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Abstract
A fundamental issue in healthcare misinformation detection
is the lack of timely resources (e.g., medical knowledge,
annotated data), making it challenging to accurately detect
emergent healthcare misinformation at an early stage. In this
paper, we develop a crowdsourcing-based early healthcare
misinformation detection framework that jointly exploits the
medical expertise of expert crowd workers and adapts the
medical knowledge from a source domain (e.g., COVID-19)
to detect misleading posts in an emergent target domain (e.g.,
Mpox, Polio). Two important challenges exist in develop-
ing our solution: (i) How to leverage the complex and noisy
knowledge from the source domain to facilitate the detection
of misinformation in the target domain? (ii) How to effec-
tively utilize the limited amount of expert workers to correct
the inapplicable knowledge facts in the source domain and
adapt the corrected facts to examine the truthfulness of the
posts in the emergent target domain? To address these chal-
lenges, we develop CrowdAdapt, a crowdsourcing-based do-
main adaptive approach that effectively identifies and adapts
relevant knowledge facts from the source domain to accu-
rately detect misinformation in the target domain. Evaluation
results from two real-world case studies demonstrate the su-
periority of CrowdAdapt over state-of-the-art baselines in ac-
curately detecting emergent healthcare misinformation.

Introduction
With the ubiquity of digital content and the proliferation
of social networks, the far-reaching spread of misinforma-
tion on social media has become a severe societal issue
and raised wide public concerns (Zhou and Zafarani 2020).
Among diverse domains of misinformation, healthcare mis-
information is a critical category that has caused serious so-
cietal impacts by threatening the health and well-being of the
general public and undermining the trustworthiness of mass
media (Kou et al. 2022b). A fundamental issue in health-
care misinformation is the early detection of misinformation
in an emergent healthcare domain, such as the recent out-
break of Mpox (or Monkeypox) and Polio, due to the lack
of timely resources (e.g., up-to-date medical knowledge, an-
notated data). Specifically, an emergent healthcare domain
refers to an emerging health event/topic (e.g., disease out-
break, food safety incident) that requires prompt responses
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and immediate actions (Shang et al. 2022b). In addition, the
discrepancy between different healthcare domains can lead
to degraded model performance when a misinformation de-
tector is directly applied to an emergent domain different
from the source domain it was trained in (Zhang et al. 2020).
In this paper, we study the problem of domain adaptive early
healthcare misinformation detection, where the goal is to ex-
plore the domain discrepancy between different healthcare
domains and detect emergent misinformation. The outcome
of our study can be adopted by healthcare agencies (e.g.,
Department of Public Health) and social media platforms to
take timely response actions (e.g., providing precautionary
information to the public) to help healthcare stakeholders
and online users make well-informed healthcare decisions.

With the advanced information processing ability in ma-
chine learning and deep learning, existing healthcare mis-
information detection models can achieve reasonable per-
formance (Zhou and Zafarani 2020). However, these so-
lutions often rely on complex model architectures and a
large amount of well-annotated training samples to learn
useful features and patterns for identifying misinforma-
tion (Weinzierl and Harabagiu 2021). Thus, it is impracti-
cal for such solutions to detect misinformation in an emer-
gent healthcare domain that often lacks ground-truth la-
bels. Moreover, a few recent knowledge-driven solutions
also incorporate healthcare-related knowledge facts (i.e., en-
tities and their relations) from medical documents (e.g.,
medical research publications and fact-checking articles) in
a specific domain to improve the healthcare misinforma-
tion detection performance (Kou et al. 2022a). While such
knowledge-driven approaches can complement the lack of
medical knowledge, they are inadequate for detecting mis-
information in an emergent healthcare domain that not only
lacks medical documents but also presents a certain domain
discrepancy with other domains. Therefore, the early detec-
tion of emergent healthcare misinformation remains a chal-
lenging problem.

In this paper, we propose a knowledge-based domain
adaptive solution to detect misinformation in an emergent
healthcare domain. While some emergent healthcare do-
mains, such as the recent outbreaks of Mpox and Polio, are
related to known pathogens (e.g., poxvirus, poliovirus), we
observe that the misinformation from such emergent health-
care domains is often more relevant to the recent news/infor-
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Figure 1: Domain Adaptive Emergent Healthcare Misinfor-
mation Detection

mation than the historical resources about the disease. For
example, a popular misleading post about Mpox claims that
“the Monkeypox disease is from the chimpanzee adenovirus
used in the COVID vaccine.” Such kind of misinformation
cannot be identified with the resources in the Mpox literature
that were obtained before the COVID-19 pandemic. Moti-
vated by the above observation, our work aims to leverage
the rich and timely resources (e.g., annotated data, medical
reports) from a relevant healthcare domain (e.g., COVID-
19) to identify misinformation in an emergent healthcare do-
main. Figure 1 shows an example of the domain adaptive
emergent healthcare misinformation detection problem. In
particular, we develop a crowdsourcing-based strategy to ex-
plore the medical knowledge of expert workers (i.e., crowd
workers with medical expertise) to adapt the abundant re-
sources from a source domain (i.e., the healthcare domain
with sufficient annotated data and medical knowledge) to
detect misleading posts in an emergent target domain (i.e.,
the healthcare domain that is short of annotated data and
medical knowledge). However, two important challenges are
identified in developing our solution.

Complex and Noisy Knowledge in Source Domain.
A source domain (e.g., COVID-19) often contains a large
amount of literature resource (e.g., research publications,
fact-checking articles) from which the knowledge facts can
be extracted for misinformation detection (Cui et al. 2020).
A straightforward solution is to directly use the knowledge
facts from the source domain to detect misinformation in
the target domain. However, such a solution often ignores
the complex nature of knowledge facts in the source do-
main, which often contains many knowledge facts that are
irrelevant to the target domain. For example, the knowl-
edge facts extracted from fact-checking articles often con-
tain many non-medical entities, such as “5G network” and
“RFID chip” in Figure 1(a), that are often irrelevant to med-
ical science and are rarely seen in misinformation from the
domains other than COVID-19. Such irrelevant knowledge
facts can be of little help in detecting misinformation in the
target domain. Thus, the first challenge is how to leverage
complex and noisy knowledge facts from the source domain

to facilitate misinformation detection in the target domain.
Inapplicable Knowledge from Source to Target Do-

main. While some knowledge facts from the source domain
can be generalized to identify misinformation in the target
domain, there often exists a non-trivial amount of knowl-
edge facts in the source domain that are relevant but inappli-
cable to the target domain. For example, “vaccine” not contain−−−−−→
“live DNA virus” (Figure 1(a)) is a widely accepted knowl-
edge fact in the source domain of COVID-19. However, the
knowledge fact is inapplicable to the target domain of Mpox,
where the vaccine does contain live vaccinia virus (a DNA
virus) that can cause serious vaccine adverse events among
people with immunocompromising conditions. Such inap-
plicable knowledge facts have to be identified and corrected
to detect misinformation in the target domain. However, it
often requires expertise from medical experts to fully exam-
ine the inconsistency of knowledge facts between different
domains, which is both labor-intensive and time-consuming
(Kou et al. 2022a). Therefore, the second challenge to be
addressed is how to efficiently utilize the limited amount of
domain experts to correct inapplicable knowledge facts in
the source domain and adapt the corrected facts to examine
the truthfulness of posts in the target domain.

