Proceedings of the Fourteenth International AAAI Conference on Web and Social Media (ICWSM 2020)

A Framework for Political Portmanteau Decomposition

Nabil Hossain
Dept. Computer Science
University of Rochester

Rochester, New York
nhossain @cs.rochester.edu

Abstract

Portmanteaus are new words formed by combining the
sounds and meanings of two words. Given their sticky nature,
portmanteaus are often used to create political and personal
attacks by combining a target entity with derogatory terms,
which can then be spread online for promoting hate speech
and defamation. In this paper, we present a framework to de-
compose political portmanteaus used online into their compo-
nent words. Using our annotated dataset of political portman-
teaus, we train a system that correctly decomposes 76.2% of
the political portmanteaus into their component words. Fur-
thermore, for 93.4% of the political portmanteaus, our system
finds the correct component words in its top ten results, sug-
gesting that using better ranking methods can lead to stronger
results. This work provides a framework for both understand-
ing an intriguing linguistic phenomena and for building hate-
speech filters that could catch novel words that would bypass
traditional hate speech detection approaches.

Introduction

A portmanteau is a linguistic phenomenon in which a novel
word is created from two words by blending their sounds
and meanings. For example, brunch is made by combining
“breakfast” and “lunch”. Due to their creative, sticky, and
frequently humorous nature, portmanteaus have become part
of online discourse.

However, there has been a tendency to use portmanteaus
to disseminate online hate speech (Evolvi 2018; Rego 2018;
Hossain, Tran, and Kautz 2018). This includes personal at-
tack for defamation, such as targeting a public figure with
offensive intentions, for example, using killary to associate
Hillary Clinton with killing. Portmanteaus are also used to
attack groups, e.g., republitard is used to imply Republicans
are retards. Algorithms for discovering and analyzing novel
portmanteaus will therefore be an important tool for fighting
online hate speech that would bypass existing filters.

Much of the work on portmanteau has been on devel-
oping models for its generation (Deri and Knight 2015;
Gangal et al. 2017). However, decomposing a portmanteau
into the words that make it up can provide insights into its

Copyright (© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Minh Tran
Dept. Computer Science
University of Rochester

Rochester, New York
mtran14 @u.rochester.edu

944

Henry Kautz
Dept. Computer Science
University of Rochester

Rochester, New York
kautz@cs.rochester.edu

@—b PP Detection
e e

l PP Decomposition

Prefix/suffix match B oy

lib + Y = libtard

Comment
~@~

Y = {retard, dotard, custard, .

Figure 1: Political portmanteau decomposition framework.

meaning and into the motivations behind its creation, such
as whether it originated for the purposes of hate speech.

In this paper, we introduce a framework for portmanteau
decomposition, outlined in Figure 1. Specifically, we focus
on political portmanteaus, which are blends of words in-
volving politicians and political entities, who are common
targets of attack. Our major contributions are the first algo-
rithm for decomposing political portmanteaus, demonstrat-
ing that it is highly effective (up to 93.4% accuracy) in split-
ting a portmanteau into its component words, and providing
the first shared dataset of annotated political portmanteaus.

Related Work

For portmanteau generation, Deri and Knight (2015) pro-
posed a multitape finite state machine model to blend two
words based on their pronunciation and released a dataset
of 401 general portmanteaus. Gangal et al. (2017) used a
character-based encoder-decoder model with attention (Bah-
danau, Cho, and Bengio 2014) to generate portmanteaus,
and they augmented this dataset to compile a dataset of
1,624 unique portmanteaus, not related to politics, which we
refer to as Ppgry and use in our experiments. Kulkarni and
Wang (2018) improved on Gangal et al.’s model by having

a fixed input-output representation, achieving the best per-
formance of blending words with an average of 1.64 edit
distance from human-annotated ground-truth.

