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Abstract
Social advertising, also known as social promotion, is a
method of promoting products or ideas through the use of in-
fluential individuals, known as “seeds,” on online social net-
works. Advertisers and platforms are the main players in this
ecosystem, with platforms selling viral engagements, such as
“likes,” to advertisers by inserting ads into the feeds of seeds.
Seeds are given monetary incentives by the platform in ex-
change for their participation in the campaign, and when a
follower of a seed engages with an ad, the platform receives
payment from the advertiser. Specifically, at the beginning of
a campaign, the advertiser submits a budget to the platform
and this budget can be used for two purposes: recruiting seeds
and paying for the viral engagements generated by the seeds.
Note that the first part of payment goes to the seeds and the
latter one is the actual revenue collected by the platform. The
challenge for the platform is to select a group of seeds that
will generate the most revenue within the budget constraints
set by the advertiser. This problem is challenging as the objec-
tive function can be non-monotone and may take on negative
values. This makes traditional methods of submodular opti-
mization and influence maximization inapplicable. We study
this problem under both non-adaptive and adaptive settings,
and propose effective solutions for each scenario.

Introduction
Social advertising (or social promotion) has been proved to
be an effective approach that can produce a significant cas-
cade of adoptions through word-of-mouth effect. It has been
shown that social advertising is more effective than conven-
tional advertising channels, including both demographical-
ly targeted and untargeted ads (Bakshy et al. 2012; Tucker
2012). Social advertising is often implemented as promot-
ed posts that are displayed in the news feeds of their online
users. Under the price per engagement (PPE) pricing mod-
el, the advertiser pays the platform for all users engaged with
their ad. Examples of engagement include “like”, “share”, or
“comment”. One unique feature of promoted posts, as com-
pared with traditional online ads, is that they can be propa-
gated from user to user. In particular, once a user v engages
with an ad, such an engagement will appear in the feed of
v’s followers, who could be influenced to engage with the
same ad. This potentially could trigger viral contagion.
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In this paper, we study the revenue maximization problem
in the context of incentivized social advertising (Aslay et al.
2016; Han et al. 2021). Our model involves two major play-
ers: advertiser and platform. At the beginning of a campaign,
the advertiser submits a budget limit B to the platform. The
platform is in charge of running the campaign and planning
budget on behalf of the advertiser. In particular, the platform
can spend the budget on behalf of the advertiser in two ways:
recruiting seeds and paying for the viral engagements gener-
ated by the seeds. Note that the first part of the payment goes
to the seeds and the latter one is the actual revenue collect-
ed by the platform. This motivates us to define the objective
function of the platform as the minimum of the remaining
budget after paying seeds and the value of viral engagements
generated by those seeds. Formally, if the platform selects S
as seeds at cost c(S) and it generates g(S,Φ) engagements at
the end of the day, where Φ is a random variable capturing
the uncertainty about the propagation of the engagements,
we can represent the expected revenue fexp(S) of the plat-
form as

fexp(S) = EΦ[min{PPE× g(S,Φ), B − c(S)}]. (1)

Example. Suppose the budget of the advertiser isB = $20
and the PPE is $1. The platform hires a group of seeds S at
c(S) = $7 such that it generates g(S,Φ) = 15 engagements
at the end of the campaign. In this case, the remaining budget
after hiring S is B − c(S) = $13. Thus, the actual revenue
collected from viral engagements is min{15 × $1, $13} =
$13.

We study the revenue maximization seed selection prob-
lem from the platform’s perspective. Our goal is to select
the best S (resp. a policy) that maximise fexp(S) under the
non-adaptive setting (resp. the adaptive setting). Intuitively,
we aim to collect as many engagements as possible, while
reducing the cost of hiring seed users.

Our Results: We next summarize the main contributions
made in this paper.

1. Under the non-adaptive setting, one must pick a group
of seed users S all at once in advance to maximize fexp(S).
Notice that fexp(S) is non-monotone and it might take on
negative values, making most of the existing results on sub-
modular optimization and influence maximization not appli-
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cable to our setting. This problem becomes even more chal-
lenging by having to take into account the uncertainty about
the spread of engagements through a social network. For the
general non-adaptive seed selection problem, we develop an
algorithm that achieves a 1−e−1/2

4 approximation ratio.
2. Under the more complicated adaptive setting, one is al-

lowed to pick seed users sequentially and adaptively, where
each selection is based on the partial realizations of select-
ed seeds (e.g., we choose the next seed given who we have
selected as seeds so far, and how many engagements they
have generated). Formally, we can encode any policy using
a function from a set of partial realizations to the set of users,
specifying which seed to select next under a particular par-
tial realization of selected seeds. In this setting, our goal is
to design a policy, rather than finding a fixed set of seed-
s, to maximize the expected revenue. We develop an adap-
tive strategy that achieves a κ(1−e−C/B)

2 approximation ratio
against the optimal adaptive policy where B is the budget
constraint andC, as well as κ, is some term that is dependent
on the cost of the most expensive seed. We show that if the
cost of the most expensive seed is no larger than B/2, then
the above approximation ratio is lower bounded by 1−e−1/2

4 .
3. We conduct extensive experiments on four large-scale

benchmark social networks (Wikivote, NetHEPT, NetPHY
and Epinions) to evaluate the performance of our solutions.
And the experiment results validate the effectiveness and the
efficacy of our algorithms.

Related Work
Influence Maximization and Social Advertising. The
problem of influence maximization has been studied in
(Kempe, Kleinberg, and Tardos 2003; Golovin and Krause
2011) where their objective is to select a group of seed n-
odes to maximize the expected size of influence. They as-
sumed that advertisers could observe the structure of the en-
tire social network and select seed users from this network
on their own. However, this assumption does not hold true
in the context of social advertising, where the platform s-
elects seed users on behalf of the advertisers. As a result,
their objective functions are monotone and (adaptive) sub-
modular, while ours is non-monotone. Our research aligns
closely with previous investigations into social advertising.
For instance, (Chalermsook et al. 2015) study the social ad-
vertising problem involving multiple advertisers. However,
their approach treats the cost of selecting seeds as sunk, with
each advertiser i able to select up to a predetermined ki seed-
s. Consequently, their focus lies in maximizing a monotone
function within cardinality constraints. The channel alloca-
tion problem is explored in (Alon, Gamzu, and Tennenholtz
2012), while (Abbassi, Bhaskara, and Misra 2015) tackles
the user ordering problem. However, neither of these studies
addresses engagement propagation. In (Aslay et al. 2014),
they introduce the concept of regret to capture the tradeoff
between maximizing the social advertising revenue and min-
imizing the impact of free-riding. Their goal is to select a
group of seeds to minimize the regret. This problem is revis-
ited in (Tang and Yuan 2016), they convert it to a new opti-
mization problem which admits constant approximation al-

