Fair Representation Learning for Heterogeneous Information Networks

Authors

  • Ziqian Zeng The Hong Kong University of Science and Technology, CSE Department
  • Rashidul Islam University of Maryland, Baltimore County, Information Systems Department
  • Kamrun Naher Keya University of Maryland, Baltimore County, Information Systems Department
  • James Foulds University of Maryland, Baltimore County, Information Systems Department
  • Yangqiu Song The Hong Kong University of Science and Technology, CSE Department
  • Shimei Pan University of Maryland, Baltimore County, Information Systems Department

Keywords:

Measuring predictability of real world phenomena based on social media, e.g., spanning politics, finance, and health

Abstract

Recently, much attention has been paid to the societal impact of AI, especially concerns regarding its fairness. A growing body of research has identified unfair AI systems and proposed methods to debias them, yet many challenges remain. Representation learning methods for Heterogeneous Information Networks (HINs), fundamental building blocks used in complex network mining, have socially consequential applications such as automated career counseling, but there have been few attempts to ensure that it will not encode or amplify harmful biases, e.g. sexism in the job market. To address this gap, we propose a comprehensive set of de-biasing methods for fair HINs representation learning, including sampling-based, projection-based, and graph neural networks (GNNs)-based techniques. We systematically study the behavior of these algorithms, especially their capability in balancing the trade-off between fairness and prediction accuracy. We evaluate the performance of the proposed methods in an automated career counseling application where we mitigate gender bias in career recommendation. Based on the evaluation results on two datasets, we identify the most effective fair HINs representation learning techniques under different conditions.

Downloads

Published

2021-05-22

How to Cite

Zeng, Z., Islam, R., Keya, K. N., Foulds, J., Song, Y., & Pan, S. (2021). Fair Representation Learning for Heterogeneous Information Networks. Proceedings of the International AAAI Conference on Web and Social Media, 15(1), 877-887. Retrieved from https://ojs.aaai.org/index.php/ICWSM/article/view/18111