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Abstract

Text clustering has become an important branch in unsu-
pervised learning methods and has been widely used in so-
cial media. Recently, Large Language Models (LLMs) repre-
sent a significant advancement in the field of AI. Therefore,
some works have been dedicated to improving the cluster-
ing performance of embedding models with feedback from
LLMs. However, current approaches hardly take into consid-
eration the cluster label information between text instances
when fine-tuning embedding models, leading to the prob-
lem of cluster collision. To tackle this issue, this paper pro-
poses TeC, a novel method operating through teaching and
correcting phases. In these phases, LLMs take on the role
of teachers, guiding embedding models as students to en-
hance their clustering performance. The teaching phase im-
parts guidance on cluster label information to embedding
models by querying LLMs in a batch-wise manner and uti-
lizes a proposed weakly-supervised contrastive learning loss
to fine-tune embedding models based on the provided clus-
ter label information. Subsequently, the correcting phase re-
fines clustering outcomes obtained by the teaching phase
by instructing LLMs to correct cluster assignments of low-
confidence samples. The extensive experimental evaluation of
six text datasets across three different clustering tasks shows
the superior performance of our proposed method over exist-
ing state-of-the-art approaches.

Introduction
Text clustering finds diverse applications in social me-
dia networks, including content recommendation (Shepitsen
et al. 2008), topic discovery (Yin et al. 2011), and user profil-
ing (Tang et al. 2010). In the realm of text clustering, a preva-
lent practice is to deploy a classical clustering model, e.g.
K-Means (MacQueen 1965; Steinbach, Karypis, and Kumar
2000), directly on the representations generated by embed-
ding models (Muennighoff et al. 2023; Wang et al. 2022;
Su et al. 2023). However, these methods are not explored
in the clustering process and the complex relations among
instances are often overlooked, leading to sub-optimal clus-
tering results (Zhou et al. 2022).

Recent instruction-tuned large language models (LLMs)
such as ChatGPT, have been shown to have the ability to
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Figure 1: Illustration of cluster collision. Since the cluster
label information is not taken into account when fine-tuning
the model, some samples from the same semantic cluster are
misassigned to other clusters.

reproduce or improve human-generated labels (Gilardi, Al-
izadeh, and Kubli 2023; He et al. 2023). Furthermore, sev-
eral works (Zhang, Wang, and Shang 2023; Cheng et al.
2023) have been dedicated to improve clustering perfor-
mance of embedding models with feedbacks from LLMs. A
prevalent approach involves prompting LLMs with a triplet
task that predicts which one of the two candidates is closer to
the anchor instance. Then an embedding model is fine-tuned
based on the triplet relationships with contrastive learning
(Su et al. 2023). However, these methods disregard clus-
ter label information between text instances, focusing ex-
clusively on relationships between text pairs. As shown in
Fig.1, this exclusive focus may result in cluster collision,
where different instances from the same semantic cluster are
treated as negative pairs and incorrectly pushed away, ad-
versely affecting clustering outcomes.

To conquer the aforementioned limitation, this paper pro-
poses a novel method, TeC. It operates through two dis-
tinct phases: the teaching phase and the correcting phase,
where LLMs serve as the role of teachers and embedding
models act as students throughout the entire process. During
the teaching phase, LLMs provide guidance to embedding
models to improve clustering performance with the prompts.
Subsequently, in the correcting phase, LLMs refine the clus-
tering outcomes obtained by embedding models in the teach-
ing phase. This two-phase approach leverages the instructive
capabilities of LLMs to enhance the clustering performance
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of embedding models.
Specifically, in the teaching phase, our objective is for

LLMs to impart guidance to embedding models about the
cluster label information. However, due to the constraints
of maximum input length of LLMs, processing the entire
dataset in a single query is impractical. Even when di-
viding the dataset into batches and querying LLMs in a
batch-wise manner, it does not yield the final clustering re-
sult for the complete dataset. Consequently, we propose a
weakly-supervised contrastive learning loss to fine-tune em-
bedding models with feedback from LLMs in batch-wise
query. Firstly, a randomly sampled minibatch serves as in-
put to prompt LLMs for clustering. Subsequently, the em-
bedding models are fine-tuned based on the clustering re-
sults provided by LLMs. This iterative refinement process
aims to enhance the clustering performance of embedding
models with the instructive guidance received from LLMs
in each batch-wise operation. Additionally, in the correcting
phase, building upon the clustering results produced by the
embedding models during the teaching phase, we instruct
LLMs to correct cluster assignments of low-confidence sam-
ples, which can further boost the clustering performance.

