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Abstract 
In the last few years, Twitter has become an important re-
source for the identification of Adverse Drug Reactions 
(ADRs), monitoring flu trends, and other pharmacovigilance 
and general research applications. Most researchers spend 
their time crawling Twitter, buying expensive pre-mined da-
tasets, or tediously and slowly building datasets using the 
limited Twitter API. However, there are a large number of 
datasets that are publicly available to researchers that are 
underutilized or unused. In this work, we demonstrate how 
we mined over 9.4 billion Tweets from archive.org’s Twit-
ter stream grab using a drug-term dictionary and plenty of 
computing power. Knowing that not everything that shines 
is gold, we used pre-existing drug-related datasets to build 
machine learning models to filter our findings for relevance. 
In this work, we present our methodology and the 3,346,758 
identified tweets for public use in future research.  

 Introduction   
The World Health Organization (WHO) defined Pharma-
covigilance as “the science and activities relating to the 
detection, assessment, understanding and prevention of 
adverse effects or any other drug-related problem” (World 
Health Organization, 2006) . The aim of pharmacovigi-
lance is to enhance patient care and safety in relation to the 
use of medicines; and to support public health programmes 
by providing reliable, balanced information for the effec-
tive assessment of the risk-benefit profile of medicines. 
Traditionally, clinical trials are employed to identify and 
assess the profile of medicines. However, since they have 
limited ability to detect all ADRs due to factors such as 
small sample sizes, relatively short duration, and the lack 
of diversity among study participants, post marketing sur-
veillance is required (Sultana, Cutroneo, and Trifirò, 
2013). The Food and Drug Administration (FDA) provides 
several post marketing surveillance programs like FDA 
Adverse Event Reporting System (FAERS), MedWatch to 
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report events, however, under-reporting limits its effec-
tiveness. A review of 37 studies established that more than 
90% of ADRs are estimated to be under-reported (Hazell 
and Shakir, 2006). Social media platforms like Twitter and 
Facebook contain an abundance of text data that can be 
utilized for pharmacovigilance (O’Connor et al., 2014). 
Many studies presented satisfactory results by utilizing 
social media for pharmacovigilance and helped create a 
curated dataset for drug safety (Sarker et al., 2015). Several 
other studies presented a connection between drugs and 
addictive behavior among students using Twitter (Hanson 
et al., 2013a and 2013b). However, it is challenging to use 
Twitter due to limitations with service providers who can 
export only 50,000 tweets per day. Further, usage of Twit-
ter’s API or software to extract tweets is extremely time-
consuming and economically unviable, especially for ob-
taining tweets relevant to a particular domain. Additional-
ly, machine learning and deep learning models need exor-
bitant amounts of training data to train a model and not 
much data is available publicly for training.  
   In this context, data sharing (Longo and Drazen, 2016) 
is a novel idea for research parasites to scavenge available 
datasets and apply their methodologies. Recent studies 
(Pasolli et al., 2016; Saez-Rodriguez et al., 2016; Warren, 
2016) prove that data sharing improves quality and 
strengthens research. The increase in collaborative efforts 
will provide an opportunity for researchers to continually 
enhance research ideas and avoid redundant research ef-
forts (Emmert-Streib, Dehmer, and Yli-Harja, 2016; 
Greene et al., 2017). In the past, few studies offered several 
pharmacovigilance insights or created curated datasets for 
drug safety (Klein et al., 2017; Nikfarjam et al., 2015; 
Sarker and Gonzalez, 2017). However, this is the largest 
publicly available dataset for research use of drug chatter 
from Twitter. As part of this research, we scavenged a 
large publicly available dataset and procured data related to 
pharmacovigilance. In this paper, we present a data corpus 
of 3,346,758 carefully filtered tweets. The deliverables 
(Tekumalla, Rafiei Asl, and Banda, 2019) include filtered 
3,346,758 tweet ids, code to download, and separate tweets 

 
Proceedings of the Fourteenth International AAAI Conference on Web and Social Media (ICWSM 2020)