To address the above challenges, we develop Crow-
dAdapt, a novel crowdsourcing-based domain adaptive ap-
proach that effectively identifies and adapts relevant knowl-
edge facts from the source healthcare domain to accurately
detect misinformation in the emergent target healthcare do-
main. To address the first challenge, we design a context-
driven knowledge fact extraction module to explicitly iden-
tify the relevant knowledge facts from the rich yet noisy
knowledge facts in the source domain. To address the sec-
ond challenge, we develop a consistency-aware knowledge
updating strategy that incorporates the expertise of medi-
cal experts to adapt the knowledge facts in the source do-
main for detecting misinformation in the emergent target do-
main. To the best of our knowledge, CrowdAdapt is the first
crowdsourcing-based domain adaptive solution for early
healthcare misinformation detection in the emergent health-
care domain. The proposed CrowdAdapt can be further ap-
plied to a broader range of emerging domains (e.g., envi-
ronment, drugs, criminal events) towards the early detection
of misinformation on social media. We evaluate the perfor-
mance of the CrowdAdapt framework using two real-world
domain adaption case studies by leveraging the resources in
the domain of COVID-19 (i.e., source domain) to detect mis-
information in Mpox and Polio (i.e., target domains). Eval-
uation results demonstrate the superiority of CrowdAdapt
over the state-of-the-art baselines in accurately detecting
emergent healthcare misinformation.

Related Work
Healthcare Misinformation. A significant amount of ef-
forts have been made to tackle the problem of health mis-
information detection (Zhou and Zafarani 2020; Shang et al.
2021). For example, Cui et al. leveraged the co-attention
mechanism to retrieve relevant information from a medi-
cal knowledge base to identify misinformation related to
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cancer and diabetes (Cui et al. 2020). Weinzierl et al. uti-
lized a domain-specific language model to detect COVID-
19 vaccine misinformation on social media (Weinzierl and
Harabagiu 2021). A fundamental limitation of existing
healthcare misinformation detection solutions is that they
mainly rely on a sufficient amount of ground-truth labels to
supervise the training of an effective misinformation classi-
fication model. Therefore, such approaches often fall short
of detecting emergent healthcare misinformation due to the
lack of timely ground truth labels. In this paper, we present
CrowdAdapt, a domain adaptive emergent healthcare misin-
formation detection solution that explores the domain dis-
crepancy between different domains to adapt annotated data
and medical knowledge in the source domain for detecting
healthcare misinformation in the emergent target domain.

Domain Adaptation. Domain adaptation is a new learn-
ing technique that has recently been applied to mitigate the
domain discrepancy issue in misinformation detection (Yue
et al. 2023; Zeng et al. 2024). For example, Zhang et al, pro-
posed a BERT-based domain adaptative model that designs
a domain classifier to detect multimodal fake news in dif-
ferent domains (Zhang et al. 2020). Yue et al. developed a
contrastive learning based misinformation detection frame-
work by generating the pseudo-labels of the data in the tar-
get domain to improve the domain adaptation performance
(Yue et al. 2022). These solutions mainly focus on captur-
ing the domain shift between the source and target domains
to reduce the model’s reliance on the annotated target data.
However, such solutions largely ignore the domain discrep-
ancy of the knowledge facts associated with the posts, which
is particularly important for detecting healthcare misinfor-
mation. To address such a limitation, CrowdAdapt develops
a knowledge-driven domain adaptation mechanism to effec-
tively incorporate medical knowledge facts for the early de-
tection of emergent healthcare misinformation.

Crowdsourcing Knowledge Graph. Recent advances
in crowdsourcing have been applied to facilitate the con-
struction and modeling of knowledge graphs (Shang et al.
2022a). For example, Li et al. proposed a domain knowl-
edge graph construction methodology that leverages the
crowdsourcing efforts and text mining techniques to jointly
construct an E-commerce knowledge graph for explain-
able product recommendation in online shopping (Li et al.
2020). Al-Khatib et al. designed an argumentation knowl-
edge graph approach that acquires argumentation-based an-
notations from crowd workers to assist argumentative ques-
tion answering (Al-Khatib et al. 2020). However, existing
crowdsourcing knowledge graph solutions often assume a
sufficient amount of resources (e.g., research publications,
medical articles) can be leveraged to extract knowledge
facts and construct the knowledge graph for the downstream
tasks. Therefore, these solutions cannot be directly applied
to obtain the medical knowledge for detecting misinforma-
tion in an emergent domain where a very limited amount
of knowledge resources (e.g., research publications, fact-
checking articles) is available. In contrast, CrowdAdapt de-
signs a crowdsourcing-based knowledge-updating strategy
that leverages the medical knowledge from expert workers
to update and adapt knowledge facts in the source domain to

effectively detect misinformation in the target domain.

Problem Statement
The problem of domain adaptive healthcare misinformation
detection aims at adapting a misinformation classification
model learned from the training data in the source domain
to detect emergent healthcare misinformation in a target do-
main. We first introduce a few key concepts in the prob-
lem statement and formally formulate the domain adaptive
healthcare misinformation detection problem.

Definition 1 Domain (d): A domain d is defined as a
healthcare topic of interest (e.g., COVID-19, Mpox). In par-
ticular, we consider two types of domains in our study:

• Source Domain (d = s): a high-resource domain with
adequate annotated data and medical knowledge.

• Target Domain (d = t): a low-resource domain often re-
lated to an emergent healthcare topic where very limited
annotated data and medical knowledge are available.

Definition 2 Post (p): A post p is defined as a piece of
text (e.g., “COVID-19 vaccine alters DNA” in Figure 1)
where the depicted content is relevant to a healthcare do-
main (e.g., COVID-19). Specifically, we denote Ps =
{ps1, ps2, · · · , psM} and Pt = {pt1, pt2, · · · , ptN} to be the sets
of source posts and target posts from the source domain s
and target domain t, respectively.

Definition 3 Source Article (l): A source article l ∈ L
refers to an online article that is related to the source do-
main (i.e., COVID-19). In our study, we mainly focus on two
types of source articles, including the news articles that are
collected from credible online news publishers (e.g., CDC,
Mayo Clinic), and fact-checking articles from fact-checking
organizations (e.g., FactCheck.org, Politifact).

Definition 4 Ground-truth Label (y): We define the
ground-truth label yp of each post p ∈ Ps ∪ Pt as a binary
label (i.e., yp ∈ {0, 1}). Specifically, a post p is misleading
(i.e., yp = 0) if it contains entirely or partially false or un-
verified information which may contribute to both imminent
and long-term harm to public health and safety (Wang et al.
2019). Otherwise, the post is considered as non-misleading
(yp = 1). We also denote Ys and Yt as ground-truth labels
for posts in Ps and Pt, respectively.

Definition 5 Crowdsourcing Platform (C): A crowd-
sourcing platform refers to an online platform where re-
questers can request various services from crowd workers
with diversified expertise via compensated crowdsourcing
tasks (Turk 2016).

Definition 6 Expert Workers: The expert workers are the
group of crowd workers who are verified by the crowdsourc-
ing platform to have professional healthcare knowledge and
are capable of crowdsourcing tasks that require healthcare
expertise. We will introduce the details of the crowdsourc-
ing task in the next section.

The goal of our crowdsourcing-based domain adaptive
healthcare misinformation detection problem is to optimize
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the misinformation detection performance on the target do-
main by leveraging the collaborative efforts from the crowd-
sourcing platform C, annotated source posts (Ps, Ys) and
source articles L. Formally, our problem is formulated as
an adaptive binary classification problem that classifies each
post in the target domain (ptn ∈ Pt) into two categories (i.e.,
misleading or non-misleading) with the objective:

argmax
ŷt
n

Pr(ŷtn = ytn|Ps, Pt, Ys, L, C), ∀1 ≤ n ≤ N (1)

where ytn and ŷtn are the ground-truth and estimated label of
the target post ptn, respectively.