Pei, Sun and Xu (2019) developed deep learning methods
for slang detection which included portmanteaus. Hossain,
Tran and Kautz (2018) introduced creative poltical slang,
a non-standard word that conveys a positive or negative atti-
tude towards a person, a group of people, an institution, or an
issue that is the subject of discussion in political discourse.
They compiled the News and Comments Dataset (NCD),
consisting of online reader comments from 3 news sources.
They also created an algorithm called PoliSlang, which uses
various word filters and dictionary lookups to detect creative
slang in these comments. Our framework extends PoliSlang
to find potential political portmanteaus in our dataset.

There has been various work on hate speech detection and
analysis (Davidson et al. 2017; Schmidt and Wiegand 2017;
Fortuna and Nunes 2018), including targeted attacks (EISh-
erief et al. 2018; Silva et al. 2016). Our dataset can be useful
for research on hate speech detection in a political context.

Political Portmanteau

Definition A Political Portmanteau (PP) is a word cre-
ated by combining two words X and Y such that: (1) at
least two consecutive starting or ending letters of X and Y
are used, (2) at least one letter from X and/or Y is removed,
and (3) X and/or Y refers to a political entity.

For example, “trumptanic” (Trump; titanic) and “hilliary”
(Hillary; liar) are PPs, but “trumpland” violates (2), and
“workoholic” (work; alcoholic) violates (3).

Political Entities List (PEL) A political entity could be a
person (e.g. Obama) or a group (e.g. Democrat). We collect
names of politicians'?> and political groups?, and we sort
and threshold them by frequency of occurrence in the NCD
to create a list of 141 popular political entities called PEL.

The Data

In addition to using the NCD (15M comments), we create
a dataset of PP candidates by extracting Reddit comments
that have at least one word beginning (or ending) with the 4
beginning (or ending) characters from a name in PEL. The
comments are collected from the subreddit r/politics
with a posting date between January 2016 to July 2019, for
a total of 51.6M comments.

Since PP is a subset of creative political slang (Hossain,
Tran, and Kautz 2018), we apply the 7-step PoliSlang algo-
rithm to extract potential PP candidates from these datasets.
We add two more filters to the PoliSlang pipeline:

1. Political Entity Filter: The candidate words which do
not share at least two starting or ending character se-
quences with a name in PEL is discarded.

2. Comment Context Filter: A candidate is removed if its
associated political entities (matched by the previous fil-
ter) are not found in comments containing the candidate.

! github.com/unitedstates/congress-legislators
“ballotpedia.org/Presidential_candidates,_2020
Jen.wikipedia.org/wiki/Category:Lists_of_political_parties

945

Category # words | % Dataset | Example
PP 497 33.74 demonocrat
Portmanteau 7 0.48 shopathon
Suffix 193 13.10 mccainism
Prefix 13 0.88 pretrump
Spelling mistake | 278 18.87 republiw
Name 174 11.81 clooney
Other 311 21.11 repub

Total 1,473 100 N/A

Table 1: The annotated Ppoy, dataset and its categories.

Applying all the filters on the NCD and our Reddit
dataset, we obtain a list of 1,473 PP candidates, which we
call the Ppoy, dataset *.

Data Annotation

Political portmanteau decomposition is a non-trivial task
that requires knowledge on politics. To annotate our dataset,
we qualified two political science college majors by giving
six participants each a set of 25 known PP and non-PP can-
didates to label.

The annotators were asked to (i) categorize each candi-
date into one of the following classes: political portmanteau,
portmanteau, prefix, suffix, spelling, name or other (see ex-
amples in Table 1), (ii) identify the two component words
that form the candidate if applicable, and (iii) label whether
each candidate is offensive. Up to five comments containing
the candidate words were provided as contextual informa-
tion to assist the annotators in answering the questions.

The two best performers correctly detected and decom-
posed at least 80% of the PPs. We assigned them to label
the full dataset of 1,473 candidates, and we resolved their
annotation disagreements. Table 1 summarizes the anno-
tated dataset, which contains 497 PPs. Their frequency word
cloud is shown in Figure 2.