gorithms under some conditions. In (Aslay et al. 2016), they
initiate the study of revenue maximization incentivized so-
cial advertising problem. Although the basic business mod-
el adopted in their paper is similar to ours, we propose to
use a new utility function to capture the revenue of the plat-
form.Specifically, in (Aslay et al. 2016)’s setting, it is not
possible to provide any “free engagements” to the advertiser
due to the strict budget constraint imposed on the total cost
of seed hiring and viral engagements. However, our setting
offers greater flexibility to the platform, enabling it to of-
fer free-riding services to advertisers. Our problem can be
viewed as a relaxation of (Aslay et al. 2016)’s problem, as
any feasible solution for their problem is also feasible for
ours, but not the other way around. Therefore, the optimal
solution under our setting always yields a higher expected
revenue from the platform’s perspective. This observation is
also backed by the results of our experiment. From a tech-
nical point of view, the objective function defined in (Aslay
et al. 2016) is monotone and submodular, while our objec-
tive function is non-monotone and it might take on nega-
tive values. This makes the existing results on submodular
optimization (Nemhauser, Wolsey, and Fisher 1978) and in-
fluence maximization (Kempe, Kleinberg, and Tardos 2003)
not applicable to our setting.

Incentive Mechanism Design in Social Media Numer-
ous studies have been conducted on developing incentive
mechanisms aimed at promoting participation in social me-
dia (Brady, Morris, and Bigham 2015; Alperin et al. 2017).
These studies explore different types of incentives, such as
personalized message (Grau, Naderi, and Kim 2018) or us-
ing online bots (Savage, Monroy-Hernandez, and Höllerer
2016), and evaluating their effectiveness in motivating peo-
ple to participate in a particular activity or behavior. In con-
trast, our research is focused on selecting a best group of
seed users given that the incentive mechanism is well de-
signed and pre-given (e.g., in our study, we assume an incen-
tive mechanism where a fixed amount of monetary reward
is offered to each seed user). Our work distinguishes itself
from and complements the research cited in the aforemen-
tioned studies. On the one hand, the research on incentive
mechanism design can assist us in formulating better incen-
tives, such as combining monetary rewards with other types
of incentives, to more effectively recruit seed users in the
context of social advertising. On the other hand, given that
distributing incentives to a large number of users can often
be expensive, our study may provide valuable guidance on
how to selectively target a group of users to receive those
incentives.

Submodular Optimization. Our study is also related to
non-adaptive (Nemhauser, Wolsey, and Fisher 1978) and
adaptive submodular maximization (Golovin and Krause
2011). While most of the existing studies in this field as-
sume non-negative functions, (Harshaw et al. 2019; Sviri-
denko, Vondrák, and Ward 2017) study the problem of max-
imizing a regularized submodular function, which may take
on negative values, in the form of a sum of a non-negative
monotone increasing submodular function and a linear func-
tion. (Feldman 2020) develop a faster algorithm using a sur-
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rogate objective that varies with time. For the case of a car-
dinality constraint and a non-positive linear part, (Harshaw
et al. 2019; Kazemi et al. 2020) develop the first practical
algorithms. Our objective function is different from theirs,
i.e., it is the expectation of the minimum of an increasing s-
tochastic submodular function and a decreasing linear func-
tion. Moreover, we are the first to extend this study to the
adaptive setting where the seed users are selected in a se-
quential and adaptive manner.

Preliminaries and Problem Statement
Engagement Propagation Model and
Submodularity
The platform owns a social network which is represented as
a directed graph G = (V, E), where each node in V repre-
sents a online user and an edge (u, v) ∈ E means that user v
is a follower of user u, and thus v is exposed to u’s posts and
may be influenced by u. We adopt the Independent Cascade
Model (IC) (Kempe, Kleinberg, and Tardos 2003) to gov-
ern the way in which engagements (e.g., impressions, clicks
and shares) propagate in G. Under the IC model, each edge
(u, v) ∈ E has a binary random variable Xuv that denotes
whether u has influenced v (to engage with the ad). That is
Xuv = 1 indicates that u successfully influences v and oth-
erwiseXuv = 0. The random variablesXuv are independent
of each other and have a known mean of E[Xuv] = ρuv ,
where ρuv represents the probability of influence that u has
on v. An edge (u, v) will be referred to as a live edge if
Xuv = 1, whereas an edge with Xuv = 0 will be referred to
as a blocked edge. Once a node u becomes activated (e.g., u
has engaged with the ad), the model samples the edges Xuv

for each of its neighbors v. If the edge (u, v) is a live edge
(Xuv = 1), then the node v becomes activated. This process
can then continue, as influence spreads from u’s neighbors
to their neighbors and so on, following the same mechanism.
We illustrate this engagement propagation model in Figure
1.

Figure 1: An illustration of the engagement propagation
model. The underlying social network is shown on the left-
hand side; and the individuals influenced and observed fol-
lowing the selection of a single seed user are shown on the
right-hand side.

Since the diffusion process can lead to the activation of
multiple nodes through the network, triggering the activa-

tion of a single node u can potentially have far-reaching
effects. We assume that selecting a seed u can reveal the
status (Blocked or Live) of every out-going edge of
every user that can be reached by u though a path com-
posed of live edges. We model the state φ(u) of a user u
as a function φ(u) : E → {Blocked,Live, ?}. Specif-
ically, φ(u)((v, w)) = Blocked means that activating u
has revealed that (v, w) is blocked, φ(u)((v, w)) = Live
means that activating u has revealed that (v, w) is live, and
φ(u)((v, w)) =? means that activating u can not reveal the
status of (v, w). Let φ = {φ(v) | v ∈ V} denote a full
realization of the diffusion process and Φ denote the ran-
dom variable of φ. Given a graph G = (V, E) and influence
probabilities {ρuv | (u, v) ∈ E}, there is a known prior
probability distribution p(φ) = {Pr[Φ = φ] : φ ∈ Ω}
over all possible realizations Ω. Given a realization φ and
a set of seed users S, we define g(S, φ) as the number of en-
gagements generated by S conditional on φ. In other words,
g(S, φ) is the number of users who can be reached by at
least one user in S (including S itself) through live edges
conditional on φ. The expected number of engagements of
S is gexp(S) = E[g(S,Φ)] where the expectation is taken
over Φ according to p(φ). We next introduce the concept of
submodularity and monotonicity.

Definition 1 (Submodularity and Monotonicity)
Consider any two subsets A ⊆ V and B ⊆ V
such that A ⊆ B and any element v ∈ V \ B,
a function q : 2V → R≥0 is submodular if
q(A ∪ {v}) − q(A) ≥ q(B ∪ {v}) − q(B). A func-
tion q : 2V → R≥0 is monotone if q(A ∪ {v})− q(A) ≥ 0.

