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Abstract

Public opinion plays a pivotal role in politics, influencing po-
litical leaders’ decisions, shaping election outcomes, and im-
pacting policy-making processes. In today’s digital age, the
abundance of political discourse available on social media
platforms has become an invaluable resource for analyzing
public opinion. This paper focuses on the task of detecting
political stances in the context of the 2020 US presidential
election. To facilitate this research, we curate a substantial
dataset sourced from Twitter, annotated using hashtags as in-
dicators of political polarity. In our approach, we construct a
bipartite graph that explicitly models user-tweet interactions,
which provides a comprehensive contextual understanding of
the election. To effectively leverage the wealth of user behav-
ioral information encoded in this graph, we adopt graph con-
volution and introduce a novel skip aggregation mechanism.
This mechanism enables tweet nodes to aggregate informa-
tion from their second-order neighbors, which are also tweet
nodes due to the graph’s bipartite nature. Our experimental
results demonstrate that our proposed model outperforms a
range of competitive baseline models. Furthermore, our in-
depth analyses highlight the importance of user behavioral
information and the effectiveness of skip aggregation.

Introduction
Nowadays, social media has emerged as an indispensable
tool for the general public to engage in discussions on po-
litical issues, such as elections, taxes, education, and reg-
ulations. As was seen in the 2016 US presidential election
(Bovet, Morone, and Makse 2018) and the 2019 Argentina
presidential election (Zhou et al. 2021), social media pro-
vided a platform for candidates to connect with potential
voters, share their policies, and establish their brand during
the pre-election phase. Likewise, voters turned to social me-
dia to acquaint themselves with the candidates, their poli-
cies, and their positions on important issues, while also ex-
pressing their own views on the elections. As a result, such
political events generated a significant volume of reviews
and responses online, offering researchers a valuable avenue
to capture public opinion and discern societal trends. How-
ever, manually analyzing such a massive amount of textual
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Figure 1: Hashtag clouds. The words or multi-word phrases
in the clouds are the most frequently occurring hashtags re-
lated to the 2020 US presidential election. The hashtags in
blue express support for Biden or opposition to Trump (pro-
Biden), while the hashtags in red express support for Trump
or opposition to Biden (pro-Trump). The dimension of the
hashtags is proportional to their frequency.

data is extremely time-consuming and costly, underscoring
the pressing need for automated analysis.

Stance detection has evolved into a pivotal and dynamic
area of research, extending beyond its traditional applica-
tions in customer reviews, product feedback, and movie
preferences. In recent years, there has been a notable shift
towards analyzing stances in a political context, as it pro-
vides valuable insights into public opinion. However, iden-
tifying political stances is inherently challenging, primarily
due to the presence of nuanced language, ambiguous sen-
timent, and complex contextual factors. In this study, we
specifically focus on the 2020 US presidential election, in-
tending to ascertain the political polarities of election-related
tweets posted during the pre-election period. Unlike news ar-
ticles (Li and Goldwasser 2019, 2021b; Zhang et al. 2022),
debate transcripts (Iyyer et al. 2014; Chen et al. 2017; Lai
et al. 2020), and tweets from official sources like legislators,
news agencies, and politicians (Xiao et al. 2023), which typ-
ically adhere to strict grammatical rules, analyzing tweets
from ordinary users presents unique challenges. These chal-
lenges include the brevity of the text, the absence of contex-
tual information, and the frequent use of emoticons, abbre-
viations, and hashtags.

Additionally, obtaining labels for social media data of
such magnitude poses a formidable challenge. Given the
sheer volume of data, traditional manual annotation meth-

Proceedings of the Eighteenth International AAAI Conference on Web and Social Media (ICWSM 2024)

