Modeling Diffusion in Social Networks Using Network Properties


  • Duc Luu Singapore Management University
  • Ee-Peng Lim Singapore Management University
  • Tuan-Anh Hoang Singapore Management University
  • Freddy Chua Singapore Management University



Diffusion of items occurs in social networks due to spreading of items through word of mouth and exogenous factors. These items may be news, products, videos, advertisements or contagious viruses. Previous research has studied diffusion process at both the macro and micro levels. The former models the number of item adopters in the diffusion process while the latter determines which individuals adopt item. In this paper, we establish a general probabilistic framework, which can be used to derive macro-level diffusion models, including the well known Bass Model (BM). Using this framework, we develop several other models considering the social network’s degree distribution coupled with the assumption of linear influence by neighboring adopters in the diffusion process. Through some evaluation on synthetic data, this paper shows that degree distribution actually changes during the diffusion process. We therefore introduce a multi-stage diffusion model to cope with variable degree distribution. By conducting experiments on both synthetic and real datasets, we show that our proposed diffusion models can recover the diffusion parameters from the observed diffusion data, which allows us to model diffusion with high accuracy.




How to Cite

Luu, D., Lim, E.-P., Hoang, T.-A., & Chua, F. (2021). Modeling Diffusion in Social Networks Using Network Properties. Proceedings of the International AAAI Conference on Web and Social Media, 6(1), 218-225.