In (Kempe, Kleinberg, and Tardos 2003), they show that
g(·, φ) is both monotone and submodular for any realization
φ with Pr[Φ = φ] > 0. Moreover, gexp(·) is also monotone
and submodular.

Business Model
The platform is hosting the social advertising campaign. Af-
ter receiving a campaign budget B, as well as a PPE amount
ppe, from the advertiser, the platform selects a group of seed
users S ⊆ V on behalf of the advertiser to endorse her ad,
and each seed user v ∈ S receives an incentive c(v). Hence,
the cost of hiring S as seed users is c(S) =

∑
v∈S c(v). The

total payment made by the advertiser is composed of two
parts: The payment for the engagements and the cost for hir-
ing the seed users. Notice that the revenue of the platform is
just the payment for the engagements, as c(S) is paid to the
seed users. If there is no budget constraint, i.e, B = ∞, the
revenue of the platform conditional on a realization φ is sim-
ply ppe·g(S, φ) where g(S, φ) is the number of engagements
generated by S under φ. For a general budget constraint B,
we must ensure that the total payment from the advertiser
does not exceed B. Thus, as the cost of hiring seed users is
c(S), the highest possible payment for engagements is upper
bound byB−c(S). As a result, we model the actual revenue
f(S, φ) of the platform subject to a budget constraint B as
f(S, φ) = min{ppe·g(S, φ), B−c(S)}. Note that our mod-
el allows for the possibility of providing “free” engagements
to the advertiser if ppe · g(S, φ) exceeds B − c(S). Without
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Figure 2: Business model of incentivized social advertising
(under a fixed realization φ). In step 1, the advertiser sub-
mitted a budget B to the platform (e.g., facebook). In step 2,
the platform spent c on hiring seed users. In step 3, assume
those seed users hired by the platform successfully generate
viral engagements (e.g., viral impressions) of value g. In the
final step, the platform charge the advertiser min{c+ g,B}
(this is because the total payment from the advertiser can not
exceed his budget B). Note that although the total payment
by the advertiser is min{c + g,B}, but c was given to the
seed users. In this case, the actual revenue collected by the
platform is min{c+ g,B} − c = min{g,B − c}.

loss of generality, we normalize the value of ppe to one to
obtain a simplified form of f(S, φ) as

f(S, φ) = min{g(S, φ), B − c(S)}. (2)

With the above notation, we can represent the expected rev-
enue fexp(S) of the platform when S is selected as

fexp(S) = E[f(S,Φ)] = E[min{g(S,Φ), B − c(S)}] (3)

where the expectation is taken over Φ according to p(φ).
To gain a better understanding of the business model, please
refer to a walkthrough example provided in Figure 2.

In this paper, we study the revenue maximization seed se-
lection problem from the platform’s perspective under both
non-adaptive and adaptive settings. Under the non-adaptive
setting, one must pick a group of seed users all at once
in advance. Under the more complicated adaptive setting,
one is allowed to pick seed users sequentially and adaptive-
ly, where each selection is based on the feedback from the
past observations. Under both settings, the platform faces
the tradeoff of generating as many engagements as possible
and reducing the cost of hiring influential seed users.

Non-adaptive Seed Selection Problem
We first describe the seed selection problem under the non-
adaptive setting. Our objective is to select a fixed set of seed
users to maximize the expected revenue fexp(S). Formally,

max
S⊆V
{fexp(S) | c(S) ≤ B}.

One can drop the constraint from the above formulation
without affecting its optimal solution. This is because if S

is an optimal solution to the above problem, then it must
satisfy fexp(S) ≥ 0, which implies c(S) ≤ B, otherwise,
we can pick ∅ as a better solution which contradicts to the
assumption that S is an optimal solution. Notice that the u-
tility function fexp(·) might take on negative values, which
renders the existing results on submodular optimization and
influence maximization ineffective.

Adaptive Seed Selection Problem
Unlike the non-adaptive setting where we select a fixed set
of seed users, an adaptive solution selects seed users sequen-
tially and adaptively, where the selection taken in each step
depends on information obtained in the previous steps. In
particular, it monitors the realized influence of the current
set of seed users, and uses this information to adjust the s-
election criteria when selecting subsequent seed users. This
can improve the outcomes of social advertising campaigns.
For instance, if an online user v has already been success-
fully influenced in an intermediate stage, selecting v itself
or v’s neighbors as seed users in subsequent rounds may be
less effective, as there may be diminishing returns to target-
ing users who have already been influenced. Instead, it may
be more beneficial to select other users who have not yet
been exposed to the campaign, or who have different char-
acteristics that could help expand the reach of the campaign
to new audiences.

While an adaptive solution can have significant advan-
tages, designing an effective adaptive solution can be ex-
tremely challenging. In adaptive settings, feasible solution-
s are no longer simple subsets, but rather complex policies
like decision trees, which specify actions based on the cur-
rent system state. These policies can have an exponentially
large search space, making it difficult to find a good solution.

We follow the framework of (Golovin and Krause 2011)
to introduce some notations. Formally, we can represen-
t any policy using a mapping function π that maps a set
of partial realizations to V: π : 2V × OV → V where
O = {Blocked,Live, ?}E denotes the set of all possi-
ble states of a user. Intuitively, a policy specifies which seed
user to select next after observing a partial realization. Con-
sider the following example for an illustration. Assume the
current observation is (u, φ(u)), i.e., u is the sole seed that is
chosen, and φ(u) denotes the resulting influence that u gen-
erates. Assume π is designed such that π({(u, φ(u))}) = w,
then π selects w as the next seed user. One is also allowed
to design a randomized policy that maps a partial realization
to a distribution of users. Since every randomized policy can
be represented as a distribution of a set of deterministic poli-
cies, we focus on deterministic policies in this paper.

Let V(π, φ) denote the set of seed users selected by π con-
ditional on a realization φ. Then the expected utility favg(π)
of a policy π can be written as

favg(π) = E[f(V(π,Φ),Φ)]

where the expectation is taken over Φ according to p(φ).
With the above notations, the adaptive seed selection prob-
lem can be formulated as follows:

max
π
{favg(π) | c (V(π, φ)) ≤ B, ∀φ : Pr[Φ = φ] > 0}.

1493



Again, one can drop the constraint from the above formu-
lation without affecting its optimal solution. We next intro-
duce some additional notations from (Golovin and Krause
2011). Given any S ⊆ V , let ψ = {φ(v) | v ∈ S} de-
note a partial realization (e.g., ψ encodes who we have se-
lected as seeds and who have been influenced by them) and
dom(ψ) = S is the domain of ψ. Given a partial realization
ψ and a realization φ, we say φ is consistent with ψ, denoted
φ ∼ ψ, if they are consistent everywhere in dom(ψ).

