Automatic Versus Human Navigation in Information Networks


  • Robert West Stanford University
  • Jure Leskovec Stanford University



Wikispedia, Wikispeedia, browsing, navigation, search


People regularly face tasks that can be understood as navigation in information networks, where the goal is to find a path between two given nodes. In many such situations, the navigator only gets local access to the node currently under inspection and its immediate neighbors. This lack of global information about the network notwithstanding, humans tend to be good at finding short paths, despite the fact that real-world networks are typically very large. One potential reason for this could be that humans possess vast amounts of background knowledge about the world, which they leverage to make good guesses about possible solutions. In this paper we ask the question: Are human-like high-level reasoning skills really necessary for finding short paths? To answer this question, we design a number of navigation agents without such skills, which use only simple numerical features. We evaluate the agents on the task of navigating Wikipedia, a domain for which we also possess large-scale human navigation data. We observe that the agents find shorter paths than humans on average and therefore conclude that, perhaps surprisingly, no sophisticated background knowledge or high-level reasoning is required for navigating the complex Wikipedia network.




How to Cite

West, R., & Leskovec, J. (2021). Automatic Versus Human Navigation in Information Networks. Proceedings of the International AAAI Conference on Web and Social Media, 6(1), 362-369.