We calculated the annotators’ agreement using Cohen’s
kappa (Cohen 1960), which, for the labels of category, first
component word, second component word and both compo-
nent words combined, respectively, were 0.826, 0.839, 0.825
and 0.814, implying strong agreement. For those datapoints
where the annotators did not reach consensus, the three au-
thors of this paper examined and resolved the disagreements,
leading to up to five annotations for some datapoints, thereby
ensuring quality control.

Portmanteau Decomposition Framework

In this section, we describe our method to decompose PPs
into component words, outlined in Figure 1. Given a PP as
input, the algorithm finds component political entity can-
didates by applying the political entity filter to match pre-
fix/suffix of the PP with a name in PEL. The next phase in-
volves finding the other word that combines with the po-
litical entity to make the PP. We call this word the com-
plement, which we restrict to the set of 1.2M words from
the 200-dimensional GloVe word vector Twitter Dictionary
(Pennington, Socher, and Manning 2014). We create a list

*Dataset: https://cs.rochester.edu/u/nhossain/ppol-dataset.zip

republidud

obamanure

horribillary

Figure 2: Frequency word cloud of political portmanteaus.

PR E,C
Data

lComments with PP

Non-contextual Features

Normalize

Top-100 E,.C

. candidates Beta
Model
{(\\)’ '
XGBoost =y :
I—’ [
Avg Prob. XGBfOSt SumLL |
v

Top-K entity-complement candidates

Figure 3: PP decomposition training overview. The dashed
arrow implies predicting the top-K candidates using the Beta
Model only.

of candidate complement words by collecting all the GloVe
dictionary words that start or end with the non-overlapping
portion of the PP and its candidate entity. Then, we train a
classifier to rank all the candidate entity-complement pairs
using features of the PP, the entity, the complement and the
comments containing the PP, which we describe next.

Features and Training

Figure 3 shows an overview of feature extraction and train-
ing for PP decomposition.

Non-contextual Features We create features based on the
linguistic structures of the PP, entity (E) and complement (C)
using edit distance, length and word frequency, as follows:

e F1: Edit distance between E and C': %.

o F2: Similarity of C'and PP: 1 — £EUEE0

e F3: Length of C' (lengths of E & PP were not significant).

e F4: Frequency of use of C' in English (Speer et al. 2016).
We expect writers to create PPs using easily recognizable
words so that readers can identify their meanings.

F1 and F2 model sound blending which is an important as-
pect of portmanteau creation. F1 captures the idea that the
two component words for a PP generally differ in pronuncia-
tion, otherwise it would be difficult to blend their sounds. F2

946

models to what extent the pronunciation of PP is explained
by the non-entity word C'. Speech-based features can also
be useful for modeling sound blending which we leave as
future work.

We normalize each feature to the [0,1] scale, then we fit
them into a 3 Distribution, which we choose due to its ability
to model the various shapes of the four distributions on a
closed bound (Gupta and Nadarajah 2004). Then, the sum
of log-likelihoods given by the four trained [distributions
can be used to predict whether £ and C' combine to make
PP. In our experiments, we report the results obtained using
this Beta model.

Contextual Features We use semantic features from user
comments containing the PP. For such a comment, we use
the mean of the 200d GloVe vectors of the words it contains
excluding the PP and stopwords. We also use the GloVe vec-
tor of the complement of the PP as additional feature, thus a
total of 400 contextual features.

Training For each PP, we extract the top 100 entity-
complement candidates ranked by the Beta model. Then, for
each candidate, we sample 200 comments containing the PP,
for each of which we extract the 400 contextual features.
This gives 200 datapoints each having 400 features for each
entity-complement candidate. Overall, we obtain a dataset of
size 1.6M (sometimes there are less than 100 available can-
didates or 200 available comments), where all datapoints for
the correct candidates (according to the human annotations)
are labeled 1 and all other datapoints are labeled 0.