Solution
An overview of the CrowdAdapt framework is shown in Fig-
ure 2. In particular, CrowdAdapt consists of three main mod-
ules: 1) a Graph-based Knowledge Encoder (GKE) mod-
ule that constructs a graph-based medical knowledge infor-
mation network to explicitly model the medical knowledge
facts and extract the useful knowledge facts related to the
posts from different domains; 2) a Domain-invariant Repre-
sentation Learning (DRL) module that aims to jointly learn
the domain-invariant representation of the posts and their
relevant knowledge facts extracted by the GKE module;
and 3) a Crowdsourcing-based Knowledge Updater (CKU)
module that incorporates the medical expertise from expert
workers to verify and correct the uncertain medical knowl-
edge facts extracted from GKE and accurately detect mis-
leading posts in the target domain.

Figure 2: Overview of the CrowdAdapt Framework

Graph-based Knowledge Encoder
The graph-based knowledge encoder module designs a
graph-based knowledge information network to explicitly
explore the relationship between different healthcare-related
entities and extract useful healthcare knowledge facts that
are relevant to the posts from a given domain. We observe
that existing domain adaptive misinformation detection so-
lutions mainly focus on leveraging the data annotations (i.e.,
labeled posts) in the source domain to reduce the model’s re-
liance on the data annotations in the target domain (Li et al.

2021; Zhang et al. 2020). However, such solutions largely
ignore the healthcare knowledge facts associated with the
posts, which is particularly important for identifying mis-
leading posts in emergent healthcare domains. Therefore, to
mitigate such a limitation, we develop a graph-based medi-
cal knowledge information network to explicitly extract the
medical knowledge information from the widely available
articles in the source domain (i.e., source articles) to facil-
itate the detection of misinformation in the target domain.
We first define the medical knowledge information network
(MKIN) as follows.

Definition 7 Medical Knowledge Information Network:
We define the medical knowledge information network as a
direct graph G = {V, E}, where V and E refer to the nodes
and edges that are defined below, respectively.

Definition 8 Node: We define a node v as a semantic entity
(e.g., “vaccine” in Figure 2) that is extracted from a source
article. In particular, we denote a set of N nodes as V =
{v1, v2, · · · , vN}.

Definition 9 Edge: We define an edge e as the semantic re-
lation between a pair of relevant nodes in MKIN. Specif-
ically, we consider two types of edges in our study, i.e.,
e ∈ {e+, e−}, where e+ represent the “positive” relation
between a pair of entities (e.g., the “contain” relation be-
tween “vaccine” and “mRNA” in Figure 2) and e− represent
the “negative” relation between a pair of entities (e.g., the
“not spread” relation between “5G network” and “COVID-
19” in Figure 2). We denote a set of M edges in MKIN as
E = {e1, e2, · · · , eM}. In addition, we also define two bi-
nary adjacency matrices A+ and A− to explicitly indicate
the pairwise positive and negative relations of all nodes in
G, respectively. In particular, A+

i,j = 1 and A−
i,j = 1 indi-

cates the positive and negative relation between node vi and
vj , respectively. Otherwise, A+

i,j and A−
i,j are 0, indicating

no relation between node vi and vj .

Definition 10 Knowledge Triple: We also define a knowl-
edge triple t = (v, e, v′) as a pair of relevant nodes v and v′

that are connected via an edge e in G.

With the medical knowledge information network G con-
structed as above, our next objective is to learn the context-
aware semantic representation of each node in MKIN by ex-
ploring its semantic dependency on other relevant nodes in
MKIN. In particular, we first develop a BERT-based seman-
tic encoder to extract the semantic representation of each
node in MKIN. Formally, let vi = [w1, w2, · · · , wni

] be the
semantic entity of node vi ∈ V , where wk for 1 ≤ k ≤ ni is
the kth word in node vi. We first adopt a pre-trained BERT
model (Devlin et al. 2018) to retrieve the word embedding
uk of each word wk, where uk ∈ Rd and d is the dimension
of the word embedding. We then apply the mean-pooling
and max-pooling to the word embeddings of each node and
concatenate the pooled embeddings to obtain the final node
embedding vi ∈ R2d that aggregates the semantic represen-
tation of each node vi ∈ V . We also define a node embed-
ding matrix V ∈ RN×2d as the matrix that contains the node
embeddings of all nodes in MKIN.
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While the node embeddings can capture the semantic
meaning of each node in MKIN, it remains a challenge to
effectively extract the key knowledge triples from MKIN to
identify the misinformation in the target domain. This is be-
cause MKIN is constructed from a number of articles in the
source domain and often contains many knowledge triples
that are irrelevant to the topics discussed in the posts from
a target domain. For example, the knowledge triple (“vac-
cine”, – , “RFID chip”) in Figure 2 is of little help for
identifying the misleading post “Mpox vaccine contains live
virus and causes infectious blister” in the target domain of
Mpox. To address such a challenge, we design a post-based
knowledge triple refinement strategy to explicitly capture the
critical knowledge triples that are relevant to the given post.
For example, the knowledge triples related to the “live DNA
virus” can be captured in MKIN to facilitate the detection
of the misleading post that the live DNA virus in Mpox vac-
cine causes infectious blister. Thus, we explicitly measure
the semantic relevance between a post and each node in V to
obtain the knowledge triples that are more relevant to a given
post. In particular, we adopt the same BERT-based encoding
strategy to encode each post p ∈ {Ps, Pt} and denote the
encoded vector representation of p as p ∈ R1×2d. Finally,
the post-based knowledge triple refinement strategy to ob-
tain the refined adjacency matrices Â+ and Â− as follows.

Â+
p = f

(
(V p⊤W+

a )⊙A+
)

;Â−
p = f

(
(V p⊤W−

a )⊙A−)
(2)

where V ∈ RN×2d is node embedding matrix. f(·) is the
softmax function, and W+

a and W−
a are learnable weights.

Domain-invariant Representation Learning
Given the fact that there are often no ground-truth labels for
the post in an emergent target domain to supervise the learn-
ing, our next objective is to learn the domain-invariant rep-
resentations of the posts and their relevant medical knowl-
edge triples in the refined MKIN from the GKE module
by only using the available ground-truth labels of the posts
from the source domain. Existing domain adaptive learn-
ing frameworks mainly focus on the domain discrepancy of
the post content between the source and target domains and
target to map the post content from different domains to a
domain-invariant feature space. However, such solutions ig-
nore the domain discrepancy of medical knowledge infor-
mation in MKIN, which is critical to identify misleading
posts in different healthcare domains. To overcome such a
limitation, we present a joint representation learning frame-
work to jointly learn the domain-invariant representations of
the posts from different domains as well as their relevant
knowledge triples. In particular, we first aggregate the medi-
cal knowledge information from the refined MKIN by prop-
agating the node information based on their relations cap-
tured in the refined adjacency matrices Â+ and Â− (Eq. 2).
Formally, the knowledge aggregation process is defined as

v̂i = σ

 ∑
vj∈N+

i

1

ω+
i

W+vj +
∑

vj∈N+
i

1

ω−
i

W−vj + vi


(3)

