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Abstract

Social media offer an abundant source of valuable raw data,
however informal writing can quickly become a bottleneck
for many natural language processing (NLP) tasks. Off-the-
shelf tools are usually trained on formal text and cannot
explicitly handle noise found in short online posts. More-
over, the variety of frequently occurring linguistic variations
presents several challenges, even for humans who might not
be able to comprehend the meaning of such posts, especially
when they contain slang and abbreviations. Text Normaliza-
tion aims to transform online user-generated text to a canon-
ical form. Current text normalization systems rely on string
or phonetic similarity and classification models that work
on a local fashion. We argue that processing contextual in-
formation is crucial for this task and introduce a social me-
dia text normalization hybrid word-character attention-based
encoder-decoder model that can serve as a pre-processing
step for NLP applications to adapt to noisy text in social
media. Our character-based component is trained on syn-
thetic adversarial examples that are designed to capture errors
commonly found in online user-generated text. Experiments
show that our model surpasses neural architectures designed
for text normalization and achieves comparable performance
with state-of-the-art related work.

Introduction

Most text data in the world today is user-generated and on-
line. Vast quantities of online blogs and forums, social media
posts, customer reviews, and other textual sources are nec-
essary input of useful information for algorithms that under-
stand user intent and preferences, predict trends or recom-
mend items for purchase in targeted advertising. However,
social media usually deviates from standard language usage,
with high percentages of non-standard words, such as ab-
breviations, phonetic substitutions, hashtags, acronyms, in-
ternet slang, emoticons, grammatical and spelling errors.
Such non-standard words cause problems for both users
and text mining applications. Users that are not familiar with
domain-specific or peculiar language usage, e.g. acronyms
found in Twitter messages, may experience problems in un-
derstanding the expressed content. Additionally, due to high
out-of-vocabulary word rates, NLP approaches struggle with

Copyright (© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

335

the noisy and informal nature of social media written lan-
guage. Natural language follows a Zipfian distribution where
most words are rare. Learning “long tail” word representa-
tions requires enormous amounts of data (Bahdanau et al.
2017). Recent work showcases the negative impact of noisy
text on several NLP tasks and the improvement that text nor-
malization can bring in part-of-speech tagging (Han, Cook,
and Baldwin 2013), parsing (Zhang et al. 2013), and ma-
chine translation (Hassan and Menezes 2013) tasks. Special
pre-processing of informal text is therefore necessary to help
users understand content more easily and facilitate NLP al-
gorithms. The task of transforming noisy or informal text to
a more standard representation is called Text Normalization.

Normalizing text is challenging and involves a trade-off
between high recall, i.e. maximizing the number of correc-
tions and high precision, i.e. minimize the number of incor-
rect normalizations. In several cases, the task is framed as
mapping an out-of-vocabulary (OOV) non-standard word to
an in-vocabulary (IV) standard one that preserves the mean-
ing of the sentence. Additionally, text normalization can
include modifications that are beyond the framework de-
scribed above, for example replacing, removing or adding
word tokens or punctuation and capitalize or lowercase text.
Word mappings might not be unique, i.e. an OOV word can
be transformed to more than one IV word, based on context.
Due to the dynamic nature of social media text, many words
(e.g. named entities) are considered OOV but do not need
normalization or there is no appropriate IV word for them.

Although text normalization may appear to be similar to
the task of spelling error correction, it is actually much more
difficult to handle noisy social media text. Spelling correc-
tion focuses on word errors that can usually be handled with
edit distance metrics. Additionally, grammatical error cor-
rection, which incorporates local spelling errors with global
grammatical errors, e.g. preposition or verb usage mistakes,
deals with replacing or adding omitted words, which are of-
ten caused unintentionally by non-native writers. Such er-
rors can be partially identified with syntactic knowledge,
e.g. semantic parsing, while it is rather unlikely that text
normalization systems will benefit from such linguistic
sources (Baldwin et al. 2015). Due to the new challenges
in text normalization, it generally requires new approaches
that go beyond the traditional spelling error correction
methods.



The non-standard forms found in user-generated context
can be mostly summarized into several categories:

1. Misspellings, e.g. “defenitely” — “definitely”

2. Phonetic substitution of characters with numbers or let-

ters, e.g. “2morrow” — “tomorrow”, “rt” — “retweet”

3. Shortening of words, e.g. “convo” — “conversation”

4. Acronyms, e.g. “idk” — “i don’t know” that can also
include standard words usually used as acronyms, e.g.
“goat” — “greatest of all time”

5. Slang, i.e. metaphoric usage of standard words, e.g. “low

key”, “woke” or “broccoli”

6. Emphasis given to a certain word, either by capitaliza-
tion, e.g. “YEAH THIS IS SO COOL” or by vowel elon-
gation e.g. “cooooool” — “cool”

7. Punctuation deleted or misplaced, e.g. “doesnt” —
“doesn’t”, “do’nt” — “don’t” or intentionally using punc-
tuation instead of letters, e.g. “b@n@n@s”

Early text normalization systems consider a pipeline of
statistical language models, dependency parsing, string sim-
ilarity, spell-checking and slang dictionaries (Liu et al. 2011;
Han and Baldwin 2011; Han, Cook, and Baldwin 2013).
However, the high-dimensional action space of language
(arbitrary word sequences constructed from a vocabulary)
makes unsupervised learning inefficient. Additionally, un-
supervised text normalization methods often tune hyper-
parameters based on annotated (supervised) data, thus are
not fully unsupervised. Considering the rapid changes of
language in online content, with many emerging words ap-
pearing daily, lexicon-based approaches are not able to han-
dle social media text properly. String similarity, such as edit
distance, does not work on non-standard words where the
number of edits is large, for example abbreviations. In order
to achieve better pre-processing performance, we need to de-
velop methods that are specifically designed for the problem
at hand.

