∗(b) is the cost function of the optimal policy. More-
over, there are instances where all inequalities are strict and
the ratio between any two different cost functions is arbitrar-
ily large.

The theorem implies that UCT converges towards an op-
timal policy. It also confirms the intuition that HOP (and
even more so OMT) is an optimistic approximation to the
real cost function while ORO is pessimistic.

To test how theory matches actual performance, we con-
ducted an experiment with 30 problem instances based on
random Delaunay graphs with 20, 50 or 100 locations and
up to 287 roads. We estimate the expected cost of a pol-
icy by performing 1000 runs for each algorithm and bench-
mark graph, using N = 10000 rollouts for all random-
ized algorithms and M = 20 for UCTO. Table 1 shows
that UCTO dominates, always providing the cheapest poli-
cies, but HOP and ORO also significantly outperform OMT,
clearly demonstrating the benefit of taking uncertainty into
account. On the middle-sized graphs, UCTO improves over
OMT by 19.4% on average, with similar results on the re-
maining benchmarks. UCTB, on the other hand, does not
fare well, converging too slowly and thereby underlining

that these benchmarks are far from trivial. This result is not
unexpected, as the initial rollouts of UCTB have to reach the
goal through random walks.

To analyze the speed of convergence and scalability, we
performed additional experiments on some of the bench-
mark graphs where we varied the rollout number in the range
10–100000. After only about 100 rollouts, all randomized
algorithms except UCTB already obtain a better quality than
OMT. After about 1000 rollouts, ORO and HOP begin to
level off while UCTO takes the lead and still continues to
improve. The experiment also shows that the eventual con-
vergence of UCTB to an optimal policy is of limited practi-
cal utility as the speed of convergence is very low.

In order to also provide a comparison to related ap-
proaches suggested in the literature, we did an additional ex-
periment on the CTP with remote sensing, where the agent
has the additional option of sense the status of roads from
a distance at a cost. (For the regular stochastic CTP, we
found no other work to directly compare to.) We applied
our algorithms to this setting by never making use of remote
sensing. The resulting policies are competitive to sensing
policies suggested in the literature (Bnaya, Felner, and Shi-
mony 2009) and even outperform them on instances with
larger blocking probabilities.

Conclusion
We investigated the problem of finding high-quality policies
for the stochastic CTP. We discussed several algorithms for
this problem that outperform the optimistic approach that is
prevalent in the literature, both in terms of theoretical guar-
antees and in terms of experimental solution quality. The
best-performing algorithm, UCTO, converges to an optimal
policy in the limit and offers very good empirical perfor-
mance with a reasonable number of rollouts.
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