909



from the Internet Archive (IA). Due to Twitter’s terms of 
service, tweet text cannot be shared. Therefore, tweet ids 
are publicly made available using Zenodo (Tekumalla 
Rafiei Asl, and Banda, 2019). The whole methodology can 
be reproduced using the deliverables. The released dataset 
adheres with FAIR principles (Wilkinson et al., 2016) in 
the following ways: The dataset is Findable as it can be 
accessed with a persistent DOI (Digital Object Identifier) 
in Zenodo. The dataset is Accessible through the DOI. The 
dataset contains only tweet identifiers as tweet text cannot 
be shared as per Twitter's terms of Service. However, 
tweets might be deleted either by Twitter or the user. In 
such cases, we can share the data on request while adher-
ing to the Twitter data sharing policy. The tweet identifier 
can be hydrated to a tweet json object using tools like So-
cial Media Toolkit (Tekumalla and Banda, 2020) or Twarc 
(twarc, n.d.). The hydrated tweets are json objects which 
are derived from JavaScript object notation syntax. JSON 
is a universally accepted format thus supporting Interoper-
ability. This dataset is released with Creative Commons 
Attribution 4.0 International for Reusability.   

Data Preparation 
The Internet Archive (IA) (Machine, 2015) is a non-profit 
organization that builds digital libraries of Internet sites 
and other cultural artifacts in digital form and provides free 
access to researchers, historians, and scholars. The archive 
is mined from the Twitter stream API which according to 
Twitter is 1% sample of their daily tweets. This research 
utilizes the largest publicly available Twitter dataset in the 
Internet Archive, which contains several json files of 
tweets in tar files sorted by date for each month of the year. 
The tar file must be downloaded and decompressed before 
usage. A total of 9,406,233,418 (9.4 billion) tweets for the 
years 2012 to 2018 are available in this dataset, we filtered 
this data using a drug terms dictionary to identify drug-
specific tweets. The time taken to download, process, and 
filter these tweets was 132 days. 

Drug Dictionary Creation 
The UMLS (National Library of Medicine, 2009) is a 
large, multi-purpose and multilingual vocabulary database 
that contains information about biomedical and health re-
lated concepts, their various names, and the relationships 
among them. The UMLS includes the Metathesaurus, the 
Semantic Network, and the SPECIALIST Lexicon and 
Lexical Tools. Metathesaurus, the biggest component of 
UMLS, was utilized in creating the drug dictionary, more 
specifically the RxNorm (National Library of Medicine, 
2008) vocabulary. This vocabulary provides normalized 
names for clinical drugs and link names to the drug vocab-

ulary commonly used in pharmacy management and drug 
interaction software. The MRCONSO table was filtered 
using RxNorm and Language of Term (LAT), which was 
set to English. The filtered table contained a total of 
279,288 rows. Since the dictionary was used on Twitter 
data and the total number of characters allowed in a tweet 
was 140 (until 2017) and 280 (from October 2017 on-
wards), we eliminated all the strings of length less than or 
equal to 3 (too ambiguous) and greater than or equal to 
100.  This was due to a less likely chance for tweets to con-
tain drug names that were as short as 3 characters or as 
long as 100 characters. Further, we removed strings such 
as “2,10,15,19,23-pentahydrosqualene” which are chemical 
compounds. This elimination was based on the premise 
that users would find it cumbersome and tedious to type 
detailed chemical names of drugs, especially on social me-
dia. Additionally, we removed 50 terms like “disk, foam, 
bar-soap, sledgehammer, cement, copper, sonata” as these 
terms are not commonly used as drug names and in phar-
macovigilance. After deleting the common terms and 
chemical compounds, only 266,556 rows were available of 
which five term types were used in the drug dictionary for 
the research. The dictionary also consists of a Concept 
Unique Identifier (CUI) to which strings with the same 
meaning are linked. The CUI is used in order to ensure that 
the meanings are preserved over time regardless of the 
different terms that are used to express those meanings. All 
the strings have been converted to lowercase and trimmed 
of white spaces. A total of 111,518 unique strings were 
used in total to create the drug dictionary. Table 1 repre-
sents the number of strings used for each term type and 
Table 2 contains sample rows from the drug dictionary. 
 