In summary, the major contributions of this work are sum-
marized as follows:

• Leveraging LLMs, we propose a weakly-supervised con-
trastive learning loss to inject cluster label information
into embedding models to improve its clustering perfor-
mance;

• To rectify cluster assignments, we adopt a confidence-
based criterion to identify low-confidence samples. Ex-
periments show that such a strategy could further boost
the clustering performance;

• We conduct extensive experiments on 6 text datasets
across 3 different clustering tasks to demonstrate the ef-
fectiveness of the proposed method.

Related Work
In this section, we briefly introduce some recent develop-
ments in three related topics, namely, text clustering, text
embedding models, and LLMs as Annotators.

Text Clustering
Most existing text clustering methods involve text embed-
ding followed by clustering algorithms, leveraging tech-
niques such as bag-of-words (Blei, Ng, and Jordan 2003),
tf-idf (Aggarwal and Zhai 2012), or pre-trained models
like BERT (Kenton and Toutanova 2019), RoBERTa (Liu
et al. 2019), Sentence-BERT (Reimers 2019), Whitening-
BERT (Huang et al. 2021), and GPT-3 (Brown et al. 2020).
However, these methods often neglect the intricate relations
among instances, leading to sub-optimal clustering out-
comes (Zhou et al. 2022). In response to these limitations,
the emergence of deep text clustering (Zhang et al. 2021a;
Xu et al. 2015; Hadifar et al. 2019) seeks to jointly opti-
mize deep representation learning and clustering, garnering
increased attention recently. Nevertheless, these methodolo-
gies heavily depend on self-supervised labels, potentially

introducing noise and negatively impacting final clustering
outcomes.

Recent advancements in Large Language Model-based
methods have sought to enhance clustering efficacy. Cluster-
LLM (Zhang, Wang, and Shang 2023) employs LLMs to in-
fer sentence relationships, providing guidance for clustering
results. Notably, this approach overlooks cluster informa-
tion, focusing solely on relationships between text instances.
Additionally, Wang, Shang, and Zhong employs LLMs for
clustering by assigning instances to different explanations.
(Viswanathan et al. 2023) generate keyphrases with LLMs
to facilitate semi-supervised clustering.

Text Embedding Models
Text embedding models (Kenton and Toutanova 2019; Liu
et al. 2019; Brown et al. 2020; Huang et al. 2021; Reimers
2019) measure the relatedness of text instances. these mod-
els find applications in retrieval (Xiao et al. 2022), text sim-
ilarity (Gao, Yao, and Chen 2021), and classification (Gunel
et al. 2021), among other tasks. Recently, two text embed-
ding models, E5 (Wang et al. 2022) and Instructor (Su et al.
2023), have demonstrated superior performance compared
to earlier models. Specifically, E5 trains high-quality embed-
dings through self-supervised pre-training exclusively on
web-scraped data pairs. Instructor(Su et al. 2023) annotates
instructions for a diverse set of 330 tasks, training on this
multitask mixture with a contrastive loss to generate embed-
dings based on both text input and task input. Our method
enhances clustering performance on these models with the
assistance of LLMs.

LLMs as Annotators
Creating human-annotated data is a labor-intensive and ex-
pensive process, especially for complex tasks or specialized
domains where sufficient data may be lacking. Recent re-
search has explored the potential of LLMs to serve as an an-
notator for textual data, offering insights into various NLP
tasks. Examples include the use of ChatGPT for annotating
misinformation (Bang et al. 2023) and hate speech (Huang,
Kwak, and An 2023). LLMs have been demonstrated the
ability to reproduce or enhance human-generated labels (Gi-
lardi, Alizadeh, and Kubli 2023; He et al. 2023). Addition-
ally, there have been efforts to fine-tune models with feed-
back from LLMs (Cheng et al. 2023; Zhang, Wang, and
Shang 2023; Bai et al. 2022). In our work, we specifically
focus on clustering tasks and explore how predictions from
LLMs regarding cluster information can be leveraged to en-
hance the clustering quality of embedding models and rec-
tify clustering assignments for low-confidence samples.