All missing proofs are moved to our technical report
(Tang and Yuan 2021).

Non-Adaptive Seed Selection Problem
In this section, we focus on the non-adaptive seed selection
problem and propose an algorithm that provides an approx-

imate solution with an approximation ratio of 1−e−
1
2

4 . Here,
e refers to Euler’s number, a mathematical constant with an
approximate value of 2.71828. That is, our algorithm iden-
tifies a group of seed users that can produce a revenue that

is at least a constant (e.g., 1−e−
1
2

4 ) fraction of the revenue
achieved from an optimal solution.

The rest of this section is organized as follows. We first
study a relaxed version of the non-adaptive seed selection
problem by assuming that the cost c(S∗) =

∑
e∈S∗ c(e)

of the optimal solution S∗ is known. Although the value of
c(S∗) is rarely known in practise, we start with this simpli-
fied case to make it easier to explain the idea of our approach
for solving the general problem without knowing c(S∗).

Warming Up: Seed Selection with Known c(S∗)

To facilitate our algorithm design, we first introduce a new
utility function. For any z ∈ [0, B], define l(·, z) : 2V →
R≥0 as follows:

l(S, z) = E[min{g(S,Φ), B − z}].

We first show that l(·, z) : 2V → R≥0 is monotone and
submodular for any z ∈ [0, B].

Lemma 1 For any z ∈ [0, B], l(·, z) : 2V → R≥0 is mono-
tone and submodular.

Proof: It has been proved in (Kempe, Kleinberg, and Tar-
dos 2003) that g(·, φ) is monotone and submodular for any
fixed realization φ, thus min{g(S, φ), B − z} is also mono-
tone and submodular for any z ∈ [0, B]. This is because
monotone submodular functions remain so under truncation
(Krause and Golovin 2014) , i.e., the minimum of any mono-
tone and submodular function and any constant is still mono-
tone and submodular. Moreover, because submodularity is
preserved under taking nonnegative linear combinations, we
have E[min{g(S,Φ), B−z}] is also monotone and submod-
ular for any z ∈ [0, B]. This finishes the proof of this lemma.
�

In the rest of this paper, for any x ∈ R≥0, let V(x) =
{e ∈ V | c(e) ≤ x} denote the set of users whose cost is no
larger than x. Assume c(S∗) is given, we introduce a new
optimization problem P.1 as follows.

P.1: Maximize l (S, c(S∗)) subject to:

{
S ⊆ V (c(S∗))

c(S) ≤ c(S∗)

Because l (·, c(S∗)) : 2V → R≥0 is submodular and
monotone (Lemma 1), P.1 is a classical monotone sub-
modular maximization problem subject to a knapsack con-
straint. To solve this problem efficiently, we consider two
candidate solutions. One is the singleton e∗ maximizing
l(·, c(S∗)) : 2V → R≥0 among all users in V (c(S∗)),
i.e., e∗ = arg maxe∈V(c(S∗)) l ({e}, c(S∗)), and the oth-
er one is the output from a benefit-cost greedy algorith-
m Greedy (c(S∗), c(S∗)) listed in Algorithm 1. Note that
Greedy(x, y) is presented as a general template that takes
two parameters, i.e., x and y, and this template makes it
easier to describe our solution for solving the general prob-
lem later. Intuitively, Greedy(x, y) refers to a benefit-cost
greedy algorithm that runs on a ground set V(x) using the
utility function l(·, y) subject to a knapsack constraint x. We
next describe Greedy (c(S∗), c(S∗)) in details. It starts with
iteration t = 0 and an initial solution S0 = ∅, and in each
subsequent iteration t + 1, it adds st+1 to the existing solu-
tion St, i.e., St+1 ← St ∪ {st+1}, where

st+1 = arg max
e∈V(c(S∗))\St

l (St ∪ {e}, c(S∗))− l (St, c(S∗))
c(e)

denotes the user that maximizes the benefit-cost ratio with
respect to St. This process iterates until it reaches some iter-
ation t such that c(St+1) + c(st+1) > c(S∗).

Algorithm 1: Greedy(x, y)

1: S0 = ∅, t = 0, U = V(x)
2: while U \ St 6= ∅ do
3: let st+1 denote the user e maximizing

l(St∪{e},y)−l(St,y)
c(e) among all users in U \ St

4: if c(St+1) + c(st+1) ≤ x then
5: let St+1 = St ∪ {st+1}
6: t← t+ 1
7: else
8: return St
9: return St

Let SGreedy(c(S∗),c(S∗)) denote the solution returned from
Greedy(c(S∗), c(S∗)). We next show that the better one be-
tween SGreedy(c(S∗),c(S∗)) and {e∗} achieves a 1−1/e

2 ap-
proximation ratio for our original problem.

Theorem 1 Let SGreedy(c(S∗),c(S∗)) denote the so-
lution returned from Greedy(c(S∗), c(S∗)) and
e∗ = arg maxe∈V(c(S∗)) l ({e}, c(S∗)),

max
{
fexp

(
SGreedy(c(S∗),c(S∗))

)
, fexp ({e∗})

}
≥ 1− 1/e

2
fexp(S

∗).
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Algorithm 2: Non-adaptive Seed Selection Algorithm

1: run Greedy(B2 , 0) and obtain an output SGreedy( B
2 ,0)

2: let Sphase1 = arg max
S∈{SGreedy(B

2
,0),v( B

2 ,0)}
fexp(S)

3: let Vlarge = V \ V(B2 )
4: for e ∈ Vlarge do
5: run Greedy(c(e), c(e)) and obtain an output

SGreedy(c(e),c(e))

6: let Sphase2 be the best solution in⋃
e∈Vlarge

{SGreedy(c(e),c(e)), v (c(e), c(e))}
7: return the better solution between Sphase1 and Sphase2

Solving the General Seed Selection Problem
Now we are in position to drop the assumption about know-
ing the value of c(S∗). One naive approach of dealing with
unknown c(S∗) is to try all possibilities of c(S∗). Then we
feed each “guess” to Algorithm 1 to obtain an output. At last,
we choose the output maximizing the expected utility among
all returned solutions as the final solution. This approach can
secure an approximation ratio no worse than 1−1/e

2 . Howev-
er, the number of possible values of c(S∗) is exponentially
large in terms of n, it is clearly not affordable to enumerate
all those possibilities. Perhaps surprisingly, we next show
that it is not necessary to find out the value of c(S∗), rather,
we only need to find out the cost of the “most expensive”
user in the optimal solution S∗, i.e., maxe∈S∗ c(e). This can
be done in O(n) time since there are only n possibilities
of this value. Our algorithm (Algorithm 2) is composed of
two phases. The first phase is dealing with the case when
maxe∈S∗ c(e) ≤ B

2 , i.e., the cost of the most expensive seed
from the optimal solution is no larger thanB/2, and the sec-
ond phase is used to handle the rest of the cases. At last, we
return the solution maximizing the expected utility among
all candidate outputs.