For training, given an entity-complement pair and a sam-
pled comment, we use the 400 contextual features as input
to the XGBoost classifier’ (Chen and Guestrin 2016) to esti-
mate the probability of the pair being the ground-truth. Next,
we calculate the mean of the estimated probabilities of all
sampled comments (up to 200) of the entity-complement
pair. We pass this value and the output from the Beta model
as input to another XGBoost classifier, which predicts the
final classification score, as shown in Figure 3.

All our experimental datasets are partitioned into an 8:1:1
ratio for training, validation and test sets such that all data-
points for a PP are collectively sent to exactly one of these
sets. We apply 10-fold cross validation.

Experiments

In this section, we evaluate our framework, models and fea-

tures on our Ppoy, dataset and the Ppgr dataset. We also

perform experiments on political portmanteau detection.
For Ppoy,, we use two evaluation scenarios:

1. Beta model with non-contextual features.
2. XGBoost using non-contextual and contextual features.

For Ppgr1, we use only scenario (1) as the dataset does
not come with comments to extract contextual features from.
Since there are no political entities in this dataset’s port-
manteaus, we synthesize two experimental datasets: in one

San implementation of gradient boosted decision trees.

Model Topl | Top3 | TopS | Topl0
Random 4748 | 57.75 | 62.57 | 67.61
Beta Model (no context) | 62.17 | 72.43 | 75.45 | 79.07
XGBoost (with context) | 76.23 | 86.72 | 90.34 | 93.36

Table 2: Decomposition accuracy on the Ppor, dataset.

Model Predicting | Topl | Top3 | Top5S | Topl0
Random Start word | 2.52 7.39 10.28 | 16.57
End word 14.10 | 25.63 | 33.94 | 43.74
Beta Model | Start word | 22.04 | 35.34 | 41.62 | 48.63
(no context) | End word 38.21 | 56.84 | 63.32 | 69.73

Table 3: Pprr1 decomposition accuracy using Beta model
classifier. This dataset does not provide any context.

dataset all the first component words are visible and the sec-
ond component word is to be predicted, and in the other only
the second component words are visible instead.

We report accuracy at top-K, which means that the cor-
rect entity-complement match was found among the top K
ranked results, for K € {1,3,5,10}. We also use a base-
line that randomly chooses component words from the set
of entity-complement candidates for the PP.

Results

Results for Ppor, in Table 3 suggest that context clearly
helps in PP decomposition. Using contextual features with
XGBoost on the full dataset, we obtain our best PP decom-
position accuracy of 76.23% compared to 62.17% without
using contextual features. Furthermore, the correct compo-
nent words for a PP are found in the top-10 ranked candi-
dates in 93.43% of the cases.

Shown in Table 3, results on Ppggr indicate that its de-
composition accuracy is significantly lower (22.0%-38.2%
vs. 62.2%) than that for Ppor, . This is expected since only
certain words are usually combined with a political entity to
create a PP (e.g. for defamation), whereas in Ppggry none of
the component words are named entities which makes way
for various possible word combinations. Table 3 also shows
that the portmanteaus for Ppgry are easier to decompose if
the first component word is known and the second compo-
nent word is to be predicted compared to the opposite case.

Finally, our classifiers perform significantly better than
the random choice baseline.

Political Portmanteau Detection

Since our PP decomposition algorithm assumes the input is
a true PP, and since only 33.74% of the 1,473 terms in Ppor,
are PP (see Table 1), this calls for a PP detection algorithm.

We create a binary PP detection dataset using all the
terms in Ppot, similar to the PP decomposition dataset. For
each term, we build data using features from the top entity-
complement pair predicted by our PP decomposition model.
These features include the 400 contextual features for each
sampled comment (up to 200) containing the term and the
non-contextual features for the Beta model. This gives a bi-
nary dataset of 56,092 labeled sentences where all datapoints
for a PP are labeled 1.

947

Model Accuracy
Chance (always predict “not PP”) 66.2
Bi-LSTM 69.5
Bi-LSTM + GloVe 75.1
BERT 78.8
XGBoost model 83.1

Table 4: Political portmanteau detection accuracy.