1207



ods like crowdsourcing and editorial review (Li and Gold-
wasser 2019) become impractical. Some studies (Xiao et al.
2023; Iyyer et al. 2014; Chen et al. 2017) have resorted to
annotating texts based on the ideological positions of au-
thors or speakers. However, for personal Twitter accounts,
political ideologies are often undisclosed. Hashtags, on the
other hand, are frequently used by Twitter users to provide
context and convey their sentiments or opinions on specific
topics or issues. For example, hashtags like #EndGunVio-
lence advocate for stricter gun control measures and an end
to gun violence in communities, while #StopAsianHate ex-
presses support for ending anti-Asian hate and fostering a
more inclusive and equitable society for all, regardless of
their racial or ethnic background. Generally, hashtags align
with the overall stance of the tweets in which they are in-
cluded. Therefore, we adopt a manual approach to compile
a set of hashtags expressing support or opposition to one of
the candidates, categorizing them as either pro-Biden or pro-
Trump. If a hashtag is found to oppose one candidate, we in-
terpret it as supporting the other candidate (e.g., considering
#VoteTrumpOut as pro-Biden). Subsequently, we annotate
the tweets according to the polarities of the hashtags within
them.

Our annotation approach enables the acquisition of a sub-
stantial set of labeled tweets, empowering the model to ef-
fectively tackle the challenges posed by informal language
and comprehend the complex context of the election. Instead
of relying solely on textual analysis to infer stances from
these tweets, we propose leveraging the abundance of be-
havioral data available on social media platforms. Our ap-
proach involves constructing a user-tweet bipartite graph,
where users and tweets are represented as nodes, and edges
denote users’ behaviors towards tweets, such as posting and
retweeting. In this manner, we encode user behavioral in-
formation into the graph, transforming the task of political
stance detection into a Graph Neural Network (GNN)-based
node classification problem. While we initialize tweet node
features using a pre-trained language model (e.g., BERT
(Devlin et al. 2019)), we encounter a challenge when ini-
tializing the features of user nodes. This challenge stems
from the absence of textual information for users, making it
difficult to assign appropriate initial features that align with
tweet nodes. To address this issue, we propose a novel skip
aggregation mechanism that leverages the bipartite nature of
the graph. Each tweet node aggregates information from its
second-order neighbors, which comprise other tweets posted
or retweeted by its author or retweeters and tend to express
similar stances (Wong et al. 2016). User nodes, on the other
hand, play a bridging role during neighborhood sampling
and do not require explicit characterization. In addition, we
incorporate relational information into the model to make
more effective use of behavioral data, resulting in further
performance improvements.

We conduct a comprehensive comparative analysis of our
model against several state-of-the-art text classification and
node classification models, using our annotated dataset. The
results of our experiments consistently demonstrate the su-
perior performance of our model, outperforming the com-
peting models across various metrics. Our further analyses

emphasize the significance of integrating user behavioral in-
formation into political stance detection and highlight the
effectiveness of skip aggregation in leveraging this valu-
able information. Additionally, we provide evidence of our
model’s robustness in handling short texts through perfor-
mance analysis. We also employ word cloud visualization
to exhibit the prevalent language in tweets supporting or
opposing each candidate. Our contributions can be summa-
rized as follows:
• We collect a large amount of data from Twitter pertain-

ing to the 2020 US presidential election, including tweets
and associated metadata such as authors and retweeters,
and automatically annotate the tweets using manually la-
beled hashtags.

• We propose a GNN-based framework for detecting polit-
ical stances in tweets. Our framework adopts a novel skip
aggregation mechanism to effectively learn behavior-
aware tweet representations from a bipartite graph con-
sisting of user-tweet interactions.

• We conduct an extensive series of experiments and anal-
yses to demonstrate the importance of user behavioral in-
formation and the effectiveness of skip aggregation, both
of which significantly contribute to the superior perfor-
mance of our model over baseline models.

Related Work
Political stance detection falls within the domain of Natural
Language Processing (NLP), involving the analysis of polit-
ical texts to discern the author’s position on specific political
events. Previous research in this area has primarily focused
on several key aspects.

Numerous studies have concentrated on measuring po-
litical leanings in tweets. For instance, Maynard and Funk
(2011) integrated contextual information to extract political
opinions from pre-election tweets. Lai et al. (2017) consid-
ered the context surrounding a target of interest to predict
stances towards those mentioned targets. Chen et al. (2017)
proposed the creation of an opinion-aware knowledge graph
for inferring political ideologies. Kamal, Gullic, and Baga-
vathi (2022) investigated various text representation learning
frameworks and supervised machine learning models to an-
alyze the political leanings expressed in social media posts.
Ng and Carley (2022) explored several crucial aspects re-
lated to cross-dataset model generalization in stance detec-
tion, providing practical guidance on effectively generaliz-
ing models to new data in real-world applications. Xiao et al.
(2023) introduced a method to quantify political polarities in
tweets by assigning polarity scores to entities and hashtags.