Recent work relies on candidate generation and ranking
(see section “Related work™ for a thorough review), with two
major deficiencies: Current approaches have mostly ignored
the contextual information present in a sentence that can be
potentially very useful. More specifically, in most cases the
features extracted or the models developed are limited to
a specific context window, e.g. Min and Mott (2015) work
with character-ngrams, while Jin (2015) relies on features
that depend on previous, current and next tokens of a can-
didate term. This requires additional human effort to decide
the appropriate ngram order and design features. More im-
portantly, it restricts the system in a way that prevents longer
contextual dependencies to be leveraged (see Figure 1 for an
example). The second limitation is that correcting complex
normalization mappings are harder to tackle and methods
that rely on candidate generator functions by definition limit
their approach to specific types of errors. For example, it
would be difficult for such methods to handle multiple nor-
malization errors at once, e.g. spelling errors on an acronym
or a slang term, and combining candidate generator func-
tions results in a combinatorial problem.
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Drawing inspiration from neural machine translation
(Bahdanau, Cho, and Bengio 2014; Luong, Pham, and Man-
ning 2015), we propose to address both limitations by using
end-to-end neural network models, particularly sequence-to-
sequence (Seq2Seq) models. Specifically, Seq2Seq models
can encode the entire sequence data with hidden neurons
that would naturally capture any useful context information
in a sentence to improve text normalization performance.
Such models can handle complex normalizations without
the need of language-specific tools, given enough training
data on any language (i.e. pairs of unnormalized and normal-
ized sentences). We propose and compare several variants of
Seq2Seq models for solving the problem of text normaliza-
tion. The first is a straightforward application of the basic
word-level Seq2Seq models to text normalization. However,
such an approach faces a major challenge of high percentage
of OOV tokens. In contrast, character-level Seq2Seq mod-
els do not operate on a limited vocabulary but are much
slower to train and recent work has shown that character-
based sequence-to-sequence models are not robust on noisy
data (Belinkov and Bisk 2017). We propose a novel hybrid
end-to-end model that takes into account contextual infor-
mation as well as addresses the OOV problem in a more
robust way. Specifically, our model is based on a recurrent
neural encoder-decoder architecture that reads the informal
text sequences, transforms them in a continuous-space rep-
resentation that is passed on the decoder to generate the tar-
get normalized sequence. To capture local spelling errors
and morphological variations of OOV words, we correct un-
known words with a character-level encoder-decoder trained
on synthetic adversarial examples that capture common er-
rors in online user-generated text. Our method obtains open
vocabulary coverage while maintaining the lower training
time of word-based models, when compared with character-
level sequence-to-sequence architectures.

Our contribution is two-fold:

1. We explore variations of encoder-decoder architectures as

well as adversarial training for tackling the task of nor-
malizing social media text.

2. We propose a novel hybrid neural network architecture

specifically designed for normalizing OOV tokens. Cou-
pled with adversarial training, our model allows for an
open set of corrections while seamlessly incorporates con-
text and long-term dependencies. Through carefully de-
signed experimentation, we show that the proposed hy-
brid model outperforms both word and character based
standard Seq2Seq architectures.

Our source code and model files are publicly available !.

Related Work

We briefly discuss related work on text normalization. The
normalization problem was originally framed as standardiz-
ing numbers, dates and acronyms in formal text (Sproat et
al. 2001) but the definition was later broaden to transform
social media informal text into canonical forms that NLP
tools were usually trained on (Sproat et al. 2001). Research

"https://github.com/Isminoula/TextNormSeq2Seq



source: got exo to share, u interested? Concert in !

target: got extra to share, are you interested? Concert in !

Figure 1: Example of source (unnormalized) tweet and tar-
get (normalized) pair where context helps in correcting am-
biguous terms. The word “exo” needs to be transformed to
“extra”, while the word “concert” provides the required con-
text to understand that “exo” refers to an extra ticket.

on this problem adopts several paradigms, from spell check-
ing (Choudhury et al. 2007), machine translation (Aw et al.
2006; Ling et al. 2013) and speech recognition (Kobus and
Yvon 2008).

Early unsupervised methods include probabilistic mod-
els (Cook and Stevenson 2009), string edit distance metrics
(Contractor, Faruquie, and Subramaniam 2010), construc-
tion of normalization dictionaries (Han, Cook, and Bald-
win 2012; Gouws, Hovy, and Metzler 2011) or extracting
training data from search results with carefully designed
queries (Liu et al. 2011). Another line of work is lexicon-
based methods and classification models. Han and Bald-
win (2011) train a classifier that detects non-standard words
and then generate candidates based on morphological and
phonemic similarity metrics plus a normalization lexicon.
Other approaches include word association graphs (Son-
mez and Ozgur 2014), random walks (Hassan and Menezes
2013), statistical (Beaufort et al. 2010; Zhang et al. 2013)
and log-linear models (Yang and Eisenstein 2013) and rank-
ing candidates with language models (Han, Cook, and Bald-
win 2013). These methods are quite limited as they rely pri-
marily on string and phonetic similarity for identifying lexi-
cal variations.