Term Type Example # 
Strings 

Ingredients (IN) Fluoxetine 11,427 

Semantic Clinical 
 Drug Component 

(SCDC) 

Fluoxetine 4 MG/ML 27,038 

Semantic Branded  
Drug Compo-
nent  (SBDC) 

Fluoxetine 4 MG/ML 
[Prozac] 

17,938 

Semantic Clinical  Drug 
(SCD) 

Fluoxetine 4 MG/ML 
Oral Solution 

35,112 

Semantic Branded 
Drug  (SBD) 

Fluoxetine 4 MG/ML 
Oral Solution [Prozac] 

20,003  

Table 1: Term types, their definitions and Number of strings 
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Concept Unique Identifier 
(CUI) 

Term String 

C0290795 adderall 
C0700899 benadryl 
C0025219 melatonin 
C0162373 prozac 
C0699142 tylenol 

Table 2: Sample Drug Dictionary 

Methods 
In order to identify drug-specific tweets that would be use-
ful for pharmacovigilance, we applied the drug dictionary 
on the Internet Archive Twitter dataset. We filtered the 
dataset using spaCy, an open-source library in Python. We 
used the matcher in spaCy which would match sequences 
of tokens based on pattern rules. Subsequently, the pro-
gram generates an output file with the filtered tweets if it 
finds a match with the drug dictionary in the tweet text. 
Tweets are retrieved only if their language is set to English 
and if they are not retweeted. Initially, the method was 
performed on 2018 data, with our results showing that the 
maximum number of tweets that got separated consisted of 
a single drug string (one term). We speculate that, since 
Twitter has a limitation on the number of characters, peo-
ple tend to write abbreviated terms or single terms that are 
either drug names or ingredients, instead of a drug string 
that consists of 4 or 5 terms. A single string dictionary is 
created from the five dictionaries with a total of 13,226 
unique single terms. A total of 6 programs are run on each 
month for the year 2018. Only 10 months of data was 
available for the year 2018. Number of tweets obtained for 
four months for the year 2018 when used on six dictionar-
ies are presented in table 3. Note that since SCD, SBD and 
SBDC did not yield any matches in the 2018, we removed 
the from the table for simplicity and clarity. 
 

Month Total Single string Ing.  SCDC 

Jan. 134,747,413 83,583 27,718 15 
Aug. 141,132,076 67,227 21,335 13 
Sept. 133,068,824 64,123 22,230 22 
Oct. 132,297,280 68,221 22,955 17 

Total 1,102,507,263 385,503 196,788 112 

Table 3: Number of tweets obtained for each month from the 
Internet Archive Dataset in 2018. 

The SCD, SBD and SBDC dictionaries did not yield any 
tweets from 2018. In order to determine the reason, we 
examined and analyzed the dictionaries. For each term type 
in the drug dictionary, we calculated the lengths of all drug 

strings and identified the number of characters at each 
length ranging between 4 and 99 characters. Further, we 
also noted the average and median lengths of the drug 
strings. Table 4 depicts detailed statistics for each term 
type. 

SBD, SCD and SBDC had the highest number of 
lengthy drug strings. The following drug string from 
SCDC drug dictionary, “pneumococcal capsular polysac-
charide type 33f vaccine 0.05 mg ml”, has 64 characters. It 
is impractical to type the whole drug string in a tweet 
without an error. 90% of the tweets obtained from the 
SCDC were advertisements on either promoting the prod-
uct or selling the product. Further examining all the tweets, 
we eliminated the 4 dictionaries (SCD, SCDC, SBD, 
SBDC) and used the single string and ingredients diction-
ary since it saves an enormous amount of computation 
time. 
 

Term 
Type 

Minimum 
 length (#) 

Maximum 
 length (#) 

Average length  

Ingredients 4 (11) 99 (1) 21.556 
SCDC 10 (16) 93 (2) 24.152 
SBDC 19 (1) 99 (54) 43.757 
SCD 20 (1) 99 (99) 48.531 
SBD 32 (3) 99 (84) 57.818 

Table 4: Statistics for each drug term type 

We made the code publicly available for reproducibility. A 
total of 132 days were required to download, unzip, and 
filter the tweets using the drug dictionary. For all the years, 
each month was downloaded individually, unzipped to 
retrieve the json file and then the tweets were filtered using 
the drug dictionary. Typically, for a month, the method 
would require 10 minutes to download, 5 hours to unzip 
and 2 days to filter tweets on an IBM Blade Server with 
768 GB RAM, 2 x Intel® Xeon® E5-269880 Processors, 
with 40 cores each, and 12TB of hard disk space. Table 5 
represents the number of tweets retrieved for the years 
from 2012 to 2018 when used with the two remaining drug 
dictionaries. 