Research has also aimed to infer the political alignment
of users on social media platforms. Wong et al. (2016) in-
corporated tweets and retweets, formulating the inference
of Twitter users’ political leanings as a convex optimization
problem. Manickam et al. (2019) introduced a framework
for jointly estimating the ideology of social media users and
news websites. Darwish et al. (2020) developed an unsuper-
vised framework for detecting the stance of prolific Twit-
ter users on controversial topics, employing dimensional-
ity reduction and clustering techniques. Xiao et al. (2020)
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proposed a framework that involves a multi-relational en-
coder and a multi-task decoder for ideology detection on
Twitter. Fagni and Cresci (2022) presented an unsupervised
method for extracting fine-grained political leanings from
social media posts. Jiang, Ren, and Ferrara (2023) leveraged
the retweet network structure and the language used in users’
profile descriptions to estimate the political leanings of so-
cial media users.

Some researchers have worked on predicting voting in-
tentions or election outcomes. Lampos, Preoţiuc-Pietro, and
Cohn (2013) analyzed tweets from the UK and Austria,
successfully predicting voting intentions in numerous polls.
Khatua, Khatua, and Cambria (2020) examined tweets men-
tioning multiple political parties to predict the political opin-
ions of voters in the context of the 2014 Indian General Elec-
tion. Zhou et al. (2021) proposed an opinion tracking method
that leveraged machine learning models and social network
big data analysis to achieve accurate results in the 2019 Ar-
gentina elections. Islam, Roy, and Goldwasser (2023) intro-
duced a weakly supervised approach to identify the stance
and issue of political advertisements on Facebook. Their
study also delved into the temporal dynamics of these po-
litical advertisements in relation to election polls.

Another line of research has focused on detecting politi-
cal perspectives in news articles. Li and Goldwasser (2019)
proposed inferring political perspectives expressed in news
articles by examining document dissemination patterns and
the characteristics of endorsing users, using Graph Convo-
lutional Networks (GCN). Li and Goldwasser (2021b) in-
troduced a framework for pre-training models that leverages
social and linguistic context. They also proposed an entity-
centric framework (Li and Goldwasser 2021a) that incorpo-
rates entity and relation representations learned from exter-
nal knowledge sources and text corpus, utilizing attention
mechanisms to evaluate the importance of article aspects.
Zhang et al. (2022) presented an approach that uses tex-
tual cues as paragraph-level labels and integrates multi-hop
knowledge reasoning for inference.

At present, the integration of Large Language Models
(LLMs) in stance detection is an active area of explo-
ration with considerable promise. Experiments conducted
by Zhang, Ding, and Jing (2022) revealed that ChatGPT ex-
hibits impressive performance on commonly used datasets
while providing explanations for its predictions. However,
Aiyappa et al. (2023) noted improved stance detection with
ChatGPT while expressing concerns about potential data
contamination from its extensive training dataset, thereby
casting doubts on the reliability of evaluations. On the other
hand, Cruickshank and Ng (2023) argued that, although
LLMs may not definitively outperform existing supervised
methods, they offer adaptable stance detection outputs with-
out the need for extensive human annotation. This adapt-
ability opens up new avenues for the application of stance
detection techniques across a diverse range of contexts.

Data
In this study, we focus on the 2020 United States presi-
dential election that took place on November 3, 2020. We
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Users Tweets

@MichelleObama @JoeBiden Voting for Joe 
#VoteBidenHarris2020

Trump must go! #WorstPresidentInHistory

@realDonaldTrump I want Biden as a leader 
#BidenHarris2020

@JoeBiden Absolutely right #PresidentBiden

Figure 2: Example of a user-tweet bipartite graph. The links
represent posting and retweeting behaviors.

crawl tweets posted between October 1, 2020, and Novem-
ber 2, 2020, using the Twitter Streaming API. We filter these
tweets with the query: biden OR trump, corresponding to
the two main candidates from the Democratic Party (Joe
Biden) and the Republican Party (Donald Trump). In total,
we gather 138.9 million tweets in English, along with their
associated metadata.