Recently, there is a growing trend on applying Deep
Learning in a variety of areas, such as Computer Vision or
NLP. Such models offer flexibility, can learn representations
and tasks jointly and have produced state-of-the-art for sev-
eral applications, e.g. object recognition, sentiment analysis
or machine translation. The representational power of neu-
ral models can potentially allow learning of complicated text
transformations, automatically handle language drift and
work with heterogeneous large streams of user-generated
text. We briefly describe state-of-the-art models and models
that either leverage deep learning or contain a component
that is trained with neural networks. Chrupata (2014) lever-
ages unlabeled data by incorporating character embeddings
as features in a model that learns to perform edit operations.
Sridhar (2015) used distributed representations of words
trained on a large Twitter dataset to extract normalization
lexicons based on contextual similarity. Similarly, Ansari,
Zafar, and Karim (2017) leverage word embeddings, as well
as string and phonetic similarity to match OOV words to IV
words (1:1 mapping), however their method does not take
into consideration contextual information and thus cannot
properly handle cases where multiple canonical forms of a
non-standard word are available. In contrast to this line of
work, we do not rely on pretrained embeddings; we learn
both word and character representations, in addition to the
text normalization model in an end-to-end fashion.
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Baldwin et al. (2015) present a text normalization task
on English tweets as part of the 2015 ACL-IJCNLP Work-
shop on Noisy User-generated Text (W-NUT). Two cate-
gories were introduced based on whether external resources
and public tools were used (unconstrained systems) or not
(constrained systems). Deep learning methods and lexicon-
augmented conditional random fields (CRFs) achieved the
best results, while the performance of unconstrained systems
was inferior, suggesting that the underlying model produces
a bigger impact on the final performance, compared with
the usage of additional data or resources. The models of all
participating teams are described in (Baldwin et al. 2015).
We should note that no team explored deep sequence-to-
sequence models or adversarial training.

Jin (2015) achieved the best performance in the W-NUT
task, with a method that generates candidates based on the
training data. A binary random forest classifier is trained to
predict whether a candidate is the correct canonical form
for a token found in a tweet instance. Their feature set used
during training includes string similarity, POS and statistics
such as support and confidence. The final canonical form se-
lected is the one that achieves the highest confidence score.
van der Goot and van Noord (2017) extends this work by
leveraging additional external resources of clean and infor-
mal text data. Min and Mott (2015) combine a lexicon ex-
tracted from the training data with a recurrent neural model
that performs edit operations trained on character trigrams.
Leeman-Munk, Lester, and Cox (2015) use a neural network
classifier that predicts whether a word needs normalization
and a secondary model that takes as input a word and outputs
its canonical form. Framing the task of text normalization
as classification in addition to relying on candidate gener-
ator functions limits the types of transformations that can
be tackled, as candidate generation relies heavily on human
engineering effort and existing methods for creating candi-
dates cannot handle multiple complex normalization errors
at once.

The aforementioned methods do not take into account the
full context in which a token appears. It is quite reasonable
then for one to wonder whether Seq2Seq models would be
appropriate for the task and in which ways the input or ar-
chitecture should be adjusted in order to reach comparable
performance given the limited training data available. To this
end, we explore encoder-decoder models and study how cru-
cial context is for the normalization of user-generated text.
Finally, we design a novel hybrid Seq2Seq model that is
trained on synthetic adversarial examples of noisy social me-
dia text.

Sequence-to-Sequence Learning

Encoder-decoder architectures (Sutskever, Vinyals, and Le
2014; Cho et al. 2014) have been applied in a wide vari-
ety of natural language tasks, such as machine translation
(Wu et al. 2016), dialogue generation (Vinyals and Le 2015),
summarization (Nallapati et al. 2016), question answering
(Yin et al. 2015). Several extensions of the Seq2Seq mod-
els have been proposed with mechanisms such as attention
(Bahdanau, Cho, and Bengio 2014), copying (See, Liu, and
Manning 2017) and coverage (Tu et al. 2016).



In most cases only the most frequent words are kept, cre-
ating a fixed-sized vocabulary, with OOV words mapped
to a common UNK token. Consequently, the performance
is affected by the limited vocabulary. Recent work propose
methods to mitigate this problem, by treating text as a se-
quence of characters (Lee, Cho, and Hofmann 2017), in-
venting new word segmentation methods (Sennrich, Had-
dow, and Birch 2015; Bojanowski et al. 2017) or hybrid
word-level models with an additional character-level model
to handle problematic cases (Luong and Manning 2016;
Ji et al. 2017). While character-based models outperform
models based on subword units, their extremely high com-
putational cost and inability to handle long-distance depen-
dencies makes them unappealing in practice. Moreover, as
hybrid models only use the secondary character model for
problematic cases, such as unknown words, they rely on
large training datasets, making them inappropriate for do-
mains with limited annotated data and frequent word vari-
ations. Our work lies on the hybrid models category but
builds upon the properties of text normalization to adjust the
character-based model training.

Text Normalization

Our architecture consists of two encoder-decoder models,
primarily a word-based Seq2Seq model, while for trans-
forming words not found in the word-level model’s vocab-
ulary, we either backtrack to a secondary character-based
Seq2Seq model when its confidence is high or copy the
source token (Figure 3). For completeness, we briefly de-
scribe encoder-decoder neural models.

Word-level sequence-to-sequence model

Given an unnormalized text represented as an input se-
quence of words ¥ = [z1,...,zp] with length T', we con-
sider generating another output sequence of words ¢ =
[y1,-..,yr] with length L that has the same meaning as
Z. The task is defined as a sequence-to-sequence learn-
ing problem which aims to learn the mapping from one
sequence to another. Specifically, the architecture is built
based on the encoder-decoder framework (Cho et al. 2014;
Sutskever, Vinyals, and Le 2014), both of which are parame-
terized by attention-based recurrent neural networks (RNN).