Before describing the design of our algorithm in de-
tails, we introduce some notations. For any x, y ∈ R≥0,
let v(x, y) ∈ arg maxe∈V(x) l({e}, y) denote the singleton
maximizing l(·, y) among users in V(x). Recall that for any
x ∈ R≥0, we use V(x) = {e ∈ V | c(e) ≤ x} to denote the
set of users whose cost is no larger than x, and Greedy(x, y)
(Algorithm 1) refers to a benefit-cost greedy algorithm that
runs on a ground set V(x) using the utility function l(·, y)
subject to a knapsack constraint x. Now we are ready to de-
scribe our algorithm. Our solution is composed of two phas-
es:

Phase 1 Run Greedy(B2 , 0) to obtain SGreedy( B
2 ,0). Let

Sphase1 be the better solution in {SGreedy( B
2 ,0), v(B2 , 0)}.

Phase 2 Let Vlarge = V \ V(B2 ) denote the set of all user-
s whose cost is larger than B

2 . For each e ∈ Vlarge, run
Greedy(c(e), c(e)) to obtain SGreedy(c(e),c(e)). Let Sphase2
be the best solution in⋃

e∈Vlarge

{
SGreedy(c(e),c(e)), v (c(e), c(e))

}
.

Output Return the better solution between Sphase1 and
Sphase2 as the final output.

We next analyze the approximation ratio of our algorithm.
We first present two technical lemmas. In the first lemma,
we show that if maxe∈S∗ c(e) > B

2 , i.e., the cost of the
most expensive seed from the optimal solution is larger than
B/2, then the solution returned from the second phase of
our algorithm Sphase2 is near optimal. In the second lemma,
we show that if maxe∈S∗ c(e) ≤ B

2 , , i.e., the cost of the
most expensive seed from the optimal solution is no larger
than B/2, then the solution returned from the first phase of
our algorithm Sphase1 is near optimal. Combining these two
lemmas, we are able to derive an approximation bound of
our algorithm for the original problem.

Lemma 2 If maxe∈S∗ c(e) > B
2 , then fexp(S

phase2) ≥
1−e−

1
2

2 fexp(S
∗).

Proof: Let e′ ∈ arg maxe∈S∗ c(e) denote the most expen-
sive user in the optimal solution S∗. To prove this lemma,
we first introduce a new optimization problem P.3.

P.3: Maximize l (S, c(e′)) subject to:

{
S ⊆ V(c(e′))

c(S) ≤ B

Because maxe∈S∗ c(e) ≤ c(e′), we have S∗ ⊆ V (c(e′)).
Thus, S∗ is a feasible solution to P.3. Moreover, we
have l (S∗, c(e′)) = E[min{g(S∗,Φ), B − c(e′)}] ≥
E[min{g(S∗,Φ), B − c(S∗)}] = fexp(S

∗) where the in-
equality is due to e′ ∈ S∗. Let Sp3 denote the optimal solu-
tion to P.3, then we have l

(
Sp3, c(e′)

)
≥ l (S∗, c(e′)) ≥

fexp(S
∗). To prove this lemma, it suffices to show that

fexp(S
phase2) ≥ 1−e−

1
2

2 l
(
Sp3, c(e′)

)
.

Note that because l(·, c(e′)) is monotone and submod-
ular (due to the same proof as for Lemma 1), P.3 is a
classical monotone submodular maximization problem
subject to a knapsack constraint. By abuse of notation, let
R = arg max

S∈
{
SGreedy(c(e′),c(e′)),{v(c(e′),c(e′))}

} l (S, c(e′))
denote the solution maximizing l(·, c(e′)) between
SGreedy(c(e′),c(e′)) and {v (c(e′), c(e′))}, we next show

that l (R, c(e′)) ≥ 1−e−
c(e′)
B

2 l
(
Sp2, c(e′)

)
. Consider

a “one-step-further” version Greedy+ (c(e′), c(e′)) of
Greedy (c(e′), c(e′)) which is obtained by first run-
ning Greedy (c(e′), c(e′)) then selecting one more user
according to the same greedy manner. One can verify
that Greedy+ (c(e′), c(e′)) always violates the budget
constraint c(e′) (assuming V(c(e′)) contains more than
one users to avoid trivial cases). Let SGreedy+(c(e′),c(e′))

denote the solution returned from Greedy+ (c(e′), c(e′)).
According to Theorem 21 in (Tang and Yuan 2020), if
l(·, c(e′)) is monotone and submodular, then

l
(
SGreedy+(c(e′),c(e′)), c(e′)

)
≥ (1− e−

c(e′)
B )l

(
Sp2, c(e′)

)
. (4)

1The original theorem provides a stronger result than what we
need here. I.e., they show that this result holds even under the adap-
tive setting.
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Because l(·, c(e′)) is monotone and submodular, the
marginal utility brought by the last added user in
SGreedy+(c(e′),c(e′)) is no larger than expected utility of the
best singleton v (c(e′), c(e′)). Thus,

l
(
SGreedy+(c(e′),c(e′)), c(e′)

)
(5)

≤ l
(
SGreedy(c(e′),c(e′)), c(e′)

)
+ l
(
{v(c(e′), c(e′))}, c(e′)

)
.

This implies that

l
(
R, c(e′)

)
≥
l
(
SGreedy(c(e′),c(e′)), c(e′)

)
+ l ({v(c(e′), c(e′))}, c(e′))

2

≥
l
(
SGreedy+(c(e′),c(e′)), c(e′)

)
2

≥ 1− e−
c(e′)
B

2
l
(
Sp2, c(e′)

)
. (6)

The first inequality is due to the definition of R. The sec-
ond inequality is due to (5). The third inequality is due to
(4). Then we have

l
(
R, c(e′)

)
≥ 1− e−

c(e′)
B

2
l
(
Sp2, c(e′)

)
≥ 1− e−

1
2

2
l
(
Sp2, c(e′)

)
. (7)

The second inequality is due to c(e′) > B
2 .

