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Abstract

We use genetic programming to evolve highly success-
ful solvers for two puzzles: Rush Hour and FreeCell.

Many NP-Complete puzzles have remained relatively ne-
glected by researchers (see (Kendall, Parkes, and Spoerer
2008) for a review). Among these difficult games we find
the Rush Hour puzzle, which was proven to be PSPACE-
Complete for the general n×n case (Flake and Baum 2002).
The commercial version of this popular single-player game
is played on a 6x6 grid, simulating a parking lot replete with
several cars and trucks. The goal is to find a sequence of le-
gal vehicular moves that ultimately clears the way for the red
target car, allowing it to exit the lot through a tile that marks
the exit (Figure 1a). Another well-known, highly popular
example within the domain of discrete puzzles is the card
game of FreeCell. Starting with all cards randomly divided
into k piles, the objective of the game is to move all cards
onto four different foundation piles—one per suit—arranged
upwards from the ace until the king (Figure 1b). FreeCell
was proven by Helmert to be NP-Complete (Helmert 2003).

We used genetic programming (GP) to evolve hyper
heuristic-based solvers for both Rush Hour and Freecell.
Our evolutionary algorithm has proven immensely effica-
cious, managing to combine heuristics of highly variable
utility into composites that are nearly always beneficial, and
far better than each separate component.

To date, no efficient heuristics have been reported for the
Rush Hour puzzle. Due to the specific structure of the puz-
zle, standard methods for deriving heuristics, such as solving
either sub-problems (possibly with pattern databases (Fel-
ner, Korf, and Hanan 2004)), or relaxed problems (e.g., us-
ing the Manhattan distance heuristic, augmented with linear
conflicts (Hansson, Mayer, and Moti Yung 1992)), which are
typically easy to apply to other well-known domains, are not
applicable here.

Rush Hour (standard edition) is shipped along with 40
problems, which we designate JAM01. . . JAM40. To add
harder problems to the test suite we expanded it with the
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Figure 1: Sample Rush Hour (a) and FreeCell (b) configurations.

200 most difficult configurations published online by Co-
lette et al., designated SER1. . . SER200. In order to work
with more challenging problems, we also evolved 15 diffi-
cult solvable problem on larger, 8x8 boards.

We next describe some of the heuristics we devised, all of
which were used to estimate the distance to the goal from
a given board. For Rush Hour, the first obvious estimate
to the closeness of a board configuration to the goal is the
number of vehicles blocking the red car’s path to the exit, be-
cause when this number reaches zero, the problem is solved.
This heuristic is referred to as BlockersLowerBound. The
next heuristic, called GoalDistance, is a possible way to
implement the Manhattan-Distance heuristic, as used for
the sliding-tiles puzzle (e.g., (Korf and Felner 2002)). The
Hybrid heuristic combines the essence of the previous
two heuristics: Instead of merely summing up each vehi-
cle’s distance to its location in the deduced goal, we also
count the number of vehicles in its path, and add it to
the sum. Additional functions were used to assign scores
to boards, including: MoveFreed—which checks if the
last move made increases the number of vehicles free to
move, and IsMoveToSecluded—which checks if the last
move placed a car in a position to which no other car can
move (Hauptman et al. 2009). Note that the latter functions
are not heuristics in the strict sense, in that they do not com-
pute an estimated distance to the goal.

Examples of some of the heuristics for the game
of Freecell are: NumberWellP laced—count the num-
ber of well-placed cards in cascade piles. A pile
of cards is well placed if all its cards are in de-
scending order and alternating colors. The number of
cards that are not at the foundation piles is another
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heuristic, dubbed NumCardsNotAtFoundations. The
LowestHomeCard heuristic computes the value of the
highest possible card value (typically the king) minus the
lowest card value in foundation piles.

Using such heuristics and auxiliary functions to render
search more efficient is a difficult task, as it involves solv-
ing two major sub-problems: 1) Finding exact conditions
regarding when to apply each heuristic, and 2) combining
several estimates to get a more accurate one.

As we want to embody both application conditions and
combinations of estimates, we decided to evolve ordered
sets of control rules, or policies. The function set included
the functions {AND,OR,≤,≥} for condition trees and the
functions {×,+} for the value trees. We used the stan-
dard crossover and mutation operators, as detailed in (Koza
1994). However, before selecting the crossover or mutation
point, we first randomly selected rules whose conditions (or
values) were to be substituted. Fitness scores were obtained
by performing full IDA* search, with the given individual
used as the heuristic function. For each solved board, we
assigned to the individual a score equal to the percentage
of nodes reduced, compared to searching with no heuristics.
For unsolved boards, the score was 0.

For Rush Hour, not only did we evolve solutions to hard
6x6 boards, we also evolved hard-to-solve 8x8 boards. The
most difficult 8x8 board found required 26,000,000 nodes to
solve with no-heuristic, iterative deepening.

Results for Rush Hour are summarized in Table 1. Over-
all, evolved policies managed to cut the amount of search
required to 40% for 6x6 boards and to 10% for 8x8 boards,
compared to iterative deepening. We also compared the time
required to solve these 40 problems by humans to the run-
time of several algorithms: iterative deepening, Hi (repre-
senting the average time of our three hand-crafted heuris-
tics), our hand-crafted policy, and our best evolved pol-
icy (Hauptman et al. 2009): All algorithms tested are
much faster than human players, and evolved policies are
the fastest. Evolved policies thus save both search time and
space.

Despite its popularity (Bacchus 2001), and despite there
being numerous FreeCell solvers available via the Web, few
have been written up in the scientific literature. The best
solver to date is that of (Heineman 2009), able to solve
96% of the Microsoft 32K problem suite—a set of 32,000
problems included by Microsoft in Windows 95. Heine-
man’s algorithm is a hybrid A* / hill-climbing search algo-
rithm called Staged Deepening (referred to herein as HSD).
We used a 2-second time limit per problem instance, under
which limitation the HSD algorithm solves 88.7% of the Mi-
crosoft 32K.

We designed a number of evolutionary algorithms to seek
solvers for FreeCell. The top performer that emerged was
coevolution-based GP with policies, which is superior to
HSD in several aspects (Table 2): amount of search, time,
solution length, and number of solved instances.
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