The encoder module reads the input sequence & and trans-
forms it to a corresponding context-specific sequence of hid-

den states i = [h1,...,hr]. In bi-directional models, two
encoders are used; one reading the text in forward mode
and another one reading text backwards. The final hidden
state at time t is the concatenation of the two encoder mod-
ules hy = [gy(z¢, he—1); go (2, het1)] where gy and g de-
note the forward and backward encoder units, respectively.
Similarly, the decoder defines a sequence of hidden states
§; = gs(sj—1,yj—1,c¢;) that is conditioned on the previous
word y;_1 and decoder state s;_1, as well as the context
vector ¢;, computed as a weighted sum of encoder hidden
states based on the attention mechanism (Bahdanau, Cho,
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and Bengio 2014):

1T

Cj = E Ctjkhk
i=k

where o = Softmax(f(s;—1,hs)) and f(sj—1,hx) =
8;;_1 W hy, is the general content-based function described in
Luong, Pham, and Manning (2015). Then, each target word
is predicted by a Softmax classifier y; ~ p(y;|y<;, @) =
Softmax(1(s;)), where ¢ is an affine transformation func-
tion that maps the decoder state to a vocabulary-sized vector.

Given training data D, Seq2Seq model is trained by max-
imizing the log-likelihood:

|L]

L(0) = - Z Zlogpg(yj|y<j,f)

(Z,y)€eD j=1

Note that during training a wrong prediction will cause an
accumulation of errors in the subsequent time steps. Thus,
when computing the conditional probability pg(y;|y<;,Z),
Scheduled Sampling (Bengio et al. 2015) is often used, a
method that alternates between using the model prediction
on the previous time step §j;_1 and the target previous word
yj—1 in order to alleviate the presence of compounding er-
rors.

The word-based Seq2Seq model can capture semantic
meaning at a word level and long-term contextual depen-
dencies that help in disambiguation of multiple correction
candidates. Figure 1 presents an example of source and tar-
get pair of tweets for which context helps in appropriately
normalizing the content.

Handling unknown words with a secondary
character-based encoder-decoder model

The model operating on words has a limited vocabulary for
both source and target. Words that are beyond this vocabu-
lary are represented with a special UNK symbol. For text
normalization, where slight variations occur often due to
misspellings, keyboard typing errors and intentionally em-
phasizing terms by elongation of vowels (e.g. “coooool” or
“yaaaay’’), many of the words are unseen during training, re-
sulting in loss of information. Three possible solutions can
be used to tackle this problem: a) copying source words, b)
rely on models fully trained on character-based information
and c) design hybrid models that work both on word and
character level.

A naive strategy would be to just copy the source word
when it is outside the scope of the vocabulary (see Figure 2),
however many unseen non-standard words will be left intact
and thus the coverage of our models will decrease. Another
way to handle vocabulary coverage is to pre-process the data
and learn a subword representation that allows to generalize
to new words. Byte pair encoding (BPE) (Sennrich, Had-
dow, and Birch 2015) learns the segmentation of text into
subwords, e.g. “showed” could be split into “show” and “ed”
while “accepting” would be split “accept” and “ing”. Such
pre-processing is model-agnostic, i.e. can be used irrespec-
tively of the chosen Seq2Seq model. However, BPE relies on



source: see U, UNK
bue

copy UNKs: see u, bue
Ch

target: see u, bye

Figure 2: Example of an unseen unnormalized token where

copying the source word is insufficient

the cooccurence and order of characters, which in our case
is highly noisy.

Character models overcome the bottleneck of restricted
vocabularies and do not require any pre-processing or tok-
enization but are computationally expensive and also suffer
from data sparsity. Chung, Cho, and Bengio (2016) provide
a detailed analysis regarding the challenges of character-
level models. Belinkov and Bisk (2017) recently showed
that character-based models fail to translate noisy text that
humans can handle easily. They mention that such models
are rarely trained to explicitly handle typos and noise, com-
monly found in natural language.

Hybrid models on the other hand, rely primarily on
a word-based representation where the meaning is natu-
rally preserved and backtrack to a secondary character-level
model to deal with problematic text. Because the charac-
ter model is trained only in some cases, it requires a large
pool of such problematic aligned text. Due to limited train-
ing data available for text normalization and the long tail
of rare non-standard words, hybrid architectures that train
character-level models only for words outside the vocabu-
lary would be insufficient. Thus, for in-vocabulary words we
rely solely on the word-level model, while when a word is
OOV, we backtrack to a character encoder-decoder that is
trained on word pairs rather than longer token sequences,
i.e. each pair of source and target words in our training set is
processed separately.