Methodology
In this section, we present our method for Large Language
Model (LLM)-based clustering. As illustrated in Fig.2, our
method is composed of two stages: the teaching phase and
the correcting phase. Within the teaching phase, we pro-
pose weakly supervised contrastive learning loss to fine-tune
the Language Model (LM) with the collaborative assistance
of LLM. Subsequently, In the phase of correcting, based on
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the clustering results obtained by teaching, we identify the
low-confidence texts first, and then LLM is utilized to rectify
these texts into correct clusters, thereby refining the overall
clustering results. Next, we will provide detailed explana-
tions for each of the two components.

Teaching
In this section, we explore how to use LLMs to cluster. Ac-
knowledging the limitations imposed by the maximum in-
put length of LLMs, we recognize the incapacity of LLMs
to handle the entire dataset X = {xi}Ni=1 within a single
query, particularly when the cumulative length exceeds the
specified maximum input limit. Even though dividing the
dataset into batches and querying the LLMs in a batch-wise
manner does not yield the final clustering result for the entire
dataset. Consequently, we advocate a batch-wise fine-tuning
embedding models approach, where a randomly sampled
minibatch B = {xi}Mi=1 is presented as input to LLMs for
clustering. LLMs are prompted to cluster the texts within the
batch using a designated prompt P . Moreover, clustering re-
sults usually are highly related to the user’s goal, which can
be clustered based on topic, sentiment, genre, or other prop-
erties (Aharoni and Goldberg 2020). Hence, rather than forc-
ing the clustering algorithm to mine these key factors from
scratch, it is better to highlight these aspects globally before-
hand and thus focus on task priorities. To do this, LLMs are
employed to generate clustering results aligned with user-
defined goals G and descriptions of datasetD. Thus the LLM
prediction process is,

Ψ = P(B,G,D) (1)

where Ψ = {yi}Mi=1 indicates cluster label corresponding to
the texts in batch returned by LLMs. The prompt P is as
follows:

You are now an excellent algorithm expert for clustering.
{the description of dataset D }, in which each row repre-
sents an text instance, including id and text. Please cluster
the following text instance based on {user’s goals G} in text
instance. Please don’t leave out any instances. Output the
result in JSON format. Do not provide any additional in-
formation except the JSON, like ”ids”:”type”, where ”ids”
indicates the id corresponding to all texts contained in this
cluster, i.e. 0,1,2, and ”type” represents the type of this clus-
ter. Let’s think step by step.
{Example:}
{Input: B}
Now that we have accurate cluster labels of the texts in

batch, the subsequent challenge lies in effectively incorpo-
rating them into the clustering process. In this paper, we fo-
cus on fine-tuning the base embedding model f with the aid
of Ψ in order to produce an embedding space that aligns with
the user’s perspective. To mitigate the embedding model be-
ing biased towards hard examples after fine-tuning, we need
to contrast the set of all samples from the same cluster as
positives against the negatives from the remainder of the
batch. Specifically, we propose a weakly-supervised con-
trastive learning loss. This loss incorporates pseudo-labels
Ψ derived from LLMs. Hence, we optimize the following

training objective,

L=
1

M

∑
i∈B
− log

 1

|P (i)|
∑

p∈P (i)

exp (zi · zp/τ)∑
a∈A(i) exp (zi · za/τ)


(2)

Here, A(i) = {1, . . . ,M} is the set of all instances in a
batch, P (i) = {p ∈ A(i) : yi = yp} is the set that belongs
to the same cluster as sample i in B, τ is the temperature
hyper-parameter that allows the model to learn better diffi-
cult samples, and z is the vector representation of text. Fi-
nally, fine-tuned embedding models can be applied to gen-
erate the final clustering assignment Y = {yi}Ni=1 of the
dataset with a clustering algorithm.

Correcting
The correcting stage aims to discern instances within the
sample dataset characterized by low-confidence attributes,
subsequently rectifying these instances to their appropriate
clustering assignments. Given clustering assignment Y , sup-
pose our data consists of K semantic categories, and each
category is characterized by its centroid in the representa-
tion space. The cluster center µk for cluster Ck is computed
by averaging the embeddings assigned to it:

µk =
1

|Ck|
∑
i∈Ck

zi (3)

Then, the cluster assignment posterior probability pik, indi-
cating the likelihood of sample i belonging to cluster Ck, is
computed as follows:

pik =
(‖zi − µk‖

2
)−1∑

k′

(
‖zi − µk′‖2

)−1 (4)

Hence, a probability matrix P = {p1,p2, ...,pN}T ∈
RN∗K is derived.