Second, due to c (v(c(e′), c(e′))) ≤ c(e′),
which is because v(c(e′), c(e′)) ∈ V(c(e′)),
and c(SGreedy(c(e′),c(e′))) ≤ c(e′), which is be-
cause of the design of Greedy (c(e′), c(e′)), we
have B − c (v(c(e′), c(e′))) ≥ B − c(S∗) and
B − c(SGreedy(c(e′),c(e′))) ≥ B − c(S∗). Thus,

B − c(R) ≥ B − c(S∗). (8)

Inequalities (7) and (8) imply that fexp(R) =
E[min{g(R,Φ), B − c(R)}] ≥ E[min{g(R,Φ), B −
c(S∗)}] = l (R, c(e′)) ≥ 1−e−

1
2

2 l
(
Sp3, c(e′)

)
. Note that

SGreedy(c(e′),c(e′)) and {v(c(e′), c(e′))} are two of the solu-
tions considered in Phase 2 for its output Sphase2. Thus, we

have fexp(Sphase2) ≥ fexp(R) ≥ 1−e−
1
2

2 l
(
Sp3, c(e′)

)
. �

Lemma 3 If maxe∈S∗ c(e) ≤ B
2 , then fexp(S

phase1) ≥
1−e−

1
2

4 fexp(S
∗).

Proof: To prove this lemma, we first introduce a new opti-
mization problem P.2.

P.2: Maximize l(S, 0) subject to:

{
S ⊆ V(B

2
)

c(S) ≤ B

If maxe∈S∗ c(e) ≤ B
2 , i.e., the cost of every seed in S∗

is no larger than B/2, then we have S∗ ∈ V(B2 ). It fol-
lows that S∗ is a feasible solution to P.2. Moreover, we have
l(S∗, 0) = E[min{g(S∗,Φ), B}] ≥ E[min{g(S∗,Φ), B −
c(S∗)}] = fexp(S

∗). Let Sp2 denote the optimal so-
lution to P.2, then we have l(Sp2, 0) ≥ l(S∗, 0) ≥
fexp(S

∗) where the first inequality is due to Sp2 is the
optimal solution to P.2 and S∗ is a feasible solution
to P.2. To prove this lemma, it suffices to show that

fexp(S
phase1) ≥ 1−e−

1
2

4 l(Sp2, 0) which is equivalent to

showing that max
{
fexp(S

Greedy( B
2 ,0)), fexp

(
v(B2 , 0)

)}
≥

1−e−
1
2

4 l(Sp2, 0).
By abuse of notation, let R =

arg max
S∈
{
SGreedy(B

2
,0),{v( B

2 ,0)}
} l(S, 0) denote the so-

lution maximizing l(·, 0) between SGreedy( B
2 ,0) and

{v(B2 , 0)}. Note that because l(·, 0) is monotone and
submodular (due to the same proof as for Lemma 1), P.2
is a classical monotone submodular maximization problem
subject to a knapsack constraint. With the same proof as for
(7), we can show that

l(R, 0) ≥ 1− e− 1
2

2
l(Sp2, 0). (9)

Second, due to c
(
v(B2 , 0)

)
≤ B

2 , which is because
v(B2 , 0) ∈ V(B2 ), and c(SGreedy( B

2 ,0)) ≤ B
2 , which is

because of the design of Greedy(B2 , 0), we have B −
c
(
v(B2 , 0)

)
≥ B − B

2 and B − c(SGreedy( B
2 ,0)) ≥ B − B

2 .
Thus,

B − c(R) ≥ B − B

2
=
B

2
. (10)

Then we have fexp(R) = E[min{g(R,Φ), B −
c(R)}] ≥ E[min{g(R,Φ), B2 }] ≥

1
2E[min{g(R,Φ), B}] =

1
2 l(R, 0) ≥ 1−e−

1
2

4 l(Sp2, 0) where the first inequality is due
to (10) and the second inequality is due to (9). �

Lemma 3 and Lemma 2 together imply that

max{fexp(Sphase1), fexp(S
phase2)} ≥ 1−e−

1
2

4 fexp(S
∗).

Thus, we have the following main theorem.

Theorem 2 Algorithm 2 achieves a 1−e−
1
2

4 approximation
ratio for the non-adaptive seed selection problem.

Adaptive Seed Selection Problem
In this section, we study the seed selection problem un-

der the adaptive setting. It was worth noting that our objec-
tive function defined in (2) is non-monotone and it might
take on negative values. This makes most of existing studies
(Golovin and Krause 2011) on monotone adaptive submodu-
lar maximization not applicable to our setting. Our key find-
ing is an adaptive policy that attains an approximation ratio

of 1−e−
1
2

4 against the optimal adaptive policy, assuming the
cost of the costliest user is no larger than half of the total
budget (e.g., B/2).
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Algorithm 3: Greedy Policy π1

1: t = 0;S0 = ∅;ψ0 = ∅;U = V .
2: while U \ St 6= ∅ do
3: let st+1 = arg maxe∈U\St

∆h(·,·,0)(e|ψt)

c(e) ;
4: if c(st+1) + c(St) ≤ C then
5: St+1 ← St ∪ {et+1}
6: ψt+1 ← ψt ∪ {(st+1,Φ(st+1))};
7: t← t+ 1;
8: else
9: return St

10: return St

Before presenting our adaptive policy, we first introduce
some additional notations. Given any number z ∈ [0, B],
define h(·, ·, z) : 2V ×OV → R≥0 as follows:

h(S, φ, z) = min{g(S, φ), B − z}
And the expected utility havg(π, z) of a policy π under

h(·, ·, z) is defined as

havg(π, z) = E[h(V(π,Φ),Φ, z)]

= E[min{g(V(π,Φ),Φ), B − z}].

For any z ∈ [0, B] and partial realization ψ, let
∆h(·,·,z)(e | ψ) denote the marginal utility of e on top of
ψ under h(·, ·, z), i.e.,

∆h(·,·,z)(e | ψ)

= EΦ∼ψ[h(dom(ψ) ∪ {e},Φ, z)]
−EΦ∼ψ[h(dom(ψ),Φ, z)].

Let e denote the most expensive user in V , i.e., e ∈
arg maxe∈V c(e). Let C = max{c(e), B2 }. Now we are
ready to introduce our Adaptive Seed Selection Policy πs.

Design of Adaptive Seed Selection Policy πs. The design
of πs involves two candidate policies: π1 and π2. And πs
samples a policy uniformly at random from {π1, π2}. Thus,
the expected utility favg(π

s) of πs can be represented as

favg(π
s) =

favg(π1)+favg(π2)
2 . We next describe the design

of π1 and π2 in details.
• Design of π1. The first candidate π1 (Algorithm 3) is

an adaptive version of benefit-cost greedy algorithm p-
resented in the earlier section. π1 starts with t = 0, an
initial solution S0 = ∅ and an initial partial realization
ψ0 = ∅. In each iteration t+1, it adds st+1 to the current
solution St. i.e., St+1 ← St ∪ {st+1}, where

st+1 = arg max
e∈U\St

∆h(·,·,0)(e | ψt)
c(e)

is the user maximizing the benefit-cost ratio with re-
spect to the current observation ψt under h(·, ·, 0).
Then we update the observation using ψt+1 ← ψt ∪
{(st+1,Φ(st+1))} and enter the next iteration. This pro-
cess iterates until it reaches some iteration t such that
c(St+1) + c(st+1) > C. Recall that C = max{c(e), B2 }.