Adversarial training for increased robustness to
noisy user-generated text

To improve our model’s robustness to noisy text, we incor-
porate an adversarial training procedure to our character-
based secondary model. We augment our data by creating
synthetic adversarial examples of words, i.e. unnormalized
and canonical forms. More specifically, for all source-target
pairs of tweets, we keep words that remain unchanged. This
process creates our source and target vocabularies for the
character model. We later on inject multiple types of noise
during training, by editing the source part of each word.
More specifically, we introduce 6 types of errors that are
typically found in user-generated text, by randomly:

del: Deleting a character from a word
swap: Swapping the placement of two characters

lastchar: Elongating the last character % times when the
word ends with {u, y, s,7,a,0,i}, where k € {1,...,6}
punct: Deleting e.g. “I'm” — “Im” or misplacing apos-
trophes, e.g. “don’t” — “do’nt”

keyboard: Replacing characters based on their distance
on the keyboard, e.g. “hello” — “jello”
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Dataset | Tweets Tokens Noisy 1:1 1:N N:1 | Our Vocab
train 2050 44385 3942 2875 1,043 10 10,084
test 1967 29421 2776 2,024 704 10 7,389

Table 1: LexNorm statistics from (Baldwin et al. 2015) and
vocabulary statistics after preprocessing

elong: Extending vowel usage k times, where k is a ran-
dom number

Experiments

In this section we present our experimental setup for as-
sessing the performance of the text normalization model de-
scribed above. We want to test: a) whether a naive replace-
ment of words with their non-standard form would be suf-
ficient for the text normalization task, b) which Seq2Se2
model is the most effective, ¢) whether BPE and charac-
ter level models are appropriate for normalizing OOV so-
cial media tokens, d) how crucial is context and long-term
dependencies for correctly normalizing noisy text and e)
whether adversarial training improves robustness of our hy-
brid architecture.

Dataset

We use the LexNorm dataset from the 2015 ACL-IJCNLP
Workshop on Noisy User-generated Text (W-NUT) (Bald-
win et al. 2015). The dataset contains 4,917 tweets with
373 unique non-standard word types, split into 60:40 train-
ing/testing ratio. There are 488 non-standard word types that
are unseen during training, i.e. not found in the training data.
Table 1 lists some statistics of the dataset described in (Bald-
win et al. 2015). Note that apart from mapping a source word
to a target word (1 : 1 mapping), there are also words that
are mapped to more than one target tokens (1 : N mapping),
e.g. “omw” — “on my way”.

To reduce vocabulary size, words are lowercased, while
mentions were tagged and anonymized with a (mention)
token. The same anonymization was applied for URLs (url)
and hashtags (hash). At test time, we de-anonymize by
looking them up in their source sentences. Additionally, we
keep a common vocabulary between source and target text.
Each sequence is additionally pre-processed by adding a
start (s) and end (\s) symbol.

Baseline models

We compare our model (HS2S) with a diverse set of base-
lines, including two naive dictionary-based approaches: we
begin by constructing a lexicon from the training data and
correcting only unique mappings (Dictl) or additionally
choose randomly when multiple canonical forms are avail-
able (Dict2). We also compare with a two-staged strategy
that first corrects unique mappings based on the dictionary
and secondly utilizes a word-level Seq2Seq model trained to
correct only multiple mappings (S2SMult).

Addditionaly, we include a default attention-based word-
level encoder-decoder (S2S) as our baseline for comparison.
For this model, OOV words are solely copied directly from
the source sequence, thus “unseen normalizations” are not
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Figure 3: Our Hybrid Sequence-to-Sequence (HS2S) architecture that consists of two nested encoder-decoder architectures, one
trained on word-level information and a character-based trained on synthetically generated adversarial examples. The primary
model (word encoder-decoder) is trained on sequences of words. When an unknown symbol is encountered, such as token
“fidst” (red box) in our example, we leverage a secondary character-level Seq2Seq model (character encoder-decoder) that is
trained on a large pool of synthetic adversarial training examples of words to correctly normalize, e.g. token "first” (green box)

handled. This baseline should indicate whether targeting un-
seen normalizations is critical for the model performance.
Since character or sub-word level representations can allevi-
ate the problem of limited vocabularies, we also experiment
with a character-based model (S2SChar) and a model that
is trained on subwords with BPE tokenization? (S2SBPE).

Finally, we include a model trained on target sequences
preprocessed with a special symbol to indicate that the word
should be left intact (S2SSelf), e.g. if the source sequence is
“see u soon” and the target sequence is “see you soon”, we
replace the target sequence with “@self you @self”. Dur-
ing prediction, when we generate the normalized target of a
source sentence, we replace this special symbol by copying
from the source. Ultimately, we seek to find which sequence-
to-sequence model is the most effective for the text normal-
ization task.

Training Details

We keep a shared vocabulary between source and target and
also tie the decoder embeddings (Press and Wolf 2017). We
optimized all models with Adam (Kingma and Ba 2014)
and the gradient is rescaled when the norm exceeds {5,10}
(Pascanu, Mikolov, and Bengio 2013). Batch size is set to
{32,500}. All of our models are bi-directional and use at-
tention. To compare performance, we tune each model sepa-
rately with random search. The best hyper-parameters are
summarized in Table 2. To tune the hyper-parameters we
used a 10% random split of the training data and performed
random search on the hyper-parameter space. Once the best
combination was found, we retrained our system using the
full training data set.

Our adversarial training procedure is guided by an addi-
tional hyper-parameter, noise ratio, that tunes the number
of adversarial instances used. Our best performing model

2We experimented with the original subword implementa-
tion (https://github.com/rsennrich/subword-nmt) as well as a pre-
trained version (Heinzerling and Strube 2018) (https://github.com/
bheinzerling/bpemb) that produced better results.
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has a noise ratio of 0.1, i.e., more than 10% of instances
used are generated with adversarial training (see Table 6).
In general, we observed that training on large amounts of
adversarial instances, e.g. 50% additional instances, results
in decreased performance, e.g. when noise ratio is increased
to 0.5, the F1 score is decreased to 82.67% (Table 6: incor-
porating large quantities of adversarial instances decreases
performance). Furthermore, to reduce the amount of false
positives we allow the character-level secondary model to
correct only words for confident predictions. If the confi-
dence of the character-level model is low, our architecture
copies from the source.