We annotate the tweets by leveraging the prevalent us-
age of hashtags in tweets, which tend to reflect the stances
expressed throughout the entire tweet. Initially, we iden-
tify the most frequently used hashtags and manually catego-
rize those explicitly expressing support or opposition to one
of the candidates as either pro-Biden or pro-Trump. Hash-
tags opposing one candidate are considered as supporting
the other (e.g., #VoteTrumpOut is categorized as pro-Biden).
We then iteratively expand the hashtag set by discovering
new hashtags significantly related to the initial set through
co-occurrence analysis. After the expansion, the hashtag
set comprises a total of 221 labeled hashtags, with 144 in
support of Biden and 77 in support of Trump. To ensure
the consistency of our hashtag classification, we validate it
through a hashtag co-occurrence network (Martinez-Romo
et al. 2011; Bovet, Morone, and Makse 2018; Zhou et al.
2021). In Figure 1, we showcase a subset of these hashtags
selected based on their frequency of occurrence. Next, we
filter tweets containing at least one hashtag from the hashtag
set. In cases where a tweet contains multiple hashtags, we
retain it only if all the hashtags support the same candidate.
Finally, we annotate each tweet according to the polarity of
the hashtags within it.

To avoid duplicates, we exclude retweets (tweets starting
with “RT @username”) and record retweet information as
metadata for the corresponding original tweets. Addition-
ally, we remove the hashtags used for annotation from tweets
to avoid target leakage, while retaining other hashtags as
they may contain crucial information about the stance. In the
end, our dataset consists of 1,123,749 labeled tweets, with
724,057 supporting Biden and 399,692 supporting Trump.
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Figure 3: Overview of our proposed approach. We illustrate how a target node aggregates information from two sampled
second-order neighbors. The arrows represent the flow of information.

Methodology
User-Tweet Bipartite Graph Construction
In assessing the stance of a tweet, it is essential to consider
not only its content but also its social context (Lai et al.
2017). Therefore, we construct a bipartite graph to model
interactions between users and tweets, where each edge sig-
nifies a user’s behavior towards a tweet. We take into ac-
count both posting and retweeting behaviors, as users of-
ten retweet messages that align with their ideological pref-
erences (Conover et al. 2011; Wong et al. 2016). The result-
ing graph comprises 1,123,749 tweet nodes, 700,507 user
nodes, 1,123,749 post links, and 1,473,818 retweet links.
Since this framework can also accommodate other user be-
haviors such as liking and pinning, we denote the graph as
G = (U , T , E ,R), where U and T represent sets of user
nodes and tweet nodes, respectively. E is the set of edges
connecting nodes from U to T . Additionally, each edge is
assigned a relation type according to the user behavior it sig-
nifies, denoted byR.

In recent times, GNNs have gained considerable trac-
tion for effectively processing such graph-structured data,
exhibiting remarkable performance across various domains
(Lv et al. 2023; Luo et al. 2023). Inspired by this success,
we intend to develop a GNN to derive tweet representations
from the graph and subsequently determine their stances. To
this end, our initial step involves assigning initial features
to the nodes in the graph. Initializing tweet node features is
straightforward, as we can leverage a pre-trained language
model. However, initializing user node features poses a chal-
lenge due to the absence of textual information. To uphold
ethical considerations (Allein, Moens, and Perrotta 2023),
we refrain from utilizing users’ profile descriptions as the
initial features in our approach. Consequently, it becomes
difficult to provide user nodes with appropriate initial fea-
tures that align with tweet nodes.

In a bipartite graph, each node’s first-order neighbors be-
long to a different type than the node itself, while second-
order neighbors share the same type. In simpler terms, a
tweet node’s second-order neighbors in the user-tweet bipar-
tite graph are also tweet nodes. Notably, these tweets tend to
share the same stance as the original tweet. As illustrated in
Figure 2, using users A and B as bridges, tweet A’s second-
order neighbors include tweets B, C, and D, all of which
share similar stances. To leverage this insight, we introduce
a skip aggregation mechanism that enables each tweet node
to aggregate information from its second-order neighbors.
User nodes only serve as bridges during neighborhood sam-
pling, bypassing the initialization problem.

