De-Anonymizing Users Across Heterogeneous Social Computing Platforms

Authors

  • Mohammed Korayem Indiana University
  • David Crandall Indiana University

DOI:

https://doi.org/10.1609/icwsm.v7i1.14456

Keywords:

Social Networks, Privacy, Content Analysis, De-anonymization

Abstract

Many people use multiple online and social computing platforms, and choose to share varying amounts of personal information about themselves depending on the context and type of site. For example, people may be willing to share personally-identifiable details (including their real name and date of birth) on a site like Facebook, but may withhold their identity on a dating site that may be widely viewed by strangers. We study the extent to which subtle correlations in a user's activity patterns across different sites may be used to infer that two accounts correspond to the same person. We study a variety of features, including similarity of temporal access patterns, textual content, geo-tags, and social connections, finding that even very weak signals yield surprisingly accurate de-anonymization results.

Downloads

Published

2021-08-03

How to Cite

Korayem, M., & Crandall, D. (2021). De-Anonymizing Users Across Heterogeneous Social Computing Platforms. Proceedings of the International AAAI Conference on Web and Social Media, 7(1), 689-692. https://doi.org/10.1609/icwsm.v7i1.14456