The single string and ingredients dictionary was used on 
the IA dataset and a total of 6,703,331 (6.7 million) tweets 
were retrieved from 9,406,233,418 (9.4 billion) tweets. 
After eliminating duplicate tweets, a total of 6,703,166 
were retrieved. We examined the retrieved tweets and 
found that more than 50% of the tweets are not relevant to 
pharmacovigilance. This is because some drug strings are 
used in common terminology and in other fields like math, 
technology etc. For example, the drug string “tablet” was 
used in reference to the electronic gadgets (Samsung, Mi-
crosoft tablets). In order to eliminate the tweets that are 
relevant to other domains and not pharmacovigilance, we 
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employed machine learning and deep learning classifica-
tion models to filter tweets. 

 

Month Total tweets Single string Ingredients 

2018 1,102,507,263 588,854 26,034 

2017 1,448,114,354 1,079,616 52,058 

2016 1,427,468,805 1,252,057 62,514 

2015 1,224,040,556 1,149,736 55,367 

2014 1,086,859,898 873,937 47,953 

2013 1,871,457,526 1,463,184 85,618 

2012 1,245,785,016 76,795 4,139 

Total 
tweets 

9,406,233,418 6,152,862 314,680 

Table 5: Number of single and ingredient tweets obtained from 
total tweets 

Classification 
Since the filtered tweets contain a number of irrelevant 
tweets, we experimented with several classical machine 
learning and deep learning models on the filtered tweets to 
clean the tweets. The tweets obtained after classification 
can be used for training different machine learning and 
deep learning models by other researchers. Since there are 
no trainable datasets that we could make use of, we created 
a dataset utilizing annotated datasets from different sources 
(Ginn et al., 2014; Klein et al., 2017; Nikfarjam et al., 
2015; Sarker & Gonzalez, 2017). We emphasize that we 
did not annotate or create any annotated set of tweets our-
selves. 

Classical Models 
We collected 259,042 tweets that only have drug strings 
from multiple papers on pharmacovigilance using social 
media (Ginn et al., 2014; Klein et al., 2017; Nikfarjam et 
al., 2015; Sarker & Gonzalez, 2017) and downloaded all 
the tweets available through them. These tweets were an-
notated by different annotators as part of their research. 

The collected 259,042 tweets from multiple pharmacovigi-
lance papers were labelled as “drug” tweets. Additionally, 
we randomly collected 300,208 non-drug tweets from mul-
tiple years from the Internet Archive and labelled them as 
“non-drug” tweets. Pre-processing was performed on the 
downloaded tweets by removing links and emojis and only 
tweet text was separated. A total of 559,250 tweets were 
used as an annotated training set where only drug tweets 
were the actual annotated tweets collected from different 
sources. We experimented with five classifiers: Naive 
Bayes, Logistic Regression, Support Vector Machines 
(SVM), Random Forest and Decision Trees using the 
scikit-learn (Pedregosa et al., 2011). Support-Vector Ma-
chine constructs a hyperplane or set of hyperplanes in a 
high- or infinite-dimensional space, which can be used for 
classification, regression, or other tasks like outliers detec-
tion. We used a LinearSVC which is similar to SVC, but 
implemented in terms of liblinear rather than libsvm, so it 
has more flexibility in the choice of penalties and loss 
functions and should scale better to large numbers of sam-
ples. Naive Bayes methods are a set of supervised learning 
algorithms based on applying Bayes’ theorem with the 
“naive” assumption of conditional independence between 
every pair of features given the value of the class variable. 
We used the Multinomial Naive Bayes which implements 
the naive Bayes algorithm for multinomial distributed data 
and is one of the two classic naive Bayes variants used in 
text classification. A Random Forest is a meta estimator 
that fits a number of decision tree classifiers on various 
sub-samples of the dataset and uses averaging to improve 
the predictive accuracy and control over-fitting. The Deci-
sion Tree Classifier uses a CART algorithm (Classification 
And Regression Tree). CART is a non-parametric decision 
tree learning technique that produces either classification 
or regression trees, depending on whether the dependent 
variable is categorical or numeric, respectively. However, 
the scikit uses an optimized version of the CART which 
does not support categorical values.  