Hyper-parameter | Word-level | secondary Char-level | S2SChar | S2SBPE

emb.dimension 100 256 256 100
neurons/layer 200 500 512 300
layers 3 3 3 2
dropout 0.5 0.5 0.2 0.3
learning rate 0.01 0.001 0.001 0.01

Table 2: Best performing hyper-parameter settings of our
proposed text normalization models

Comparison of Sequence to Sequence models

We compare our novel hybrid model with word-level base-
line Seq2Seq models (Table 3), as well as character-based
and BPE-tokenized Seq2Seq models (Table 4). In Table 3
we see that our dictionary based baselines result in lower
performance. Dict2 shows that handling ambiguous cases

Model name Precision Recall F1 Method highlights
HS2S 90.66  78.14 83.94 Hybrid word-char Seq2Seq
S28 93.39 7575 83.65 Word-level Seq2Seq
Dictl 96.00 5220 67.62 Dictionary (unique mappings)
Dict2 56.27  63.57 59.70 Dictl + Random
S2SMulti 93.33  75.57 8352 Dictl + S2S
S2SSelf 82.74 6550 73.11 @Self for tokens that

need no normalization

Table 3: Comparison of our S2S models with word-level
baselines.



Model name Precision Recall F1 Method highlights
HS2S 90.66  78.14 83.94 Hybrid word-char Seq2Seq
S2SChar 67.14  70.50 68.78 Character-level Seq2Seq
S2SBPE 20.00 52.04 28.90 Word Seq2Seq + BPE

Table 4: Comparison of our HS2S model with additional
baselines.

inappropriately results in a dramatic drop in precision. It
is therefore necessary for a text normalization model to be
able to correctly normalize text in the occurrence of multiple
mappings. S2SMulti is a baseline method that firstly nor-
malizes terms that have a unique mapping, based on source
and target tokens found in the training data, and later on uti-
lizes a word-level Seq2Seq model that is trained to correct
one-to-many mappings (an unnormalized token that can be
transformed into several standard words, e.g. “ur” — {“you
are”, “your”}). We can see that this method has a better
performance, which validates our hypothesis that a naive
word replacement would not suffice, however the end-to-end
Seq2Seq model (S2S) performs better than S2SMulti, i.e.
Seq2Seq models can handle both unique and multiple map-
pings seamlessly without any additional feature engineering
effort apart from tokenization.

Our character-level S2SChar model’s performance is
slightly above the dictionary baseline Dict1 which suggests
that characters do not contain enough semantics to appro-
priately disambiguate between terms. Our results align with
relevant literature (Belinkov and Bisk 2017) that emphasizes
on the noise sensitivity of character-based Seq2Seq mod-
els. We should also note that character-level Seq2Seq mod-
els take longer to train. Our best performing word Seq2Seq
model took 22 minutes to train while our top scored char-
acter model took 3 hours, for the same number of epochs.
The secondary character model of our hybrid architecture,
which is trained on pairs of words, took 42 minutes for the
same number of epochs.

Despite extensively tuning the hyper-parameters and ex-
perimenting with two subword tokenization tools, we were
unable to train a good performing model on subword units
(S2SBPE) successfully. S2SBPE has surprisingly very low
performance, the poorest of all models. As BPE relies on
co-occurrence of characters to extract frequent subword pat-
terns, one would expect that it would not be able to capture
useful information due to the high percentage of noise. This
emphasizes the importance of developing models robust to
informal text, that can learn from noisy input “on the fly”.

Error analysis

We perform an extensive error analysis. First, we check the
model output, particularly in which cases our model fails.
Table 5 presents the most frequent normalizations that our
model performed correctly and the most frequent cases that
were missed, as well as the frequency of the source terms.
Note that we also keep track of how many times a term re-
mains unchanged, specifically for cases where that term has
multiple mappings available (Table 5, information found in
parentheses). We can see that our model can handle multi-
ple mappings when those are adequately represented in the
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training data. Most of the incorrect normalizations appear
less than 50 times in our data (very infrequent) or are am-
biguously normalized in some examples and left intact in
other examples, e.g. “rt” and “2” remain unchanged a few
times, and these are the cases that the model missed. These
types of errors can be handled by adding more training data.
Furthermore, we should note that our model can also be ad-
justed to work with distantly supervised data or with ensem-
ble methods.

Comparing with different representations that can handle
unknown words, our character level model performs edits
that might result in removing words from the text or are close
to the gold-truth canonical form but not entirely correct (see
Table 7). In contrast to our hybrid model that can preserve
contextual and word-level semantic information, our BPE
model’s poor performance results in editing text that needs
no correction.

Futhermore, we perform error analysis on the secondary
character-level model that is trained on synthetic adversar-
ial examples of word pairs. In total, our model correctly
normalizes 16.22% of unseen source words. In Table 8
we present OOV terms that the model can correctly nor-
malize. Most frequent errors that are correctly normalized
are elongating the last characters, deleting last character
[¢] in gerund, swapping or replacing characters and typos.
There are also several typos that the model was not able
to correct, such as missing whitespaces or editing words
unnecessarily.