Skip Aggregation Graph Convolution Layer
Modern GNNs commonly employ a two-phase scheme in-
volving aggregation and combination to update node fea-
tures in a graph (Xu et al. 2019). Formally, the l-th layer
of a GNN can be defined as follows:

a(l)v = AGGREGATE(l)
({

h(l−1)
u : u ∈ N (v)

})
,

h(l)
v = COMBINE(l)

(
h(l−1)
v , a(l)v

)
.

(1)

Here, a(l)v represents the aggregated feature of node v’s
neighborhood,N (v) denotes the set of neighboring nodes of
node v, and h

(l)
v is the feature of node v at the l-th iteration.

We initialize h
(0)
v as xv , where xv is the initial feature of

node v.
The choice of functions N (·), AGGREGATE(l)(·), and

COMBINE(l)(·) is a critical aspect of GNN design. To
efficiently train on the large-scale graph, we adopt a ran-
dom walk-based neighborhood sampling strategy. Specifi-
cally, to capture second-order neighbors, we simulate n ran-
dom walks of length 2 for each tweet node in the graph.
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During these walks, we record the visited tweet nodes along
with their corresponding visit frequencies. Consequently, we
define the neighborhood of a tweet node as the top k most
frequently visited tweet nodes across the random walks ini-
tiated from that node.

This approach yields an informative and representative set
of neighboring tweet nodes for each tweet node. Notably,
a tweet node v and its k neighboring tweet nodes form k
unique tweet node pairs {(v, u) : u ∈ N (v)}. Unlike typi-
cal scenarios where only a single edge connects each pair of
nodes, our case involves a more complex structure. Specifi-
cally, each tweet node pair is connected by a user node and
two edges: one edge evv,u links the target tweet node v to
the user node, and the other edge euv,u links the neighbor-
ing tweet node u to the user node. Importantly, due to the
heterogeneity of the user-tweet bipartite graph, these edges
carry specific relation types, such as posting and retweeting.
Different tweet node pairs may exhibit distinct types of evv,u
and euv,u. Hence, effectively leveraging this relational infor-
mation is crucial for enhancing the representation learning
of tweet nodes.

To achieve this, instead of applying a uniform transforma-
tion to all edges, our proposed Skip Aggregation (SA) graph
convolution layer incorporates relation-specific transforma-
tions. For each pair of tweet nodes, a tweet node’s feature
is transformed according to the relation type of the connect-
ing edge, allowing the model to adapt its behavior according
to the edge semantics. Specifically, the SA layer operates as
follows for each tweet node:

a(l)v = Pool
({

σ
([
W

(l)
v,ϕ(evv,u)

· h(l−1)
v

∥W(l)
u,ϕ(euv,u)

· h(l−1)
u

])
: u ∈ N (v)

})
, (2)

h(l)
v = σ

(
W(l)

c · a(l)v

)
, (3)

where ∥ represents concatenation, σ(·) denotes a nonlinear
activation function, and ϕ : E → R is a relation type map-
ping function. W(l)

v,ϕ(evv,u)
,W

(l)
u,ϕ(euv,u)

∈ Rd×d are relation-
specific weight matrices that transform the features of the
target tweet node v and the neighboring tweet node u ac-
cording to the relation types of edges evv,u and euv,u, respec-

tively. W(l)
c ∈ R2d×d combines the concatenated features

for use in the next layer. The Pool operator offers various
pooling options for the representations of tweet node pairs,
including mean, max, sum, weighted sum (Ying et al. 2018),
and LSTM (Hamilton, Ying, and Leskovec 2017).

Figure 3 provides an overview of our proposed approach,
along with details of the SA layer. The SA layer ensures that
the aggregation process incorporates the relational informa-
tion present in the two edges between the target tweet node
and each of its neighboring tweet nodes, enabling more ex-
pressive and accurate modeling of the bipartite graph struc-
ture.

We refer to the GNN model formed by stacking multiple
SA layers as SA-GNN. Algorithm 1 describes the embed-
ding generation process of an L-Layer SA-GNN on a la-
beled bipartite graph G = (U , T , E ,R). The normalization
in Line 10 makes training more stable.