A low-confidence sample denotes a data point where the
model exhibits diminished certainty or confidence in its
predictions (DeVries and Taylor 2018). Formally, the low-
confidence samples are selected in two ways:

ℵunselected = {xi | i /∈
⋃
{argtopk(P :,1,

N

K
), . . . ,

argtopk(P :,K ,
N

K
)}, ∀i = 1, 2, . . . , N}

(5)

ℵoverlapped = {xi | i ∈ (argtopk(P :,k,
N

K
)
⋂

argtopk(P :,j ,
N

K
), ∀i = 1, 2, . . . , N}

(6)

where, P :,k denotes the k-th column of matrix P and
argtopk(P :,k,

N
K ) yields the top N/K confident sample in-

dices from P :,k. Consequently, low-confidence samples en-
compass those unselected in all clusters. Table. 1 visually
illustrates the process of selecting low-confidence samples,
where 7 samples are distributed across 3 clusters (A, B, C).
The top 2 confident samples for each cluster are selected and
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Figure 2: The method framework of the proposed TeC. In the correcting stage, the brown sample points are regarded as low-
confidence samples. Moreover, orange, yellow, and green samples are selected by TextRank to represent every cluster, respec-
tively.

A B C Label

1 0.89 0.10 0.01 A

2 0.70 0.20 0.10 A

3 0.30 0.22 0.48 -1

4 0.02 0.96 0.02 B

5 0.00 0.40 0.60 B C

6 0.05 0.05 0.90 C

7 0.30 0.30 0.40 -1

Table 1: Illustration for low-confidence samples, where
1,2,3, etc, indicate the index of the samples and A, B, and
C indicate the index of the clusters.

labeled according to the predicted probabilities. According
to the Eq. 5, the samples that are not selected are those with
low confidence, i.e. labeled as -1. Moreover, there may exist
overlapped samples between different clusters. As shown in
Table. 1, sample 5 belongs to both cluster B and cluster C.
Here, we also recognize these overlapped samples as low-
confidence samples according to the Eq.6.

ℵ = ℵunselected
⋃
ℵoverlapped (7)

In summary, low-confidence samples constitute the union of
sets ℵunselected and ℵoverlapped as defined in Eq 7.

After selecting the low-confidence samples, each cluster

is textually represented using TextRank (Mihalcea and Ta-
rau 2004) to identify the most representative sentence r in
the cluster. For each low-confidence point q, the LLMs are
tasked with selecting the semantically closest cluster among
the m closest clusters, including the original cluster:

P(G, q,R) (8)

where, P is prompt of correcting phase and R = {ri}mi=1.
The prompt is as follows:

Select the user utterance that better corresponds with the
Query in terms of {G}. Each row represents an instance,
including id and text. Please respond with ’id’ that better
corresponds with the Query in terms of {G} without expla-
nation.

Query: {q}
{R}

Experiment
In this section, we conduct experiments to verify the effec-
tiveness of the proposed TeC.

Datasets
In the experiments, we assess our method on a diverse set
of clustering tasks and datasets, including various perspec-
tives and granularities. Table 2 provides a comprehensive
overview of the main statistics. To mitigate the costs asso-
ciated with LLMs guidance, we only conduct main exper-
iments on small-scale datasets provided by (Zhang, Wang,
and Shang 2023).
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Intent Discovery. Intent discovery is the task of inferring
latent intents from a set of unlabeled utterances (Zhang, Xu,
and Lin 2021). We conduct experiments on three challeng-
ing real-world datasets to evaluate our approach, including
CLINC (Larson et al. 2019), MTOP (Li et al. 2021) and
Massive (FitzGerald et al. 2023).

Information Extraction (IE). Information extraction is
the task of automatically extracting structured informa-
tion from unstructured and/or semi-structured documents
(Mausam et al. 2012). When dealing with fine-grained la-
bels (Choi et al. 2018), the exploration of new labels and
the expansion of supported information types become espe-
cially crucial. In our paper, we focus on two tasks of IE,
including entity type recognition and event type detection.
We adapt FewNerd (Ding et al. 2021) and FewEvent (Deng
et al. 2020) to evaluate our approach.

Sentiment Analysis. Sentiment analysis is the process of
analyzing text to determine the emotional tone of the mes-
sage (Kenyon-Dean et al. 2018). We adapt Goemo (Dem-
szky et al. 2020), a fine-grained emotion detection dataset
for evaluation.