where v̂i is the learned node representation of vi ∈ V with
the knowledge information propagated from neighborhood
nodes of vi. σ(·) is the non-linear ReLU activation func-
tion. vi and vj are the node embeddings of vi and vj in V ,
respectively. N+

i and N−
i refer to the set of neighborhood

nodes of vi ∈ V under the edge e+ and e−, respectively.
W+, W−, and W are the learnable weight parameters. ω+

i

and ω−
i are the normalization factors of W+ and W−, re-

spectively. We further aggregate the node representation for
vi ∈ V to obtain the representation of knowledge triples that
are relevant to a post p ∈ {Ps, Pt} based on the score mea-
sured in Â+

p and Â−
p (Eq. 2), followed by an average op-

eration. The aggregated knowledge triple representation is
defined as tp = [t+p ||t−p ], where || denotes the concatenation
operation. t+p and t−p are the knowledge triple representa-
tions computed based on the learned node representation v̂i
of all vi ∈ V and the refined adjacency matrices Â+

p and
Â−

p , respectively.
Using the aggregated representations of the knowledge

triples, we design a discriminative encoder network with an
adversarial loss to jointly learn the knowledge-enriched rep-
resentation of the posts from the source and target domains
while minimizing the domain divergence of the learned fea-
tures. In particular, the discriminative encoder network con-
sists of two main components: 1) a two-layer encoder net-
work that aims to learn the key information from the input
posts and relevant knowledge triples in MKIN; 2) a two-
layer discriminator network that targets at accurately distin-
guishing the domain of the encoded posts and their relevant
knowledge triples. Formally, the encoder network and dis-
criminator network are defined as follows.

qp = encoder([p||tp]) and d̂p = discriminator(qp)
(4)

where p and tp are the encoded vector representation and
the aggregated knowledge triple representation of posts p,
respectively. qp is the knowledge-enriched representation of
a post p and d̂p is the estimated domain of qp.

With the discriminative encoder network defined above,
we adopt the adversarial loss to effectively regulate the en-
coder network (Eq. 4) to learn the domain-invariant repre-
sentation from the posts and their relevant knowledge triples
that cannot be distinguished by the discriminator network
(Eq. 4). Formally, the adversarial loss is defined as follows:

Ladv =
∑

p∈{Ps,Pt}

−dp log(d̂p)1 − (1− dp) log(1− (d̂p)0)

(5)
where dp and d̂p are the true and estimated domain of post
p ∈ {Ps, Pt}, respectively.

The latent representation learned from the discriminative
encoder network effectively captures the domain-invariant
knowledge-enriched features of the posts from the source
and target domains. Such domain-invariant features with
minimized domain discrepancy can be leveraged to detect
misleading posts regardless of the domain of the posts. In
particular, we employ a two-layer classification network to
accurately predict the truthfulness of each post. Formally,
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the classification network is defined as ŷp = MLP (qp). We
optimize the classification network with cross-entropy loss:

Lcla = −
∑
p∈Ps

(1− yp) log(1− (ŷp)) + yi log(ŷp) (6)

where yp is the ground-truth label of the source post p ∈ Ps.
The overall learning objective L is to jointly optimize the

discriminative encoder network and the classification net-
work by maximizing the adversarial loss Ladv and minimiz-
ing the classification loss Lcla as L = Lcla − λLadv , where
λ is a hyperparameter to be tuned for optimizing the trade-
off between Ladv and Lcla.

Crowdsourcing-based Knowledge Updater
The crowdsourcing-based knowledge updater (CKU) mod-
ule is designed to leverage the medical expertise of the do-
main experts to verify and correct any uncertain knowledge
triples in MKIN from the GKE module that may only be ap-
plicable in the source domain but cannot be directly adapted
to detect misinformation in the target domain. We observe
that the MKIN constructed from the articles in the source
domain also contains the knowledge triples that are not ap-
plicable to examining the truthfulness of posts in the tar-
get domain. For example, the knowledge triple (“vaccine”,
– , “live DNA virus”) in MKIN from the source domain

of COVID-19 (Figure 2) could lead to the incorrect predic-
tion result on the true claim that “Mpox vaccine contains
live virus that causes infectious blister,” due to the conflict-
ing fact that the Mpox vaccine is made with attenuated live
DNA virus while the COVID-19 vaccine is not. Therefore,
it is critical to identify and correct such inapplicable knowl-
edge triples in MKIN to ensure that the medical knowledge
obtained from the source domain can be applied to accu-
rately detect misinformation in the target domain.

To address the above problem, we design a
crowdsourcing-based knowledge updating strategy that
incorporates the efforts of expert workers (i.e., domain
experts from the crowdsourcing platform) to effectively
identify and correct the knowledge triples in MKIN to
accurately detect misinformation in the target domain.
However, verifying the correctness of knowledge triples
in a specific domain often requires background knowledge
from domain experts who are often expensive and may
not always be available (Kou et al. 2022a). Therefore,
it is impractical to ask expert workers to annotate all
knowledge triples in MKIN. To this end, we design a
post-driven knowledge triple retrieval process to identify
a set of uncertain knowledge triples in MKIN that can
be sent to the expert workers to verify their applicability
in the target domain. Intuitively, the knowledge-enriched
domain-invariant representation of a post learned in the
DRL module contains the semantic features of relevant
knowledge triples in MKIN for examining the truthfulness
of the post, which can also be leveraged to estimate the rela-
tionship between a pair of nodes in MKIN. For example, the
knowledge-enriched representation of the post “COVID-19
vaccine alters DNA” can capture the critical knowledge
features extracted from the knowledge triple (“vaccine”,

– , “live DNA virus”) for examining the truthfulness of
the post. Such knowledge-enriched representation is ex-
pected to confidently infer the relationship (i.e., edge label)
between the corresponding nodes in the knowledge triple.
Therefore, we train an MLP-based edge classifier to classify
the edge label epi,j between a pair of nodes (vi, vj) in MKIN
based on the context of a post p. In particular, we consider
three categories of epi,j , including “positive”, “negative”,
and “no relation” as the edges identified in MKIN, and
define the edge classifier as Pr(êpi,j) = MLP ([qp||vi||vj ])
where êpi,j is the estimated edge label of epi,j . qp is the
domain-invariant representation of a post p ∈ Ps and vi
and vj are the BERT-encoded representation of nodes
vi, vj ∈ V , respectively. We optimize the edge classifier
with cross-entropy loss between epi,j and êpi,j .

We then measure the overall uncertainty of each knowl-
edge triple in MKIN in the target domain based on the en-
tropy of the estimated edge labels obtained from the edge
classifier. Formally, let ti,j = (vi, ei,j , vj) be the knowledge
triple containing nodes vi and vj , and the uncertainty of each
knowledge triple ti,j is computed as

ui,j = −
∑
p∈Pt

Pr(êpi,j)× log Pr(êpi,j) (7)

We further retrieve the top K knowledge triples with the
highest uncertainty scores and K is a tunable hyperparam-
eter to be determined based on the model performance and
budget. The retrieved knowledge triples are then sent to the
expert workers for applicability verification. We show the
details of the crowdsourcing task in the Evaluation section.
Finally, we update MKIN with the expert-verified knowl-
edge triples (i.e., the knowledge triples verified by the crowd
experts) and further optimize the discriminative encoder net-
work and classification network in DRL to accurately detect
misinformation in the target domain.