How contextual information affects performance One
of our main questions is how crucial contextual information
is for text normalization. We test the importance of con-
text by performing two experiments. For our first experi-
ment, we perform the following preprocessing of the train-
ing data: we constrain the target-side of each example by
replacing each word that remains unchanged (no normaliza-
tion needed) with a special @self symbol. With this repre-
sentation all tokens that need normalization are preserved
and the model would learn which words remain the same.
We call this model S2SSelf. We notice that this representa-
tion lowers performance due to loss of contextual informa-
tion on the target side (see Table 3). In Table 9 we present ex-
amples of our hybrid model’s predictions and compare with
the predictions of S2SSelf. In most cases we observe that
our model relies on context to normalize short tokens, while
S2SSelf fails to correct such terms.

Moreover, we create ngram representations of our data by
splitting the tweets: for example a unigram model is trained
on word pairs solely and ignores context when normaliz-
ing, as it edits each word separately and similarly a bigram
model is trained on phrases that contain two words. We con-
tinue with higher-order ngrams, train Seq2Seq models on
such ngram-based split of text and analyze the importance
of contextual information. By gradually varying the context
window, while keeping the rest of the hyper-parameters sta-
ble, we can analyze how it affects the performance. In Fig-
ure 4 we can see that recall remains fairly unchanged, while
precision increases as the context window grows larger, i.e.
train on higher-order ngrams and thus incorporating more



Source | Target Count | Source Source | Target Count | Source

u {you’re, you, u, your} | 234 335(2) 2 {to, 2} 9 36 (25)
lol laughing out loud 197 272 ya {ya, you, your, yourself} | 9 15 (4)

im {i, ’'m} 153 182 y {y, why} 9 17 (8)
dont don’t 57 92 yo {you, your, yo} 7 12 (1)
Imao laughing my @ss off | 45 45 rt {rt, retweet} 7 602 (582)
n {and, in, at, n} 40 57 (8) b {b, be, because, by} 4 20 (9)
omg oh my god 34 34 nah {no, nah, not, now} 4 6(2)

Table 5: Most frequent correct (left table) and incorrect (right table) normalizations of our word-level Seq2Seq model. We
present how many times a source tweet was (in)correctly normalized (Count column) as well as how many times that term
appears in the source-side of the examples (Source). For cases where a token can be normalized to itself, we include how many
times that term appears unchanged (information in parentheses)

Noise Total Noise-injected

Rati Precision Recall F1
atio examples examples

0.1 34,875 5,739 90.66 78.14  83.94
0.2 37,659 8,523 89.92 78.25 83.68
0.3 40,489 11,353 88.61 78.11  83.03
0.4 43,191 14,055 89.25 78.25 83.39
0.5 45,921 16,155 87.33 78.47  82.67
0.6 48,625 19,489 86.21 79.05 82.47
0.7 51,380 22,244 84.89 78.83  81.75
0.8 54,034 24,898 84.37 79.05 81.62
0.9 56,829 27,693 83.94 78.98 81.38

Table 6: Varying the amount of adversarial examples

Source: cmon familia dont mess this up please

Target: come on familia don’t mess this up please
HS2S/S2Multi:  come on familia don’t mess this up please

S2SSelf: cmon familia don’t mess this up please

S2Char: comon familia don’t mess this up please

S2SBPE: cmon familia don’t just ess this up

Source ... 1’m not gon diss you on the internet cause ...

Target: ... 1’'m not gonna disrespect you on the internet because ...
HS2S/S2Multi: ... i’'m not gonna disrespect you on the internet because ...
S2Char: ... 1’m not gonna thiss you on the internet because ...
S2SBPE: ...i’'m not gonna be you on the internet because ...

Table 7: Examples where our model surpasses architectures
that rely on lower-level representation of text.

context. Overall, we can observe that F1 measure gets better
with additional contextual information.

Comparison with related work

Finally, we present our comparison with related work on Ta-
ble 10. We see that all previous Deep Learning approaches
are close to 82% F1 score. Due to the nature of our hybrid
model, we were able to achieve the best performance so far
among neural models in related work. In general, we observe
comparable performance with state-of-the-art methods that
are constrained on utilizing additional resources’. We com-
pare the incorrect normalizations that our Seq2Seq model
and MoNoise - the best performing method - produce. Both
systems appear to have similar results in terms of most fre-
quent incorrect normalizations (Table 13). In many cases our

3MoNoise (van der Goot and van Noord 2017) leverages large
collections of Twitter and Wikipedia data.
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Figure 4: Varying the ngram-wise split of sequences to check
how context affects performance of text normalization.

hybrid Seq2Seq model leaves intact terms that are ambigu-
ous in terms of whether they should be normalized or not,
while (van der Goot and van Noord 2017) normalize words
more often (Table 14), in some cases incorrectly.

Interestingly, there are examples that, despite the lack of
correct target annotation, our model normalizes tokens cor-
rectly (see Table 12). More specifically, there are several to-
kens that were not normalized but in an ideal scenario should
be, e.g. many punctuation errors that were not normalized or
abbreviated tokens that were not converted into their stan-
dard form. As a result, despite correctly transforming text,
our system gets penalized for such cases.