Task Dataset #Text #Clusters #L/S

Intent
CLINC 4500 150 1
MTOP 4386 102 473

Massive 2974 59 209

IE
FewNerd 3789 58 113.8
FewEvent 4742 34 32.3

Emotion GoEmo 5940 27 84.25

Table 2: A summary of datasets used for evaluations. #Text:
the number of texts; #Cluster: the number of clusters; L/S:
the ratio of the size of the largest cluster to that of the small-
est cluster.

Baselines
K-Means on Embeddings. We directly apply (mini-batch)
K-means (MacQueen 1965) on top of extracted embeddings
from E5 (Wang et al. 2022) and Instructor (Su et al. 2023)
in a zero-shot manner. For the Instructor, we use the same
prompts provided by the original paper.

Contrast. Contrast (Vaze et al. 2022) is a method used
in computer vision to detect unknown classes of images and
we adapt this algorithm to natural language processing for
our problem settings.

CLNN. CLNN (Zhang et al. 2022) proposes a pre-
training strategy for multi-task learning, which leverages un-
labeled and labeled data for better representation learning.
Then, a contrast loss is designed to take advantage of the
self-supervised signals in the unlabeled data for better clus-
tering.

DAC. DAC (Zhang et al. 2021b) proposes an iterative
clustering method to obtain pseudo-cluster labels by K-
means. It performs representation learning and cluster as-
signment in a pipeline way.

DPN. DPN (An et al. 2023) proposes decoupling known
and new intents from unlabeled data to acquire different
knowledge for capturing high-level semantics.

SCCL-I. We also adopt deep text clustering algorithm
SCCL (Zhang et al. 2021a) equipped with Instructor for
comparison. It jointly optimizes a top-down clustering loss
with a bottom-up instance-wise contrastive loss, where clus-
ter loss follows the approach proposed by (Hadifar et al.
2019) and contrastive loss follows the approach proposed
by (Gao, Yao, and Chen 2021). We use the same prompts
provided by the Instructor.

CLUSTER-LLM. CLUSTER-LLM (Zhang, Wang, and
Shang 2023) proposes to prompt LLMs such as ChatGPT,
with a triplet task that predicts which one of the two
candidates is closer to the anchor instance. The predicted
triplets thereafter are used to fine-tune a small embedding
model with bi-directional in-batch sampled softmax loss.
CLUSTERLLM-I adopts Instructor as its embedding model.
CLUSTERLLM-I-iter applies the entire framework in an it-
erative manner twice.

Experimental Details

In the teaching phase, the prompts for querying LLMs only
contain a task-specific instruction. For all experiments, we
use a temperature of 0.2 and top p of 0.9 with gpt-3.5-
turbo. We use the Python API tool provided by OpenAI. In
our work, we focus on a state-of-the-art embedding model:
Instructor (Su et al. 2023) provided by Hugging Face. We
adopt the same hyper-parameters as in Instructor. We use the
Adam optimizer (Kingma and Ba 2015) with a learning rate
of 8e-5. The training batch size is 64 and the temperature
parameter τ is set to 0.1 in our proposed weakly-supervised
contrastive loss. Moreover, we use K-Means (MacQueen
1965) to obtain clustering results on fine-tuned Instructor.
The descriptions of D and user-defined goals G can be seen
in Table 3. In the correcting phase, we select the top 3 sen-
tences with the highest TextRank scores in each cluster to
represent this cluster and the number m of nearest clusters
is set to 5. Moreover, 200 samples are selected to rectify its
clustering assignments in the correcting phase. The experi-
ments are carried out on two NVIDIA RTX 4090 GPUs.

Evaluation Metric

We follow the previous work (Zhang, Wang, and Shang
2023), using a common clustering performance metric to
evaluate our method, i.e., Accuracy (ACC) (Wu 2006). The
ACC ranges between 0 and 1. A larger ACC indicates a bet-
ter clustering result. ACC is computed as follows:

ACC =

∑N
i=1 δ (yi,map (ci))

N
(9)

where yi is the true cluster label, ci is the cluster label ob-
tained by clustering, and δ(x, y) is an indicator function re-
turning 0 (x 6= y) or 1 (x = y). map(·) transforms the
cluster label ci to its true cluster label by the Hungarian al-
gorithm (Papadimitriou and Steiglitz 1998).
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Dataset D G
CLINC Here is a fine-grained dataset in the cus-

tomer service query domain
the customer service query intent

MTOP Here is a fine-grained intent dataset in the
customer service query domain

the customer service query intent

Massive Here is a intent dataset in the user utterance
query domain

the user utterance query intent

FewNerd Here is a named entity recognition dataset the entity type expressed in text instance
FewEvent Here is a event detection dataset the event type expressed in event trigger

of text instance
GoEmo Here is a fine-grained emotion detection

dataset
the emotion expressed in text instance

Table 3: The prompt template of description of datasets and user’s goal in teaching phase.