Evaluation
In this section, we evaluate the healthcare misinformation
detection performance of CrowdAdapt in various domain
adaptation scenarios. In particular, we adopt COVID-19 as
the source domain, and choose Mpox and Polio as the tar-
get domains to evaluate the domain adaptation effectiveness
of CrowdAdapt. COVID-19 has been a popular healthcare
domain of misinformation since the beginning of the global
pandemic, and many efforts have been made to combat the
spread of COVID-19 misinformation. The recent outbreaks
of Mpox (in May 2022) and Polio (in July 2022) are trending
healthcare domains that have attracted a non-trivial amount
of misinformation but lack sufficient timely resources for
misinformation detection. Therefore, we consider Mpox and
Polio as our target healthcare domains in our study. Evalu-
ation results from extensive experiments show that Crow-
dAdapt achieves significant performance gains compared to
state-of-the-art baselines in terms of early healthcare misin-
formation detection accuracy.

Datasets
Source Articles We focus on two types of source articles,
including the medical news articles and fact-checking ar-
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ticles. The medical news articles are online articles from
reliable medical news publishers (e.g., CDC, Mayo Clinic)
discussing the up-to-date medical information (e.g., official
guidance, treatments, precautions) related to the source do-
main. The fact-checking articles are the reports published
by professional journalists and scholars on mainstream fact-
checking websites (e.g., FactCheck.org, Politifact) concern-
ing the misinformation related to the source domain. We fi-
nally collected 259 source articles in our study.

Posts We collect social media posts from both the source
and target domains to study the domain adaptation perfor-
mance of CrowdAdapt.

Source Posts. The goal of CrowdAdapt is to leverage ex-
isting annotated datasets in the source domain (i.e., source
posts) to detect misinformation in an emergent healthcare
domain that has limited or no annotated data (i.e., tar-
get posts). Therefore, we use five widely adopted public
COVID-19 misinformation datasets with ground-truth la-
bels as the source post datasets, including Constraint (Patwa
et al. 2021), COVIDRumor (Cheng et al. 2021), MM-
CoVar (Chen, Chu, and Subbalakshmi 2021), ANTi-
Vax (Hayawi et al. 2022), and CMU-MisCov19 (Memon and
Carley 2020). We use the ground-truth labels provided in
each dataset and remove invalid posts that are duplicate or
cannot be retrieved. We note that existing COVID-19 mis-
information datasets (i.e., Constraint, COVIDRumor, MM-
CoVar, ANTiVax) primarily annotate the source posts into
binary classes (i.e., misleading or non-misleading). Follow-
ing such a conventional practice, we adopt the original bi-
nary labels in each dataset for our experiments. For the
dataset with non-binary ground-truth labels, such as CMU-
MisCov19 that also categorizes COVID-19 posts into topic-
based classes (e.g., “True Prevision”, “False Fact or Pre-
vention”), we further group these non-binary labels into bi-
nary classes in terms of their veracity meaning. A summary
of the source post datasets is presented in Table 1. While
we focus on binary classification in our experiments, we
also acknowledge that healthcare misinformation detection
is a complex problem where certain posts may not be suf-
ficiently classified into binary classes. We believe the de-
signed framework of CrowdAdapt can be further extended to
address the multi-class healthcare misinformation problem.
The details about the generalization of CrowdAdapt will be
discussed in the Discussion section.

Dataset # Posts # Misleading # Non-misleading

Constraint 10,700 5,600 5,100

COVIDRumor 5,505 3,661 1,844

MMCoVaR 2,791 1,315 1,476

ANTiVax 12,326 4,156 8,170

CMU-MisCov19 3,114 1,269 1,845

Table 1: Summary of Source Post Datasets

Target Posts. We collect the target posts from Twitter1

based on the relevant keywords in the Mpox and Polio do-
mains. For each dataset, we randomly select 500 posts as the
test set to evaluate the early misinformation detection per-
formance and use the remaining data for the unsupervised
training in CrowdAdapt. We invite three independent health-
care experts at our institution to annotate the target posts in
the test sets and obtain the ground-truth labels based on their
majority votes to ensure the label quality. We summarize the
target post datasets in Table 2.

Mpox Polio

# Posts 9,156 12,893

# Annotated Posts 500 500

# Misleading 168 141

# Non-misleading 332 359

Date Range 5/1-5/31, 2022 7/1-7/31, 2022

Table 2: Summary of Target Post Datasets

Baselines and Experiment Setup
Baselines and Implementation Details We compare
CrowdAdapt with state-of-the-art baselines in domain adap-
tive and knowledge graph based misinformation detection.

• BDANN (Zhang et al. 2020): BDANN is a BERT-based
domain adaptation solution for multimodal fake news
detection. We exclude the visual features in BDANN
and leverage the BERT-based feature extraction model
trained on the source posts to classify target posts.

• MDA-WS (Li et al. 2021): MDA-WS is a weakly super-
vised domain adaptive fake news detection framework
that leverages labeled source domain news articles and
the word frequency based weak labels of target domain
news articles to detect fake news in the target domain.

• EANN (Wang et al. 2018): EANN is an event adversarial
network framework that learns transferable features from
source news events for fake news detection on emerging
news events.

• DETERRENT (Cui et al. 2020): DETERRENT is a
graph attention network solution that utilizes relational
medical knowledge to detect misleading healthcare news.

• CompGCN (Vashishth et al. 2020): CompGCN is an
advanced multi-relational knowledge graph solution that
exploits the entity and their relations to extract key infor-
mation from graph data.

To ensure a fair comparison, we keep the source and tar-
get posts to all compared methods the same in our eval-
uation. In addition, for the knowledge graph based meth-
ods (i.e., DETERRENT, CompGCN, CrowdAdapt), we use
the same MKIN constructed in CrowdAdapt as the medi-
cal knowledge graph for classifying misleading posts. We

1https://developer.twitter.com/en/docs/twitter-api
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Figure 3: Example of Knowledge Triple Verification Task

strictly follow the model configurations of all baselines as
documented in the original papers and carefully tune the hy-
perparameters to obtain the best results. In our experiments,
we utilize all the source posts and unlabeled target posts for
the unsupervised training of the encoder network and the
domain discriminator network. Additionally, we use the la-
beled source posts for the supervised training of the classi-
fication network. We adopt the commonly used metrics for
classification evaluation, including Accuracy (Acc.), Preci-
sion (Prec.), Recall, and F1 Score (F1).

In our model implementation, we set the dimensions of
the node embeddings and post embeddings as 768. The total
number of epochs is set to 80 with a batch size of 32. We
adopt an initial learning rate of 0.0001 with a decay of 0.95.
We set the total number of retrieved uncertain knowledge
triples K as 100. We run the experiments on Ubuntu 20.04
with four NVIDIA A40.

Crowdsourcing Platform We choose Amazon Mechan-
ical Turk (MTurk) as the crowdsourcing platform to ac-
quire expert knowledge in the target domain from healthcare
professionals. MTurk is one of the largest crowdsourcing
platforms that provides 24/7 crowdsourcing services from
a large number of crowd workers with diversified expertise.
In particular, we recruit the expert workers who have been
verified by MTurk as “healthcare experts” to participate in
our study (Turk 2016). In addition, we also developed a do-
main screening test for each studied target domain to ensure
the qualification of the expert workers. The qualified expert
workers will be assigned to the knowledge triple verification
tasks (Figure 3). To ensure the quality of the response, we
only select the qualified expert workers with 95% or higher
Human Intelligence Task (HIT) rate. To reduce the poten-
tial bias in the crowdsourcing responses, we recruit 5 expert
workers for each knowledge triple verification task and ap-
ply the majority voting to resolve any conflicts between the
responses. The inter-rater agreement of the responses for the
Mpox and Polio datasets are 0.74 and 0.71 in terms of the
kappa score, and 0.87 and 0.85 in terms of intraclass corre-
lation coefficient (ICC), respectively. A kappa score above
0.60 and an ICC above 0.75 indicate substantial agreement
among the annotators (Chaturvedi and Shweta 2015). We
pay $0.47 per knowledge triple in our experiment, including
the payment to both the expert worker and MTurk.