Each classifier model is applied on the stratified 75-25% 
(training - test) split of the annotated training set. We cal-
culated precision, recall, and F-score to evaluate each clas-
sifier and the results are tabulated in Table 6.  

 
Classifier Precision Recall F-

measure 
Accuracy 

Logistic Regres-
sion 

0.7535 0.7814 0.7672 0.8267 

Naive Bayes 0.7106 0.8281 0.7649 0.8140 
SVM 0.7773 0.8091 0.7929 0.8456 

Decision Tree 0.7274 0.5120 0.6010 0.7516 
Random Forest 0.7406 0.6814 0.7097 0.7963 

Table 6: Classification metrics for the classical machine learning 
models    
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Deep Learning Models  
For the classification task, we experimented with six deep 
learning techniques from the Matchzoo framework (Guo et 
al., 2019) : MVLSTM, DUET, KNRM, CONVKNRM, 
DSSM, and ARC-II (Dai et al., 2018; Huang et al., 2013; 
Hu et al., 2014; Mitra, Diaz, and Craswell, 2017; Wan et 
al., 2016; Xiong et al., 2017). DUET is applied for the 
document ranking task and is composed of two separate 
deep neural networks, one matches the query and the doc-
ument using a local representation, and another matches 
the query and the document using learned distributed rep-
resentations. KNRM is a kernel-based neural model for 
conducting the document ranking task by using three se-
quential steps: 1) a translation matrix to model word-level 
similarities using word embeddings. 2) a modern kernel-
pooling technique to use kernels for multi-level soft match 
features extraction. 3) a learning-to-rank layer that com-
bines those features into the final ranking score. CON-
VKNRM uses CNNs to compose n-gram embeddings, and 
cross-matches n-grams of various lengths. It applies kernel 
pooling to extract ranking features, and uses learning-to-
rank to obtain the final ranking score. MVLSTM conducts 
sentence matching with multiple positional sentence repre-
sentations where each representation is generated by a bidi-
rectional LSTM. The final score is produced by aggregat-
ing interactions between these different positional sentence 
representations. ARC-II focuses on sentence matching by 
naturally combining the hierarchical sentence modeling 
through layer-by-layer composition and pooling and cap-
turing of the rich matching patterns at different levels of 
abstraction. DSSM aims to rank a set of documents for a 
given query. First, a non-linear projection maps the query 
and documents to a common semantic space. Then, the 
relevance of a document with the query is calculated as 
cosine similarity between their vectors in the semantic 
space. These deep models are general-purpose models and 
can be used for different text matching tasks such as doc-
ument retrieval, conversational response ranking, and par-
aphrase identification. Precision, recall, F-measure, and 
accuracy metrics are tabulated in Table 7. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
   

Model Precision Recall F- 
measure 

Accuracy 

ARC-II  0.9679 0.9581 0.9630 0.9731 

DUET  0.9635 0.9579 0.9607 0.9715 

DSSM 0.6457 0.3904 0.4866 0.7001 

KNRM 0.9585 0.9158 0.9367  0.9549 

MVLSTM 0.9781 0.9047  0.9400 0.9579 

CONV- 
KNRM 

0.9692 0.9402  0.9545 0.9673 

Table 7: Classification metrics for the deep learning models    

Calculating cutoff thresholds  
We applied all classical and deep learning models on the 
filtered 6 million tweets to predict the probability score of 
each tweet from the Internet Archive dataset. In order to 
determine the most optimal probability cutoff, we applied 
mixture models concepts (Budczies et al., 2012). The way 
this methodology works is by taking all the probability 
scores and dividing them into several hundreds of bins. A 
histogram of probability frequency is determined by calcu-
lating the number of observations in each bin. Based on the 
hypothesis of mixture models, probability scores are dis-
tributed according to a mixture of two Gaussian distribu-
tions (drug and non-drug tweets). Finally, two highest 
peaks of two Gaussian distributions and one valley with 
most depth between the two peaks are detected and the 
valley's deepest point is used as a cut-off point (threshold). 
In Figure 1 and 2, we plot the number of tweets that have a 
given probability score. Starting from an assigned proba-
bility of one, we cumulatively count the number of tweets 
we would keep at any given probability threshold. These 
plots allow us to see the selectivity of each model and the 
number of tweets at each threshold limit. Note that the op-
timal cutoff threshold is displayed next to the model name 
in the figure legend.  
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Figure 1. Probabilities of drug tweets using Classical Models 