Conclusions and future work

Text normalization is an important preprocessing part that
helps users understand online content and increases perfor-
mance of off-the-shelve pretrained NLP tools. However, due
to the inherent constraints of existing feature engineering
methods used, existing work cannot capture longer contex-
tual information and is limited to handling specific types of
normalization corrections. Neural Seq2Seq models can nat-
urally correct complex normalization errors by learning edits
on large pools of text data. Additionally, improving robust-
ness of Seq2Seq models on real-word noisy text data is a
crucial problem that remains fairly unexplored. To this end
we have introduced a novel hybrid neural model for social



Source Prediction Confidence (%) Source Prediction Confidence (%)
perfomance performance 83.90 pantsareneveranoption  pantsarentien 83.29
considerin considering 78.94 judgemental judgmmental 79.11
birthdayyyyy birthday 74.30 kissimmee kissimme 74.08
brothas brother 72.53 bsidez baidez 67.67
pepole people 72.02 coldplay coldolay 59.43
tomorroww tomorrow 69.03 knob know 58.12
YEsSSSSSS yes 68.35 donuts doughs 57.78
iight alright 59.35 becos becouse 55.72

Table 8: OOV words that our secondary character model has normalized correctly (blue) or incorrectly (red)

Source:
Target:

HS2S: (80%)
S2SSelf: (50%)
Source:
Target:

HS2S: (88.8%)
S2SSelf: (0%)

think tht took everything off ma mind for tha night

think that took everything off my mind for the night

think that took everything off ma mind for the night

think that took everything off ma mind for the tha night

death penalty would b d verdict @general_marley murder will b d case ...
death penalty would be the verdict @general_marley murder will be the case ...
death penalty would be the verdict @general_marley murder will b the case ...
death penalty would b d verdict @general_marley murder will b d case ...

Table 9: Comparing HS2S with S2SSelf shows context is
crucial for correct normalization, especially for short tokens.

Model Precision Recall F1
Hybrid Seq2Seq (HS2S) 90.66 78.14 83.94
Random Forest (Jin 2015) 90.61 78.65 84.21
Lexicon +LSTM (Min and Mott 2015) 91.36 7398 81.75
ANN (Leeman-Munk, Lester, and Cox 2015) 90.12 7437 81.49
MoNoise* (van der Goot and van Noord 2017) 93.53  80.26 86.39

Table 10: Comparison of our hybrid Seq2Seq model with re-
lated work on Text Normalization. *In contrast with the rest
of the presented related work, Monoise leverages additional
textual resources.

media text normalization that utilizes a word-based encoder-
decoder architecture for IV tokens and a character-level
sequence-to-sequence model to handle problematic OOV
cases. Our character-based component is trained on adver-
sarial examples of word pairs. Experimental results show
that our hybrid architecture improves robustness to noisy
user-generated text and shows superior performance, when
compared with open vocabulary models. Without relying on
any external sources of additional data, we built a system
that improves the performance of neural models of text nor-

Source: @ifumiO819 i see , u can comeee

Target: @ifumiO819 i see , you can come

HS2S: @ifumiO819 i see , you can comeee

Our_RF: @ifumiO819 i see , you can comes

Source: startin to get into this type of musik @vinnyvitale

Target: starting to get into this type of music @vinnyvitale

HS2S: starting to get into this type of musik @vinnyvitale
Our_RF: startin to get into this type of musik @vinnyvitale

Source:  #youarebeautiful allly this hashtag should be for you im ugly
Target: #youarebeautiful allly this hashtag should be for you i’m ugly
HS2S: #youarebeautiful allly this hashtag should be for you i’m ugly
Our_RF: #youarebeautiful alli this hashtag should be for you i’m ugly

Table 11: Examples of corrent and incorrect normalizations
of our model (HS2S) and Jin (2015) (our implementation)
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Source: rt @foxtramedia tony parker sportscenter convo ...

Target: rt @foxtramedia tony parker sportscenter convo ...
Prediction: rt @foxtramedia : tony parker sportscenter conversation ...
Source: ... but looking back defo do now, haha !

Target: ... but looking back defo do now, haha !

Prediction: ... but looking back definitely do now, haha !

Table 12: Examples where our model performs correct nor-
malization but during the annotation process, some tokens
remained unnormalized in the target sequence, which results
in lower performance in evaluation.

Source Target HS2S (ours) MoNoise
youd would youd you’d
ya your you ya
yknow you know yknow know
werent weren’t werent were
tiz this tizket tiz
swthat shout out switht swthat
shite shitty shit shite
rts retweets rts rts
pleeze please pleaze pleeze
nah now no nah
judgemental judgmental | judgmmental judgemental
championssssss | champions | championsssss | championssssss

Table 13: Examples that both our hybrid (HS2S) model and
MoNoise (van der Goot and van Noord 2017) incorrectly
normalized.

malization and produces results comparable with other mod-
els found in the recent related literature. Our system can be
deployed as a preprocessor for various NLP applications and
off-the-shelve tools to improve their performance on social
media text.

We plan to apply the approach to more languages and
compare our adversarial training to other methods, e.g. per-
turbations applied directly to the embedding space instead
of the input. While normalizing informal text, it is worth
to consider whether the meaning of a noisy version re-
mains the same, for example the extended usage of vowels
(“yaaaaaaay”) indicates emphasis while capitalization repre-
sents raising the tone. We leave the analysis of the trade-off
between retaining such information and normalizing noisy
text as future work.



Source Target Prediction
2night tonight 2night
aboul about aboul

asap as soon as possible asap
HS2S bermudez bermudez bermudes
bfor before boor
(ours)
cruz cruz crus
outta outta out of
PPPP people PPPP
wildin wilding wildin
weeknd weekend weeknd
tix tickets ticket
da the da
MoNoise rip rest in peace rip
probs problems probably
of girlfriend of
broo brother bro

Table 14: Examples of incorrect normalizations that are dis-
tinct between our hybrid (HS2S) model and and MoNoise
(van der Goot and van Noord 2017).
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