• Design of π2. The second candidate π2 simply returns
the singleton e that maximizes favg({e}).

Performance Analysis Now we are ready to give a per-
formance bound of πs.

Theorem 3 Let C = max{c(e), B2 } and κ = min{ 1
2 , 1 −

C
B }, and let π∗ denote the optimal policy for the
adaptive seed selection problem, we have favg(π

s) ≥
κ 1−e−

C
B

2 favg(π
∗).

Notice that when c(e) ≤ B
2 , i.e., the cost of the most ex-

pensive user is no larger than B/2, we have C = B/2 and
κ = 1/2. In this case, the above approximation ratio is lower

bounded by 1−e−
1
2

4 .

Performance Evaluation
In this section, we conduct experiments to evaluate the per-
formance of our proposed algorithms. The performance of
considered algorithms is evaluated in terms of their revenue,
seeding costs and rate of return. All algorithms are imple-
mented using Java and all experiments are run on a Linux
server with Intel Xeon 2.40GHz CPU and 128GB memory.

Experimental Setting
Datasets. We run our experiments on four large-scale bench-
mark social networks: Wikivote, NetHEPT, NetPHY and
Epinions (http://snap.stanford.edu/data/). We capture each
social network by a directed weighted graph. Wikivote
dataset captures 103, 663 votes cast by 7, 066 active par-
ticipants in Wikipedia’s electoral processes. Each node in
this network represents a user, with edges indicating vot-
ing connections between users. NetHEPT is sourced from
arXiv’s High Energy Physics Theory section, featuring
15, 233 nodes representing authors. The network encom-
passes 62, 774 edges, symbolizing papers co-authored by
pairs of authors. NetPHY, also sourced from arXiv, orig-
inates from the Physics section and comprises 37, 154 n-
odes and 231, 584 edges, representing collaborative efforts
among authors. Epinion stands as a trust network from Epin-
ions.com, encompassing 75, 879 users represented as nodes
and 508, 837 trust relationships represented as edges.

Seed Incentive Models. We use three seed incentive
models (i.e., node seeding cost models) in our experiments.
As discussed in previous section, gexp({v}) denotes the
number of expected engagements generated by node v ∈ V
and is called the (expected) spread of v. Given a fixed con-
stant α > 0 and any node v, these models set the cost of
node v as follows:

• Natural Log incentive model: the cost of v is proportional
to the natural log of three times of its influence spread,
i.e., c(v) = α · ln(3 · gexp({v})). By taking three times
of a node’s expected spread, we make sure the cost of
isolated nodes in the network is not zero.

• Linear incentive model: the cost of v is proportional to
its influence spread, i.e., c(v) = α · gexp({v}).

• Random incentive model: the cost of v is randomly sam-
pled from a continuous uniform distribution U(0, 10).

1497



Figure 3: ASSA achieves superior revenue with the lowest seeding cost among all four algorithms under the natural log incentive
model.

Algorithms. We evaluate the performance of the follow-
ing four algorithms under various parameter settings: Non-
adaptive Seed Selection Algorithm (NASSA for short, Al-
gorithm 2), Adaptive Seed Selection Algorithm (ASSA for
short, πs), along with two benchmarks for comparison pur-
pose. We implement Myopic algorithm (Aslay et al. 2016)
as our non-adaptive benchmark. Myopic first calculates the
sum of a node’s cost and its expected spread for each node
in the network, as a criteria to rule out unqualified nodes.
Then it forms a candidate set with all nodes with above val-
ue less than or equal to the total budget B. It then runs on
this candidate set and iteratively selects a seed node with the
largest marginal expected spread to total cost ratio, until the
sum of the seed set’s cost and its expected spread exceeds
B. Here the total cost of a node is calculated as the sum of
the node’s cost and its marginal expected spread. It is worth
noting that Myopic does not allow to offer any free impres-
sions to the advertiser, this is in sharp contrast to our design,
which allows for free-riding. We also implement Adaptive
Myopic algorithm (AMyopic for short), an adaptive version
of Myopic, as our adaptive benchmark. AMyopic iterative-
ly selects a seed node with the largest conditional marginal
utility to total cost ratio. Here we measure the conditional
marginal utility of a node as the expected increase in influ-
ence size based on the realized influence of the current seed
set. The total cost of a node is calculated as the sum of the n-
ode’s cost and its conditional marginal utility. AMyopic runs

until the total cost of the seed set exceeds the budget. Here
the total cost of a seed set is calculated as the sum of its cost
and its conditional expected spread.

Parameter Settings. In our experiments, we adopt the In-
dependent Cascade model as diffusion model and assign an
influence probability of p = 0.05 to each edge. We set the
budget B = 500 for Wikivote and NetHEPT, B = 1000
for NetPHY, and B = 2000 for Epinions, respectively. We
measure the revenue of NASSA and Myopic by running 105

Monte Carlo simulations, generated independently of the
considered algorithms. For ASSA, we measure the condi-
tional marginal utility as the expected increase in revenue
based on observations of the actual influence spread of the
current seed set. For AMyopic, we measure the condition-
al marginal utility as the expected increase in influence size
based on the realized influence triggered by the current seed
set.

Experimental Results
General Comparisons. In this section, we compare the
algorithms under different node cost models on all datasets.
We measure the performance of the algorithms in terms of
their revenue, seeding costs and size of seed set with respect
to changes in the value of α. Note that increasing α under a
fixed budget has a similar impact as decreasing budget with
a fixed α. They both impose a tighter budget for selecting
the seed set. Due to space limitation and the results being
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Figure 4: NASSA produces seed sets that generate high spread on all samples, leading to a higher expected revenue; while
Myopic produces seed sets with more scattered spread on different samples, leading to a lower expected revenue.