For training, similar to PP decomposition, first we esti-
mate the average probability score using contextual features
with XGBoost, next we compute the output from the Beta
model, and then we pass these values as input to another
XGBoost to predict whether a term is PP. After applying 10-
fold cross-validation, we achieve a classification accuracy of
83.1%, as shown in Table 4.

As a baseline, we train a bidirectional LSTM (Hochreiter
and Schmidhuber 1997) sequence classification model to de-
tect sentences with PP. For each term, we predict the output
label for each sampled comment (up to 200) containing the
term and we apply the majority vote to predict whether the
term is a PP. The LSTM achieves a classification accuracy of
69.5% without using pre-trained embeddings and 75.1% us-
ing GloVe pre-trained embeddings, both of which are lower
than the accuracy obtained by our detection model.

Next, we compare our detection model against the widely
used pre-trained BERT system (Devlin et al. 2019). We fine-
tune BERT’s sentence classification model using the labeled
dataset of comments containing the PP terms. Using the
same majority voting to predict the label for the term, BERT
outperforms the LSTM by achieving an accuracy of 78.8%,
which is lower than that of our model. We did not attempt to
train the BERT model to perform decomposition.

We attribute our model’s superior performance to the non-
contextual features and the prefix/suffix filters which cap-
ture the word-blending aspects of portmanteaus that models
trained on word sequences find hard to capture.

Analysis and Discussion

Ppor1, Decomposition Out of the 497 PPs in Ppor,, 185
were made entirely out of political entities, e.g., obamillary
(Obama; Hillary). In these and some other cases, there were
very few component word candidates, which explains why
the baseline choosing random candidates had a decomposi-
tion accuracy of 47.48%.

For 11 of the 497 PPs, we were unable to find a com-
plement word in the GloVe dictionary (e.g. trumpenprole-
tariat). Hence, these could never be identified, which means
that our decomposition algorithm has an upper bound of
97.8%. Our accuracy at top-10 of 93.4% is very close to this
bound. PPs which our algorithm failed to decompose in the
top 10 results include those which use very little of the en-
tity, e.g., mccuck (McCain and the slang cuck) and which use
less known names, e.g., doobio (Doobie and Rubio).

Offensive PP We asked our annotators to label each of the
1,473 terms in Ppoy, as offensive or not. In total, 484 terms
were labeled offensive (32.9%). Interestingly, 361 out of the

Dataset | Predicting F1 F2 F3 F4

PpERI Start word | 0.191 | 0.171 | 0.159 | 0.477
PpER1 End word | 0.195 | 0.156 | 0.189 | 0.458
PpoL N/A 0.220 | 0.170 | 0.169 | 0.440

Table 5: Importance weights for non-contextual features.

497 PPs (72.6%) were labeled offensive. This indicates that
a large proportion of political portmanteaus used in online
discourse are offensive, and therefore, detecting and decom-
posing them can lead to identifying novel hate speech.

Non-contextual Feature Importance Here, we analyze
the relative importance of the four non-contextual features.
For each feature we calculated the mean normalized log-
likelihood, according to the [distribution, for the compo-
nent words of all PPs. The results in Table 5 suggest that
the most important feature is F4, while the other 3 features
are less relevant but approximately similar in terms of im-
portance. This suggests that commenters tend to create PPs
from popular and common words so that their readers can
easily understand their meanings.

PP Retrieval Of the potential slang terms detected by
the original PoliSlang algorithm (Hossain, Tran, and Kautz
2018), 16.7% were portmanteaus. With our extended PoliS-
lang which uses prefix/suffix filters and comment context fil-
ters, we increase this proportion to 33.7%. Given the noisy
nature of our comments data sources, this is a significant
boost in portmanteau retrieval.

Conclusion and Future Work

We introduced a framework to collect, from the web, politi-
cal portmanteaus (PP), which are words coined by combin-
ing the sounds and meanings of two words where at least
one of the words is a political entity. First, we extended an
existing slang detection algorithm to boost the extraction of
potential political portmanteaus from online user comments.
Then, we crowd sourced an annotated dataset of 497 PPs.
Next, we presented a method to decompose a PP into the
component words from which it is created.