Constraint
Baseline Accuracy Precision Recall F1
BDANN 0.554 0.443 0.587 0.505

MDA-WA 0.624 0.667 0.614 0.639
EANN 0.576 0.596 0.606 0.601

DETERRENT 0.636 0.682 0.643 0.662
CompGCN 0.622 0.651 0.609 0.630

CrowdAdapt 0.640 0.688 0.652 0.670

COVIDRumor
Baseline Accuracy Precision Recall F1
BDANN 0.658 0.638 0.733 0.683

MDA-WA 0.628 0.626 0.748 0.682
EANN 0.534 0.558 0.563 0.560

DETERRENT 0.672 0.668 0.727 0.696
CompGCN 0.648 0.659 0.677 0.668

CrowdAdapt 0.682 0.702 0.793 0.745

MMCoVaR
Baseline Accuracy Precision Recall F1
BDANN 0.532 0.483 0.467 0.475

MDA-WA 0.604 0.627 0.619 0.623
EANN 0.548 0.471 0.474 0.472

DETERRENT 0.628 0.617 0.649 0.633
CompGCN 0.588 0.625 0.603 0.614

CrowdAdapt 0.642 0.699 0.682 0.691

ANTiVax
Baseline Accuracy Precision Recall F1
BDANN 0.606 0.593 0.612 0.602

MDA-WA 0.592 0.590 0.601 0.596
EANN 0.584 0.558 0.564 0.557

DETERRENT 0.638 0.676 0.618 0.645
CompGCN 0.618 0.637 0.607 0.621

CrowdAdapt 0.648 0.693 0.681 0.687

CMU-MisCov19
Baseline Accuracy Precision Recall F1
BDANN 0.634 0.658 0.641 0.649

MDA-WA 0.681 0.661 0.692 0.676
EANN 0.592 0.613 0.596 0.604

DETERRENT 0.697 0.683 0.689 0.686
CompGCN 0.676 0.669 0.702 0.685

CrowdAdapt 0.727 0.708 0.736 0.722

Table 3: Detection Performance in Target Domain - Mpox

Detection Performance

We first compare the misinformation detection performance
of CrowdAdapt with all baseline schemes for detecting
misleading posts in the Mpox and Polio target domains.
The evaluation results on the Mpox and Polio datasets
are shown in Table 3 and Table 4, respectively. We ob-
serve that CrowdAdapt consistently outperforms all com-
pared baselines on all source datasets for detecting misin-
formation in both Mpox and Polio datasets. For example,
on the Mpox dataset, CrowdAdapt achieves a 1.2%, 7.1%,
9.1%, 6.5%, and 5.2% performance improvements against
the best-performing baseline (i.e., DETERRENT) in terms
of the F1 score on the Constraint, COVIDRumor, MMCo-
Var, ANTiVax, and CMU-MisCov19, respectively. We also
observe similar performance gains on the Polio dataset. The
performance gains can be attributed to the crowdsourcing-
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Constraint
Baseline Accuracy Precision Recall F1
BDANN 0.642 0.681 0.613 0.645

MDA-WA 0.636 0.673 0.625 0.649
EANN 0.644 0.618 0.652 0.634

DETERRENT 0.674 0.687 0.667 0.677
CompGCN 0.652 0.635 0.661 0.648

CrowdAdapt 0.692 0.706 0.687 0.697

COVIDRumor
Baseline Accuracy Precision Recall F1
BDANN 0.702 0.688 0.701 0.694

MDA-WA 0.658 0.678 0.646 0.661
EANN 0.664 0.681 0.629 0.654

DETERRENT 0.688 0.671 0.693 0.682
CompGCN 0.660 0.657 0.673 0.665

CrowdAdapt 0.722 0.709 0.744 0.726

MMCoVaR
Baseline Accuracy Precision Recall F1
BDANN 0.616 0.602 0.617 0.609

MDA-WA 0.602 0.635 0.591 0.612
EANN 0.626 0.617 0.631 0.624

DETERRENT 0.664 0.641 0.677 0.659
CompGCN 0.642 0.639 0.655 0.647

CrowdAdapt 0.712 0.703 0.726 0.714

ANTiVax
Baseline Accuracy Precision Recall F1
BDANN 0.634 0.619 0.657 0.638

MDA-WA 0.652 0.643 0.659 0.651
EANN 0.676 0.651 0.685 0.667

DETERRENT 0.672 0.674 0.698 0.686
CompGCN 0.668 0.683 0.659 0.671

CrowdAdapt 0.706 0.693 0.716 0.704

CMU-MisCov19
Baseline Accuracy Precision Recall F1
BDANN 0.669 0.675 0.684 0.679

MDA-WA 0.681 0.696 0.672 0.684
EANN 0.676 0.663 0.680 0.671

DETERRENT 0.708 0.689 0.703 0.696
CompGCN 0.692 0.661 0.686 0.673

CrowdAdapt 0.731 0.728 0.719 0.723

Table 4: Detection Performance in Target Domain - Polio

based domain adaptive knowledge verification strategy in
CrowdAdapt that leverages the medical knowledge of ex-
pert workers to examine and correct the knowledge triples in
MKIN for the accurate detection of misleading posts in the
target domain. In addition, the significant performance im-
provements over knowledge-agnostic domain adaption solu-
tions also highlight the importance of medical knowledge in
detecting misinformation in emergent healthcare domains.

Ablation Study
We study the importance of the key components in the Crow-
dAdapt framework. In particular, we consider three vari-
ants of CrowdAdapt, including 1) CrowdAdapt\G that ex-
cludes the MKIN and only extracts the domain-invariant rep-
resentation from the post content to detect misinformation,
2) CrowdAdapt\P that removes the post-based knowledge
refinement and only applies the mean-pooling layer to ob-

tain the knowledge representation from MKIN, 3) Crow-
dAdapt\U that excludes knowledge triples verified and cor-
rected by expert workers, and only uses the original knowl-
edge triples in MKIN to guide the misinformation detection.

The results of the ablation study on the Mpox and Polio
datasets are summarized in Table 5. We observe that Crow-
dAdapt achieves its best misinformation detection perfor-
mance when it incorporates all key components in the frame-
work. In particular, we observe that the incorporation of the
expert-verified knowledge triples in MKIN greatly enhances
the domain adaptive misinformation detection on the target
domain which further validates the effectiveness of crowd-
sourced expert knowledge in CrowdAdapt.

Effect of Expert-verified Knowledge Triples
We further investigate the effect of expert-verified knowl-
edge triples on the detection performance of CrowdAdapt
in the target domain. In particular, we vary the number of
expert-verified knowledge facts to be annotated by the ex-
pert workers from 0% to 100% of the K retrieved knowl-
edge triples in the CKU module. The results are reported in
Figure 4. We use the COVIDRumor dataset as the dataset
in the source domain of COVID-19 and evaluate the domain
adaptive misinformation detection performance in the tar-
get domains of both Mpox and Polio. We observed similar
performance gains on other COVID-19 datasets and omitted
the evaluation results due to the page limit. In particular, we
observe the overall performance of CrowdAdapt improves
as the number of expert-verified knowledge triples increases
and gradually plateaus after the number of expert-verified
knowledge triples reaches 75% of the retrieved knowledge
triples. A possible reason is that, as we retrieve additional
knowledge triples from MKIN to be verified by the domain
experts, the newly retrieved knowledge triples have lower
uncertainty scores (i.e., the entropy of the prediction results
of edge classifier), which are less likely to be corrected by
domain experts and contribute less to CrowdAdapt for iden-
tifying misleading posts in the target domain.