Algorithm 1: SA-GNN embedding generation (i.e., forward
propagation) algorithm

Input: Labeled bipartite graph G(U , T , E ,R); input
features {xv : v ∈ V}; depth L
Output: Vector representations zv for all v ∈ V

1: h
(0)
v ← xv, ∀v ∈ V;

2: for l = 1 . . . L do
3: for v ∈ V do
4: for u ∈ N (v) do
5: a

(l)
v,u ← σ

([
W

(l)
v,ϕ(evv,u)

· h(l−1)
v ∥W(l)

u,ϕ(euv,u)
·

h
(l−1)
u

])
;

6: end for
7: a

(l)
v ← Pool

({
a
(l)
v,u : u ∈ N (v)

})
;

8: h
(l)
v ← σ

(
W

(l)
c · a(l)v

)
;

9: end for
10: h

(l)
v ← h

(l)
v /∥h(l)

v ∥2, ∀v ∈ V;
11: end for
12: zv ← h

(L)
v , ∀v ∈ V ;

Stance Classification and Model Training
Thus far, SA-GNN enables the generation of behavior-aware
representations for each tweet node in the graph. Following
this, to ascertain the political stances of the tweets, these rep-
resentations are processed through a fully connected layer
followed by a sigmoid function to compute the predicted la-
bel probabilities:

ŷi = Sigmoid (W · zi + b) , (4)

where zi is the new representation of tweet node vi gener-
ated by SA-GNN.

In terms of model training, we employ the binary cross-
entropy loss as the objective function:

L = −
∑
vi∈V

yi log ŷi + (1− yi) log (1− ŷi) , (5)

where V represents the set of tweet nodes in the graph.

Experiments
Experimental Settings
Baselines We compare our proposed model1 against a
range of baseline models, which can be broadly classified
into two main categories: text-based methods and graph-
based methods. Within the realm of graph-based methods,
we further distinguish between two subcategories: random
walk-based methods and GNN-based methods.

• TextCNN (Kim 2014) is a Convolutional Neural Net-
work (CNN) architecture used for text classification and
sentiment analysis, utilizing convolutional filters to ex-
tract meaningful features from textual data.

• fastText (Bojanowski et al. 2017) is a library for text
classification and word embedding that uses character-
level embeddings and employs a shallow neural network.
1https://github.com/Crysta1ovo/SA-GNN
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• BERT (Devlin et al. 2019) is a pre-trained language
model that has revolutionized natural language under-
standing and generation tasks by capturing contextual in-
formation bi-directionally.

• DeepWalk (Perozzi, Al-Rfou, and Skiena 2014) learns
node embeddings by treating random walks on a graph
as sentences.

• node2vec (Grover and Leskovec 2016) extends Deep-
Walk by introducing a flexible exploration strategy, al-
lowing nodes to be embedded based on both breadth-first
and depth-first random walks.

• metapath2vec++ (Dong, Chawla, and Swami 2017) is
designed for heterogeneous information networks and
learns node embeddings by defining metapaths that cap-
ture the rich semantics of connections between different
types of nodes.

• FeatWalk (Huang et al. 2019) generates node embed-
dings by considering both network structure and node
content information through random walks and feature
learning.

• BiNE (Gao et al. 2018) embeds node in a bipartite graph
by considering both explicit relations and high-order im-
plicit relations.

• GCN (Kipf and Welling 2017) is a neural network archi-
tecture that operates directly on graph-structured data by
aggregating and updating node representations based on
their local neighborhood.

• GAT (Velickovic et al. 2018) extends GCN by introduc-
ing attention mechanisms to assign different importance
scores to neighboring nodes during the aggregation step.

• GraphSAGE (Hamilton, Ying, and Leskovec 2017) is a
graph representation learning method that samples and
aggregates information from a node’s neighborhood to
generate embeddings that capture both local and global
graph structure.

• GIN (Xu et al. 2019) incorporates an isomorphism-
insensitive readout function, making it particularly effec-
tive for tasks where graph structure matters more than
node attributes.

• RGCN (Schlichtkrull et al. 2018) extends GCN to han-
dle graphs with multiple types of relationships by incor-
porating relational information into the convolutional op-
erations, allowing for more expressive graph representa-
tions.

• RGAT (Busbridge et al. 2019) is a variation of GAT
that incorporates relational information into the attention
mechanism, enabling it to capture complex patterns in
graphs with multiple types of edges and relationships.