 
Figure 2. Probabilities of drug tweets using Deep Learning Mod-

els 

Based on Tables 6 and 7, and the cutoff Figures 1 and 2, 
we selected ARC-II as the model to use to classify the rel-
evance of the tweets. This deep learning model performed 
the best in terms of F-measure and accuracy, two of the 
metrics we deemed most relevant to identify useful tweets. 
The trained models can be shared upon request. After the 
classification filtering, we examined all the retrieved 
tweets and calculated the drug occurrences. We identified 
6,867 unique drug strings in 3,346,758 million tweets. At 
the moment, this is the largest publicly available dataset for 
research use of drug chatter from Twitter. Please note that 
the released dataset consists of only tweet identifiers. The 
tweet identifiers can be hydrated to a json object using ei-

ther Social Media Mining Toolkit (Tekumalla and Banda, 
2020) or twarc (twarc, n.d.). The entire methodology of the 
research is depicted in Figure 3 and Figure 4 depicts the 
popular drug strings and the number of occurrences for 
each drug string in the classified tweets. 
 
 

 
 

Figure 3. Methodology of Mining archive.org’s Twitter stream 
grab for Pharmacovigilance research gold 

 

 
Figure 4. Popular drug string occurrences after filtering and clas-

sification of tweets 
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Cocaine was the most popular drug string with 59,397 oc-
currences, however, we eliminated it from the plot since it 
was used as a recreational drug than a medical drug. The 
following are a few examples of the tweets. The drug 
strings are highlighted in bold.  

1. “my head still hurting tho . my mama gave me 
some ibuprofen .” 

2. “im so stupid for taking benadryl in the morning 
#sleeeeeepy” 

3. “having to stop the vicodin completely because its 
making me sick seriously anything . #letthepain-
begin”. 

4. “i got very sick from effexor . also lost 2 years 
but ive recovered fully and life’s better than ever . 
hang in there”. 

5. i took some tylenol  with codeine. im sleepy , but 
i have to change the gauze in my mouth because it 
wont stop bleeding.” 

Future Work 
The proposition of this paper is to utilize publicly available 
resources and employ Machine and Deep Learning tech-
niques to create a dataset that can be made available for 
pharmacovigilance research. We believe that we cannot 
train models with a very limited amount of manually anno-
tated tweets, but we can use the theory of noisy labeling to 
create more robust models with silver standards (Agarwal 
et al., 2016; Han et al., 2019; Paul et al., 2019). However, 
there are a few limitations, which we would like to address 
in our future work. This research utilizes only English 
tweets since there were no publicly available annotated 
drug tweets for other languages. Currently, validation is 
performed only on the classification model but not the an-
notated dataset. Furthermore, the annotated drug tweets 
used in the training data were collected from publicly 
available sources and are labelled as drug tweets. Hence, 
edge cases such as ambiguous tweets were not considered. 
The language in Twitter is neither professional nor stand-
ard. Therefore, there would be a great possibility of 
spelling errors and slang. In the future, we will employ a 
spelling correction module, which includes the tweets with 
incorrect drug spellings, which greatly improves the scale 
of the dataset.  Further, we would like to develop an im-
proved annotated dataset, which can be utilized as a gold 
standard dataset, following a tri-modal distribution of 
probabilities where the edge cases are considered. 

Conclusion 
In this paper, we scavenged a publicly available Twitter 
dataset, Internet Archive, mining over 9.4 billion tweets. 
Using a simple drug dictionary and plenty of computing 
power, we filtered 6 million tweets with relevant drug 
terms in them. In order to determine the viability of the 

filtered tweets for research work, we used publicly availa-
ble, manually and expertly curated tweet datasets to build 
classification models to identify the relevant (or similar) 
tweets in our dataset.  Overall, these tasks took around 150 
days for downloading, filtering and classification, in order 
to retrieve 3,346,758 tweets, which can be utilized for drug 
safety research and as a training set for other supervised 
methods by researchers. Further, we believe that this ap-
proach can be reused and extended to several other do-
mains by changing the dictionaries and the filtering mech-
anisms. 
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