Our experimental results show that contextual features
from comments containing a PP are important in decompos-
ing it. Combining simple word based features with contex-
tual features, we achieved a PP decomposition accuracy of
76.2%. Furthermore, for 93.4% of the test set, our model was
able to find the correct decomposition in its top 10 ranked
candidates, leaving ample room for improvement with bet-
ter ranking methods.

Future work can extend the framework to decomposing
portmanteaus beyond named entities, to include pronuncia-
tion features, and to analyze the role of political portman-
teau, e.g., in hate speech and in political issue framing.

References

Bahdanau, D.; Cho, K.; and Bengio, Y. 2014. Neural ma-
chine translation by jointly learning to align and translate.
arXiv preprint arXiv:1409.0473.

948

Chen, T., and Guestrin, C. 2016. Xgboost: A scalable tree
boosting system. In Proceedings of the 22nd acm sigkdd
international conference on knowledge discovery and data

mining, 785-794. ACM.

Cohen, J. 1960. A coefficient of agreement for nom-
inal scales. Educational and psychological measurement
20(1):37-46.

Davidson, T.; Warmsley, D.; Macy, M.; and Weber, 1. 2017.
Automated hate speech detection and the problem of offen-
sive language. In Eleventh international aaai conference on
web and social media.

Deri, A., and Knight, K. 2015. How to make a frenemy:
Multitape fsts for portmanteau generation. In NAACL-HLT.
Devlin, J.; Chang, M.-W; Lee, K.; and Toutanova, K. 2019.
Bert: Pre-training of deep bidirectional transformers for lan-
guage understanding. In NAACL-HLT.

ElSherief, M.; Kulkarni, V.; Nguyen, D.; Wang, W. Y.; and
Belding, E. 2018. Hate lingo: A target-based linguistic anal-
ysis of hate speech in social media. In Twelfth International
AAAI Conference on Web and Social Media.

Evolvi, G. 2018. Hate in a tweet: Exploring internet-based
islamophobic discourses. Religions 9(10):307.

Fortuna, P., and Nunes, S. 2018. A survey on automatic
detection of hate speech in text. ACM Computing Surveys
(CSUR) 51(4):1-30.

Gangal, V.; Jhamtani, H.; Neubig, G.; Hovy, E.; and Nyberg,
E. 2017. Charmanteau: Character embedding models for
portmanteau creation. arXiv preprint arXiv:1707.01176.
Gupta, A. K., and Nadarajah, S. 2004. Handbook of beta
distribution and its applications. CRC press.

Hochreiter, S., and Schmidhuber, J. 1997. Long short-term
memory. Neural computation 9(8):1735-1780.

Hossain, N.; Tran, T. T. T.; and Kautz, H. 2018. Discover-
ing political slang in readers’ comments. In Twelfth Interna-
tional AAAI Conference on Web and Social Media.
Kulkarni, V., and Wang, W. Y. 2018. Simple models for
word formation in slang. In NAACL.

Pei, Z.; Sun, Z.; and Xu, Y. 2019. Slang detection and iden-
tification. In CoNLL.

Pennington, J.; Socher, R.; and Manning, C. 2014. Glove:
Global vectors for word representation. In EMNLP.

Rego, R. 2018. Changing forms and platforms of misogyny:
Sexual harassment of women journalists on twitter. Media
Watch 9(3):472-85.

Schmidt, A., and Wiegand, M. 2017. A survey on hate
speech detection using natural language processing. In Pro-
ceedings of the Fifth International Workshop on Natural
Language Processing for Social Media, 1-10.

Silva, L.; Mondal, M.; Correa, D.; Benevenuto, F.; and We-
ber, I. 2016. Analyzing the targets of hate in online social
media. In Tenth International AAAI Conference on Web and
Social Media.

Speer, R.; Chin, J.; Lin, A.; Nathan, L.; and Jewett, S. 2016.
wordfreq: v1. 5.1.