(a) Mpox (b) Polio

Figure 4: Effect of Expert-verified Knowledge Triples

Discussion
In this study, we focus on the domain-adaptive emergent
healthcare misinformation detection problem. Following the
commonly adopted problem settings in misinformation de-
tection (Zhou and Zafarani 2020), we formulate our prob-
lem as a binary classification task where the goal is to de-
termine whether a social media post is misleading (i.e., con-
taining entirely or partially false or unverified information)
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Target Domain Method Constraint COVIDRumor MMCoVaR ANTiVax
Accuracy. F1 Accuracy F1 Accuracy. F1 Accuracy. F1

MPox

CrowdAdapt 0.640 0.670 0.682 0.745 0.642 0.691 0.648 0.687

CrowdAdapt\G 0.602 0.647 0.644 0.713 0.612 0.653 0.616 0.659

CrowdAdapt\P 0.616 0.655 0.658 0.726 0.620 0.664 0.628 0.663

CrowdAdapt\U 0.624 0.661 0.662 0.721 0.632 0.676 0.634 0.671

Polio

CrowdAdapt 0.692 0.706 0.722 0.726 0.712 0.714 0.706 0.704

CrowdAdapt\G 0.668 0.677 0.684 0.691 0.688 0.697 0.678 0.687

CrowdAdapt\P 0.672 0.683 0.688 0.679 0.696 0.701 0.684 0.688

CrowdAdapt\U 0.676 0.681 0.692 0.681 0.702 0.709 0.692 0.698

Table 5: Results of Ablation Study

or not. However, we acknowledge that healthcare misinfor-
mation detection is a challenging problem where the mis-
information can be categorized into different classes based
on specific criteria, such as the degree of misleadingness
(e.g., misleading, partially misleading, unsure), subject mat-
ter (e.g., conspiracy theories, fake cure), stance (e.g., agree,
disagree, no stance), and perceived health risk (e.g., highly
severe, possibly severe) (Memon and Carley 2020). To ad-
dress such a challenge, we can extend CrowdAdapt by in-
corporating a multi-class classifier, which would enable the
classification of each post into non-binary categories of in-
terest. In particular, the CrowdAdapt framework can be op-
timized by replacing the current classification loss function
(Equation 7) with the multi-class cross-entropy loss, i.e.,
Lcla = −

∑
p∈Ps

∑K
k=1 y

(k)
p log ŷ

(k)
p where y

(k)
p ∈ {0, 1}

indicates whether the true label of a post p is class k (y(k)p =

1) or not (y(k)p = 0), and ŷ
(k)
p ∈ (0, 1] is the predicted prob-

ability of a post p being in class k.

Moreover, we recognize another limitation inherent in
binary classification for misinformation detection is that
the use of binary label classes (i.e., misleading and non-
misleading) may overlook the uncertainty in labeling due to
the ambiguity of a post. This ambiguity often arises from
the varying contexts and ideological perspectives among the
audience (Jia et al. 2022). For instance, a post with sus-
picion of the slow and poor handling of HIV drugs can
be classified as misleading based on linguistic characteris-
tics (e.g., language style, sentiment). However, such a claim
may be valid and legitimate, especially from the viewpoint
of HIV-vulnerable communities (e.g., LGBTQ+). As a con-
sequence, a binary misinformation detection model trained
with such inherently uncertain labels may impose a limit on
the misinformation detection performance. A potential solu-
tion to address the label uncertainty challenge is to integrate
the misinformation classifier with the uncertainty estimation
mechanism (Das, Basak, and Dutta 2022) to explicitly quan-
tify the uncertainty of the model output (i.e., misleading or
non-misleading). In particular, instead of using fixed binary
labels for model optimization, we can consider the multi-
ple annotations of each data sample as a probability distri-

bution and optimize the classification framework with the
probability-based Kullback-Leibler (KL) divergence loss to
estimate the probability distribution (i.e., uncertainty) of the
predictions. In addition, explainable machine learning ap-
proaches (Cui et al. 2020) may also aid in explaining and
justifying the classification results, providing crucial support
for healthcare-related decision-making across diverse com-
munities.

In addition, we observe that the misinformation in differ-
ent healthcare domains (e.g., COVID-19, Mpox, Polio) of-
ten presents their unique characteristics. For instance, while
both the source domain (i.e., COVID-19) and target domain
(i.e., Mpox, Polio) in our study are all health-related, the
relative significance of the same topic (e.g., vaccine) can
vary with respect to misinformation. In particular, within
the COVID-19 domain, vaccine-related misinformation has
emerged as a critical concern, which often highlights the
negative effects of vaccine (e.g., DNA alternation, impact on
women’s fertility), and thus significantly increases COVID-
19 vaccine hesitancy and amplifies the risk for vulnerable
populations. In contrast, misinformation related to Mpox or
Polio is often less relevant to the Mpox or Polio vaccine.
Instead, the misinformation is more relevant to the alleged
origins (e.g., LGBTQ+ communities) or transmission sur-
rounding these diseases (e.g., sexual transmission), which
is more likely to cause homophobic assertions. Such an ob-
servation of domain discrepancy further suggests the neces-
sity of developing domain-adaptive misinformation detec-
tion solutions that explicitly address such discrepancy. In
addition, the domain discrepancy also suggests the impact
and public’s tolerance of the same misinformation topic can
vary across different domains. For example, vaccine hesi-
tancy may be more pronounced in the COVID-19 domain
compared to the Mpox or Polio domains. To address the do-
main discrepancy on the misinformation impact and toler-
ance, one possible approach is to leverage few-shot learning
(Yue et al. 2023) that incorporates a small number of mis-
information samples in each target domain, along with their
quantified impact and tolerance, to enhance the model’s ca-
pability of identifying the most consequential misinforma-
tion in different domains.
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Another challenge of crowdsourcing-based domain-
specific misinformation detection lies in the unknown ex-
pertise of the crowd workers. In the experiments, we recruit
expert workers with premium qualifications in the health-
care domain to finish the knowledge triple verification task.
While majority voting and interrater agreement are con-
sidered to reduce the uncertainty in the crowdsourcing re-
sponses, it is still possible that some expert workers have
less relevant experience or knowledge to provide accurate
annotations for certain knowledge triples. To lift the assump-
tion that the crowdsourcing responses are equally valid and
accurate, a potential solution is to explicitly quantify the
confidence and certainty of each crowdsourcing response,
such as asking expert workers to provide their confidence
level in each response. Such confidence-aware knowledge
triples can be further integrated into the Crowdsourcing-
based Knowledge Updater module via the uncertainty-aware
information aggregation strategy (Feng, Wang, and Ding
2021) to reduce the overall uncertainty of representation
learned from the Medical Knowledge Information Network.