• HGT (Hu et al. 2020) is a transformer-based model
specifically designed for handling heterogeneous graphs,
employing node- and edge-type specific parameters to ef-
fectively capture diverse attention patterns across differ-
ent edges in the graph.

• L-BGNN (Xie et al. 2022) aggregates information from
both partitions of a bipartite graph by adopting inter-
domain message passing and intra-domain alignment.

Implementation Details For the BERT baseline, we fine-
tune the pre-trained BERTbase model for 5 epochs, using a
learning rate of 5e-5. The BERTbase model consists of 12 lay-
ers, each with 768 hidden units. We train the random walk-
based baselines with an embedding size of 128 and a learn-
ing rate of 1e-2. The context window size around each node
in a random walk is set to 5, and we use 5 negative samples
for each positive sample. Both the GNN-based baselines and
SA-GNN have a hidden size of 768 and are trained for 5
epochs with a learning rate of 1e-3.

In terms of node initialization, both the GNN-based base-
lines and our proposed SA-GNN require the initialization
of tweet node features. To achieve this, we employ a pre-
trained BERTbase model to encode the content of tweets. The
resulting encoded representations serve as the initial features
for the corresponding tweet nodes in the graph. Notably,
since SA-GNN omits the use of user node features, only the
GNN-based baselines require the initialization of user node
features. In these instances, the feature of each user node is
initialized with the average of the features of tweet nodes in
its neighborhood, which has been experimentally verified to
be superior to random initialization.

All models are trained on a Tesla V100. Due to the enor-
mity of the graph, it is infeasible to fit the features of all
nodes into the GPU. Therefore, we perform stochastic mini-
batch training using the neighborhood sampling technique.
For the GNN-based baselines, we randomly select 5 neigh-
bors per layer. As for SA-GNN, we sample neighbors us-
ing a random walk-based strategy, as previously described.
Specifically, we simulate 10 random walks and select the top
5 most frequently visited tweet nodes per layer.

We consider Accuracy, F1 score, and AUC as evaluation
metrics to quantitatively evaluate model performance. The
training process involves training the model on the training
set and selecting the best-performing model based on its per-
formance on the validation set. We allocate 80% of the in-
stances for training, 10% for validation, and another 10%
for testing. To ensure the reliability and robustness of our
results, we repeat the experiment 5 times and report the av-
erage performance.

Main Results
In this section, we conduct a comprehensive evaluation of
our proposed SA-GNN, comparing it with various baseline
methods using different feature sets. The results, summa-
rized in Table 1, showcase the exceptional performance of
SA-GNN, surpassing all other methods with the incorpora-
tion of all available features. SA-GNN demonstrates remark-
able results, achieving an accuracy of 92.57%, an F1 score
of 89.35%, and an AUC of 91.47%.

Among the text-based baselines, BERT performs the best,
outperforming TextCNN and fastText. BERT achieves an ac-
curacy of 90.70%, an F1 score of 86.67%, and an AUC of
89.43%. When incorporating textual information, FeatWalk
outperforms other random walk-based baselines, with an ac-
curacy of 81.14%, an F1 score of 71.24%, and an AUC of
77.67%.

The GNN-based baselines consistently outperform the
random walk-based baselines by leveraging both text and

1212



Method Feature Performance

Text Graph Relation Bipartition Acc. F1 AUC

TextCNN ✓ 0.7984 ± 0.05 0.6961 ± 0.14 0.7650 ± 0.10
fastText ✓ 0.7420 ± 0.12 0.5724 ± 0.15 0.6846 ± 0.08
BERT ✓ 0.9070 ± 0.04 0.8667 ± 0.07 0.8943 ± 0.08

DeepWalk ✓ 0.8106 ± 0.03 0.6678 ± 0.12 0.7489 ± 0.06
node2vec ✓ 0.8191 ± 0.06 0.6856 ± 0.11 0.7598 ± 0.07
metapath2vec++ ✓ ✓ 0.8072 ± 0.04 0.6493 ± 0.10 0.7388 ± 0.06
FeatWalk ✓ ✓ 0.8114 ± 0.03 0.7124 ± 0.09 0.7767 ± 0.07
BiNE ✓ ✓ 0.7850 ± 0.07 0.6572 ± 0.15 0.7390 ± 0.10