Method Intent Discovery Information Extraction Emotion Avg
MTOP CLINC Massive FewNerd FewEvent GoEmo

Few-shot

Contrast 29.25 34.68 33.07 30.42 47.61 16.34 31.90
DAC 31.43 61.84 34.45 40.84 33.22 18.88 36.78
DPN 33.64 45.56 33.86 38.13 43.43 14.86 34.91

CLNN 29.77 75.64 46.22 40.59 28.05 20.01 40.05
TeC (Ours) 39.25 84.15 62.96 43.65 55.51 35.62 53.52

Zero-shot

E5 33.54 75.83 52.52 25.49 37.30 22.13 41.14
Instructor 33.35 79.29 54.08 30.02 41.99 25.19 43.99
SCCL-I 34.28 80.85 54.05 31.09 39.97 34.33 45.76

ClusterLLM-I 35.84 82.77 59.89 34.75 46.17 27.49 47.82
ClusterLLM-I-iter 35.04 83.80 60.69 40.60 50.60 26.75 49.58

TeC (Ours) 37.02 83.92 60.86 43.36 53.40 34.63 52.20

Table 4: The clustering performance on 6 benchmarks accross 3 clustering tasks. The ”Few-shot” indicates experiments are
conducted with 16-way 8-shot labels.

Comparisons with State of the Arts

The clustering results across six benchmarks and three dis-
tinct clustering tasks are summarized in Table 4. In this
study, we contrast our proposed method, TeC, with nine
baseline approaches. The term ”Few-shot” denotes experi-
ments conducted with 16-way 8-shot labels, where we ran-
domly select such labels in original datasets to fill the Exam-
ple: section of our prompt. Conversely, ”Zero-shot” signifies
an empty Example: section. Our observations are as follows:
Firstly, our method outperforms the baselines in the Zero-
shot setting, suggesting that large language models (LLMs)
enhance our approach, and our training strategy is crucial
for improving clustering performance. Secondly, the Few-
shot setting outperforms the Zero-shot, indicating that Few-
shot is advantageous in bolstering the instructive capacity of
LLMs. Finally, our method, TeC, surpasses all state-of-the-
art baselines across all datasets, demonstrating its robust and
powerful clustering capabilities.

Ablation Study on Teaching Stage

In this section, we present ablation studies on the teaching
stage of TeC based on the Instructor model to showcase the
effectiveness of the weakly-supervised contrastive learning
loss we proposed and prompt.

Effect of the proposed loss To verify the effective-
ness the weakly-supervised contrastive learning loss, we
conduct a set of ablation experiments on six experimen-
tal datasets. Specifically, as shown in Table 5, we initially
employ the same training objective as (Su et al. 2023) to
fine-tune Instructor. This process utilizes positive pairs gen-
erated from independently sampled dropout masks (Gao,
Yao, and Chen 2021), denoted as ”Self-supervised.” Fur-
thermore, ClusterLLM-I-iter indicates the same training ob-
jective as (Su et al. 2023) is used to fine-tune Instruc-
tor, using positive pairs from a triplet task that predicts
which one of the two candidates is closer to the anchor in-
stance. Additionally, we use supervised contrastive learn-
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Method Intent Discovery Information Extraction Emotion
MTOP CLINC Massive FewNerd FewEvent GoEmo

Instructor 33.35 79.29 54.08 30.02 41.99 25.19
Self-supervised 34.10 80.13 55.21 31.25 43.85 24.08

ClusterLLM-I-iter 35.04 83.80 60.69 40.60 50.60 26.75
Zero-shot-TeC w/o correcting 36.01 83.72 60.66 43.41 53.50 34.51
Few-shot-TeC w/o correcting 38.15 84.01 61.81 43.75 55.65 34.62

Supervised 51.14 85.27 68.29 66.93 84.52 66.31

Table 5: The effect of weakly supervised contrastive learning loss on 6 benchmarks accross 3 clustering tasks.