Figure 5: ASSA achieves superior revenue with the lowest seeding cost among all four algorithms under the linear incentive
model.

similar for datasets NetHEPT and NetPHY, we report the re-
sults on Wikivote, NetPHY and Epinions for all algorithms

under the natural log incentive model (Figure 3) and the lin-
ear incentive model (Figure 5). We report the results on all
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Dataset Algorithm Seeding Cost Seedset Size RoR Exp. Revenue

Wikivote

ASSA 5.3252 1 2.1041 494.6747
NASSA 5.3252 1 2.1041 494.6747

AMyopic 0.1452 2 0.9126 224.6579
Myopic 0.1489 2 0.8921 215.7456

NetHEPT

ASSA 22.9150 143 0.956 477.0849
NASSA 37.3939 243 0.9027 450.3408

AMyopic 33.8678 176 0.9460 454.9986
Myopic 59.3261 191 0.9032 402.8399

NetPHY

ASSA 32.1797 205 0.968 967.8202
NASSA 49.1644 343 0.9193 927.3450

AMyopic 44.5829 232 0.9629 932.3742
Myopic 87.9435 237 0.9199 879.3034

Epinions

ASSA 150.7687 1003 0.9314 1861.2253
NASSA 174.9430 1138 0.9155 1817.3458

AMyopic 172.1141 1019 0.9211 1819.7628
Myopic 195.5282 1024 0.9168 1642.4061

Table 1: Performance under Random Cost Model

four datasets under the random cost model in Table 1.
As shown in Figure 3(a)-(c), the revenue generated by

the algorithms decreases as α increases on all datasets. For
Wikivote, we observe that under natural log incentive model,
all algorithms output a seedset of a single node on Wikivote,
as shown in Figure 3(g). We find that Wikivote has a relative-
ly dense network structure, where a single node can trigger
a large number of engagements (even over the budget) in
the network. In this case, ASSA selects the same single n-
ode as NASSA does, no observations of actual spread will
be made since the budget is exhausted (by the engagements
triggered) after the first node has been selected. Therefore,
ASSA and NASSA yield the same revenue and seeding cost.
On the other hand, Myopic and AMyopic select a different
single node, since they rule out the nodes, whose expected
spread is over the budget, from the candidate set at the very
beginning. Then they select a node with the highest expect-
ed spread to total cost ratio from the reduced candidate set.
It shows in Figure 3(a) that ASSA and NASSA outperform
the benchmarks on Wikivote. While the benchmarks yield
an expected revenue around 190, ASSA and NASSA both
yield an expected revenue over 490, a 157% increase. The
increase of α leads to a slightly higher node cost, resulting
in a subtle decrease in the revenue. This result validates the
superiority of our proposed algorithms over the benchmarks.

To reveal the details behind the superiority of our ap-
proaches, we plot in Figure 4 the spread yielded by NASSA
and Myopic, respectively, on 200 samples randomly selected
from the 105 Monte Carlo simulations on different dataset-
s. Note that in the figures we also include the data points
with maximum and minimum spread from all 105 simula-
tions. We abbreviate the natural log node cost model, linear
node cost model and random node cost model as cm1, cm2
and cm3, respectively. Figure 4(a) illustrates the results on
Wikivote under natural log node cost model with α = 0.5.

We observe that while NASSA outputs a seed node that trig-
gers around 1000 engagements on all samples, the seed node
produced by Myopic yields very low engagements in some
samples. This is because NASSA selects a node that triggers
a large spread on each sample φ ∈ Φ, by maximizing the
expected value of min{g(S,Φ), B − c(S)}. Myopic, how-
ever, selects a node with the highest expected spread on all
samples without looking into spread on each individual sam-
ple. The low engagements on those individual samples are
the culprit of the low overall revenue. Figure 4(b)-(d) plot
the spread on NetHEPT under three node cost models with
α = 1 for cm1 and cm2. We observe similar patterns on the
structure of NASSA and Myopic on these datasets. In partic-
ular, the spread triggered by the seed set of Myopic is more
scattered than that of NASSA, leading to a lower yielded
revenue. This result validates the efficacy of our approaches
on selecting high-quality seed nodes that yield high spread
among all samples, leading to an improved revenue.

We illustrate in Figure 3(b) and (c) the expected revenue
yielded by all four algorithms on NetPHY and Epinion-
s. We observe that ASSA outperforms the adaptive bench-
mark AMyopic, and the performance gap becomes larger
as the cost of nodes increases. In our experiments, we ob-
serve that ASSA outperforms its non-adaptive counterpart
NASSA on all datasets. Moreover, NASSA outperforms the
non-adaptive benchmark Myopic by at least 20% in terms of
expected revenue under all test settings. This result confirms
the effectiveness of our proposed algorithms. It also vali-
dates the power of adaptiveness in selecting a high quality
set of seed nodes to maximize the revenue.

Figure 3(d)-(f) present the results on the seeding cost pro-
duced by all algorithms on different datasets with respect
to changes in the value of α. As expected, as α increases,
the seeding cost increases accordingly. We observe that AS-
SA achieves superior revenue with the lowest seeding cost
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among all four algorithms. It verifies that ASSA performs
the best on allocating the budget for seeding and generat-
ed engagements for revenue maximization. Figure 3(g)-(i)
illustrate the results on the size of seed set produced by all
algorithms with respect to changes in the value of α. As ex-
pected, as α increases, the size of seed set decreases. We ob-
serve that among all four algorithms, ASSA yields the high-
est revenue with the smallest seed set. This again shows the
superiority of ASSA on selecting high-quality seed nodes
for revenue maximization.

We report our results under the linear incentive model in
Figure 5. We observe similar patterns on the structure of the
algorithms. In particular, ASSA outperforms the adaptive
benchmark AMyopic and its non-adaptive counterpart NAS-
SA in terms of yielded revenue on all datasets. Moreover,
NASSA outperforms the non-adaptive benchmark Myopic
by at least 20% in terms of revenue under all test settings.
Furthermore, we report our results under the random incen-
tive model in Table 1. We define the rate of return (RoR) of a
seedset S as gexp(S)/B. The value of RoR captures the lev-
el of profitability from the advertisers’ perspective. A higher
RoR indicates that the corresponding algorithm generates a
larger number of user engagement in expectation, ie. more
profitable for the advertisers. Again, we observe that AS-
SA achieves higher revenue and higher RoR on all datasets
compared with AMyopic and NASSA. We also observe that
ASSA and NASSA both convert over 90% of the budget into
revenue on all datasets.
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the spread of influence through a social network. In Proceed-
ings of the ninth ACM SIGKDD international conference on
Knowledge discovery and data mining, 137–146.
Krause, A.; and Golovin, D. 2014. Submodular function
maximization. Tractability, 3: 71–104.
Nemhauser, G. L.; Wolsey, L. A.; and Fisher, M. L. 1978. An
analysis of approximations for maximizing submodular set
functions-I. Mathematical programming, 14(1): 265–294.
Savage, S.; Monroy-Hernandez, A.; and Höllerer, T. 2016.
Botivist: Calling volunteers to action using online bots. In
Proceedings of the 19th ACM Conference on Computer-
Supported Cooperative Work & Social Computing, 813–
822.
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