Scalability is an important factor for misinformation de-
tection solutions, especially given the explosive amount of
social media data input and emerging domains. First, the ef-
ficiency of analyzing healthcare-related social media posts
is critical for providing timely prediction results in the
early detection of misinformation in emergent healthcare do-
mains. In particular, the time complexity of CrowdAdapt in
the inference phase only grows linearly with respect to the
number of social media posts to be classified in the target
domain. To address the scalability challenge of classifying
a number of posts in an emergent domain, a possible solu-
tion is to implement CrowdAdapt on distributed GPU clus-
ters or cloud computing platforms to improve computing
efficiency. We plan to address the scalability challenge in
our future work. Second, the scalability of adapting Crow-
dAdapt to detect emergent healthcare misinformation across
a wide array of health-related domains, especially for the
ones that are novel and unseen before. Although the eval-
uation results have demonstrated the effectiveness and su-
periority of CrowdAdapt in detecting emergent healthcare
misinformation in the target domain (i.e., Mpox, Polio), the
overall misinformation detection performance still experi-
ences a modest decline compared to the misinformation per-
formance in the source domain (i.e., COVID-19). A possi-
ble reason is that the knowledge facts in the source domain
might not encompass all relevant entities in the target do-
main. For example, entities related to sexually transmitted
diseases (STDs), frequently seen in the misinformation re-
lated to Mpox, may not necessarily be covered by the knowl-
edge facts in the COVID-19 domain due to the different
transmission methods of the two diseases. To mitigate this
limitation, we plan to incorporate the resources (e.g., anno-
tated data and medical documents) from a more diverse set
of source domains (e.g., HIV, HPV) in our future work to
expand the coverage of knowledge facts and improve the
domain-adaptive misinformation detection performance of
CrowdAdapt. In addition, to further enhance the ability of
CrowdAdapt in identifying novel and creative misinforma-

tion in emergent domains, we plan to incorporate contrastive
learning (Yue et al. 2022), a self-supervised learning method
that can learn discriminative features from data in different
domains without requiring any data annotations from the tar-
get domains. Specifically, we will integrate the overall loss
function of CrowdAdapt with the self-supervised contrastive
loss to guide the framework to capture the latent features that
are generalizable to novel and unseen data in the emergent
healthcare domains.

Conclusion
In this paper, we study the problem of early misinfor-
mation detection in an emergent healthcare domain. We
present CrowdAdapt, a crowdsourcing-based domain adap-
tive framework that effectively explores a high-resource
source domain to accurately detect misinformation in an
emergent target domain. We further leverage the expertise of
expert workers to explicitly correct the inapplicable knowl-
edge facts from the source to the target domain to improve
the domain adaptation performance on misinformation de-
tection. We conduct two real-world case studies of the do-
main adaptive misinformation detection from COVID-19
to Mpox and Polio using five COVID-19 misinformation
datasets. Evaluation results show that CrowdAdapt achieves
substantial performance gains compared to state-of-the-art
baselines in accurately detecting misleading social media
posts in both target domains.
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online misinformation, we note that the early detection of
emergent healthcare misinformation remains a challenge to
be fully addressed. We envision the success of this work will
greatly mitigate the propagation of emergent healthcare mis-
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1. For most authors...

(a) Would answering this research question advance sci-
ence without violating social contracts, such as violat-
ing privacy norms, perpetuating unfair profiling, exac-
erbating the socio-economic divide, or implying disre-
spect to societies or cultures? Yes, please see the Dis-
cussion section.

(b) Do your main claims in the abstract and introduction
accurately reflect the paper’s contributions and scope?
Yes, please see the Abstract and Introduction sections.

(c) Do you clarify how the proposed methodological ap-
proach is appropriate for the claims made? Yes, please
see the Solution section.

(d) Do you clarify what are possible artifacts in the data
used, given population-specific distributions? Yes,
please see the Discussion section.

(e) Did you describe the limitations of your work? Yes,
please see the Discussion section.

(f) Did you discuss any potential negative societal im-
pacts of your work? Yes, please see the Ethical State-
ment section.

(g) Did you discuss any potential misuse of your work?
Yes, please see the Ethical Statement section.

(h) Did you describe steps taken to prevent or mitigate po-
tential negative outcomes of the research, such as data
and model documentation, data anonymization, re-
sponsible release, access control, and the reproducibil-
ity of findings? Yes, please see the Ethical Statement
section.

(i) Have you read the ethics review guidelines and en-
sured that your paper conforms to them? Yes, we have
carefully reviewed the guidelines and make sure our
work conforms to them.

2. Additionally, if your study involves hypotheses testing...
(a) Did you clearly state the assumptions underlying all

theoretical results? NA
(b) Have you provided justifications for all theoretical re-

sults? NA
(c) Did you discuss competing hypotheses or theories that

might challenge or complement your theoretical re-
sults? NA

(d) Have you considered alternative mechanisms or expla-
nations that might account for the same outcomes ob-
served in your study? NA

(e) Did you address potential biases or limitations in your
theoretical framework? NA

(f) Have you related your theoretical results to the existing
literature in social science? NA

(g) Did you discuss the implications of your theoretical
results for policy, practice, or further research in the
social science domain? NA

3. Additionally, if you are including theoretical proofs...
(a) Did you state the full set of assumptions of all theoret-

ical results? NA

(b) Did you include complete proofs of all theoretical re-
sults? NA

4. Additionally, if you ran machine learning experiments...
(a) Did you include the code, data, and instructions

needed to reproduce the main experimental results (ei-
ther in the supplemental material or as a URL)? Yes,
please see the Implementation Details subsection.

(b) Did you specify all the training details (e.g., data splits,
hyperparameters, how they were chosen)? Yes, please
see the Implementation Details subsection.

(c) Did you report error bars (e.g., with respect to the ran-
dom seed after running experiments multiple times)?
NA

(d) Did you include the total amount of compute and the
type of resources used (e.g., type of GPUs, internal
cluster, or cloud provider)? Yes, please see the Imple-
mentation Details subsection.

(e) Do you justify how the proposed evaluation is suffi-
cient and appropriate to the claims made? Yes, please
see the Evaluation section.

(f) Do you discuss what is “the cost“ of misclassification
and fault (in)tolerance? Yes, please see the Discussion
section.

5. Additionally, if you are using existing assets (e.g., code,
data, models) or curating/releasing new assets, without
compromising anonymity...

(a) If your work uses existing assets, did you cite the cre-
ators? Yes, please see the Evaluation section.

(b) Did you mention the license of the assets? Yes, please
see the Evaluation section.

(c) Did you include any new assets in the supplemental
material or as a URL? NA

(d) Did you discuss whether and how consent was ob-
tained from people whose data you’re using/curating?
Yes, please see the Discussion section.

(e) Did you discuss whether the data you are using/cu-
rating contains personally identifiable information or
offensive content? Yes, please see the Evaluation sec-
tion.

(f) If you are curating or releasing new datasets, did you
discuss how you intend to make your datasets FAIR?
NA

(g) If you are curating or releasing new datasets, did you
create a Datasheet for the Dataset? NA

6. Additionally, if you used crowdsourcing or conducted
research with human subjects, without compromising
anonymity...

(a) Did you include the full text of instructions given to
participants and screenshots? Yes, please see the Eval-
uation section.

(b) Did you describe any potential participant risks, with
mentions of Institutional Review Board (IRB) ap-
provals? Yes, please see the Ethical Statement section.

(c) Did you include the estimated hourly wage paid to
participants and the total amount spent on participant
compensation? Yes, please see the Evaluation section.
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(d) Did you discuss how data is stored, shared, and deiden-
tified? Yes, please see the Ethical Statement section.
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