Method Intent Discovery Information Extraction Emotion
MTOP CLINC Massive FewNerd FewEvent GoEmo

Zero-shot-TeC w/o G 34.01 80.10 57.21 40.25 51.85 32.17
Zero-shot-TeC w/o D 35.84 82.60 60.09 42.60 52.68 33.76

Zero-shot-TeC w/o correcting 36.01 83.72 60.66 43.41 53.50 34.51
Few-shot-TeC w/o G 37.10 83.13 60.21 42.32 52.08 32.68
Few-shot-TeC w/o D 38.04 83.80 60.69 42.65 53.64 34.05

Few-shot-TeC w/o correcting 38.15 84.01 61.81 43.75 55.65 34.62

Table 6: The effect of different components in prompt on 6 benchmarks accross 3 clustering tasks in the teaching stage.

ing (Gunel et al. 2021) to fine-tune Instructor, denoted as
”Supervised”, where positive pairs are from the same class,
to provide a performance upper bound. We can observe
that Self-supervised increases the performance of Instruc-
tor, which demonstrates the significance of further fine-
tuning on experimental datasets. Moreover, the performance
ClusterLLM-I-iter surpasses that of Self-supervised, high-
lighting the importance of positive and hard negative sam-
ples in the training process. However, the performance of
Self-supervised and ClusterLLM-I-iter are lower than our
method, which indicates the critical role of category infor-
mation in advancing clustering performance. Finally, when
the model is supplied with human labels, i.e. gold category
information, it attains the highest clustering performance
that demonstrates further the importance of category infor-
mation.

Effect of different components in prompt To assess the
impact of different prompt components in the teaching stage,
we conduct ablation studies on six benchmarks, as shown in
the Table 6. These experiments aim to scrutinize the contri-
bution of users’ goals (G) and the dataset description (D)
in both Zero-shot and Few-shot settings. Specifically, we
systematically remove the sentence ’{user’s goals G}’ and
’{the description of datasetD }’ from the original prompt in
separate experiments. Obviously, regardless of the zero-shot
or few-shot settings, a significant decline in clustering per-
formance is observed when either users’ goals or the dataset
description is omitted from the prompt. Furthermore, the
experiments indicate that users’ goals (G) contribute more

significantly to the enhancement of clustering performance
compared to the dataset description (D). Additionally, the
Few-shot setting demonstrates greater efficacy when query-
ing LLMs.

Ablation Study on Correcting Stage
In this section, we conduct ablation studies on the correct-
ing stage of TeC, utilizing the Instructor model to evaluate
the effectiveness of our proposed method for selecting low-
confidence samples. The results are presented in Table 7.
We initially select some samples randomly (referred to as
TeC random) to query LLMs. It is observed that the cluster-
ing performance of TeC random is inferior to our method,
indicating the validity of the proposed approach for select-
ing low-confidence samples. Furthermore, a decline in per-
formance is noted on FewNerd and FewEvent after correc-
tion. Upon investigation, it is found that the top 3 sentences
selected by TextRank in some clusters erroneously include
sentences that should belong to other clusters. This may con-
tribute to LLMs failing to correct samples with low confi-
dence. Nevertheless, the overall performance of our method
surpasses that of other approaches. Therefore, we assert that
our method for selecting low-confidence samples remains
effective.

Qualitative Study
In this section, we deeply analyze the impact of different
training objectives on the CLINC dataset embedding space
based on the instructor model. By improving the supervision
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Method Intent Discovery Information Extraction Emotion
MTOP CLINC Massive FewNerd FewEvent GoEmo

Few-shot

TeC w/o correcting 38.15 84.01 61.81 43.75 55.65 34.62
TeC random 37.23 83.74 60.81 43.41 53.62 34.62

TeC w/o ℵunselected 37.43 83.84 60.89 43.45 53.63 34.68
TeC w/o ℵoverlapped 37.64 83.90 60.86 43.48 53.53 34.68

TeC 39.25 84.15 62.96 43.65 55.51 35.62

Zero-shot

TeC w/o correcting 36.01 83.72 60.66 43.41 53.50 34.51
TeC random 37.01 83.74 60.75 43.41 53.48 34.58

TeC w/o ℵunselected 37.55 83.82 60.79 43.42 53.50 34.59
TeC w/o ℵoverlapped 37.88 83.85 60.80 43.39 53.47 34.60

TeC 37.02 83.92 60.86 43.36 53.40 34.63

Table 7: The effect of correcting stage on 6 benchmarks accross 3 clustering tasks.

(a) Instructor (b) Self-supervised

(c) ClusterLLM (d) TeC

Figure 3: The visualization of embedding space of CLINC
dataset on different training objectives.

signal of traning objectives, the model should learn discrim-
inative representations and yield improved clustering out-
comes. To see how our model converges to the goal, we
compare the outcomes of using the same training objective
as (Su et al. 2023) (referred to as Self-supervised), triplet
relationships (Zhang, Wang, and Shang 2023) (referred to
as ClusterLLM) to fine-tune Instructor. We randomly select
20 classes from the CLINC dataset. Obviously, as the en-
hancement of the supervision signal, clustering results be-
come more reasonable, and the feature representations be-
come more dispersed, forming more and well-defined clus-
ters. This phenomenon indicates class label information is
more important when fune-tuning model.

Moreover, we provide a visualization that illustrates the
evolution of both intra-cluster and inter-cluster distances
with respect to the training step on the CLINC dataset. Ide-
ally, a successful clustering outcome exhibits a low intra-
cluster distance, indicating tight cohesion within clusters,
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Figure 4: Intra- and inter-cluster distance across the training
process on CLINC dataset.

and a high inter-cluster distance, reflecting clear separation
between clusters. Specifically, for a given cluster, the intra-
cluster distance represents the average distance between the
cluster’s centroid and all the samples assigned to it. Con-
versely, the inter-cluster distance measures the separation
between a cluster and its nearest neighboring cluster. In Fig-
ure 4, we present the mean values of both types of distances,
computed by averaging across all clusters. Notably, the re-
sults demonstrate that as the training progresses, the inter-
cluster distance gradually increases, while the intra-cluster
distance decreases. This trend underscores the effectiveness
of our method in compactly grouping similar samples within
each cluster while effectively differentiating distinct clus-
ters.

The Cost and Time of TeC
Our findings have demonstrated that incorporating LLMs to
guide the clustering process yields improvements in perfor-
mance. However, it is essential to acknowledge that utilizing
LLMs can incur significant expenses. Employing a commer-
cial LLM API during clustering introduces additional costs
to the overall process. Table 8 provides a comprehensive
summary of the cost associated with using the OpenAI API
on six benchmarks. The average cost for Zero-shot TeC is
$0.64 per dataset, while that of Few-shot TeC is $2.03. Con-
sequently, we assert that, despite the expenses, our method
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remains cost-effective, considering the observed enhance-
ments in clustering performance. Moreover, we assess the
efficiency of our proposed method by measuring the train-
ing times across six benchmark datasets in Table 9. Notably,
the zero-shot learning approach offers quicker training times
and broader applicability without the need for task-specific
data, while the few-shot learning approach, despite requiring
longer training, potentially enhances the model’s clustering
accuracy and adaptability by utilizing a small set of relevant
examples.

Dataset Zeroshot-TeC Fewshot-TeC
MTOP $0.33 $0.97
CLINC $0.35 $1.04
Massive $0.21 $0.63
FewNerd $0.98 $2.95
FewEvent $1.35 $4.50
GoEmo $0.66 $2.10

Table 8: The API query cost of our method on six bench-
marks.

Dataset Zeroshot-TeC Fewshot-TeC
MTOP 0.70 h 1.17 h
CLINC 0.92 h 1.57 h
Massive 1.47 h 1.88 h
FewNerd 1.33 h 2.0 h
FewEvent 1.0 h 1.55 h
GoEmo 1.0 h 1.43 h

Table 9: The total training time (hours) of our method on six
benchmarks.

Conclusion
In this paper, we propose TeC, a new method for text clus-
tering. TeC is structured as a two-stage process guided by
LLMs, comprising the teaching and correcting phases. In
the teaching phase, we propose a weakly-supervised con-
trastive learning loss to fine-tune embedding models based
on feedback from LLMs through batch-wise queries. Sub-
sequently, in the correcting phase, we leverage LLMs to
instruct and refine cluster assignments of low-confidence
samples, thereby enhancing overall clustering performance.
Our method demonstrates superior performance compared
to state-of-the-art approaches across six benchmark datasets
spanning three distinct clustering tasks, all achieved at a rea-
sonable cost. Additionally, we conduct ablation studies to
substantiate the efficacy of our proposed method.
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