GCN ✓ ✓ 0.9124 ± 0.04 0.8734 ± 0.08 0.8984 ± 0.09
GAT ✓ ✓ 0.9161 ± 0.05 0.8794 ± 0.07 0.9034 ± 0.07
GraphSAGE ✓ ✓ 0.9151 ± 0.06 0.8780 ± 0.07 0.9026 ± 0.06
GIN ✓ ✓ 0.9148 ± 0.06 0.8775 ± 0.08 0.9020 ± 0.07
RGCN ✓ ✓ ✓ 0.9177 ± 0.08 0.8820 ± 0.05 0.9057 ± 0.06
RGAT ✓ ✓ ✓ 0.9180 ± 0.06 0.8830 ± 0.07 0.9072 ± 0.09
HGT ✓ ✓ ✓ 0.9183 ± 0.04 0.8826 ± 0.07 0.9060 ± 0.06
L-BGNN ✓ ✓ ✓ 0.9128 ± 0.06 0.8744 ± 0.10 0.8994 ± 0.08

SA-GNN ✓ ✓ ✓ ✓ 0.9257 ± 0.04 0.8935 ± 0.08 0.9147 ± 0.05
SA-GNNw/o relation ✓ ✓ ✓ 0.9240 ± 0.06 0.8911 ± 0.07 0.9129 ± 0.07

Table 1: Performance comparison of various methods. We conduct five trials with different random seeds and report the mean
and standard deviation of the results on the test set. The best result in each metric is indicated in bold, while the second-best
result is underlined. The checkmark (✓) indicates the presence of a feature in a particular method.

Method Acc. F1 AUC

SA-GNNmax 0.9257 ± 0.04 0.8935 ± 0.08 0.9147 ± 0.05
SA-GNNmean 0.9218 ± 0.05 0.8880 ± 0.06 0.9106 ± 0.08
SA-GNNsum 0.9232 ± 0.06 0.8897 ± 0.10 0.9115 ± 0.06
SA-GNNwsum 0.9211 ± 0.04 0.8867 ± 0.08 0.9092 ± 0.05
SA-GNNLSTM 0.9254 ± 0.02 0.8931 ± 0.05 0.9144 ± 0.07

Table 2: Performance comparison when using different
pooling functions.

graph features. Notably, HGT and RGAT, which addition-
ally incorporate relational information, stand out among the
GNN-based baselines. HGT achieves an impressive accu-
racy of 91.83%, while RGAT attains the highest F1 score of
88.30% and AUC of 90.72%.

We also evaluate a variant of our model that does not
utilize relational information, aggregating information from
second-order neighbors without considering the two edges
between each tweet node pair. The results indicate that the
ablated model, SA-GNNw/o relation, achieves the second-best
performance but still maintains a notable performance gap
compared to the complete model in all aspects.

In Table 2, we analyze the performance of our model
when using different pooling functions. Our analysis encom-
passes mean, max, sum, weighted sum, and LSTM pooling
techniques. Remarkably, the max function emerges as the
most effective among these options, underscoring the sig-
nificance of selecting appropriate pooling strategies in en-
hancing our model’s performance.

Performance Analysis
Effect of User Behavioral Information To evaluate the
effect of user behavioral information on performance, we
perform a comparative analysis between GNN-based meth-
ods and the BERT baseline. User behavioral information
holds significance as it provides valuable contextual cues
and insights into user preferences. GNN-based methods
leverage this information through a user-tweet bipartite
graph, with edges representing users’ behaviors towards
tweets. In addition to textual data, the GNN-based methods
additionally leverage the graph structure to capture inter-
actions between users and tweets, resulting in a noticeable
enhancement in performance. Overall, the consistently su-
perior performance of GNN-based methods over the BERT
baseline underscores the critical importance of incorporating
user behavioral information into the task of political stance
detection.

Effect of Skip Aggregation Skip aggregation enables
the effective aggregation of information from second-order
neighbors in the user-tweet bipartite graph. This addresses
the challenge of initializing user node features in the ab-
sence of textual information. In this section, we analyze the
performance of SA-GNN in comparison to the GNN-based
baselines, which initialize user node features heuristically
by averaging the features of their neighboring tweet nodes
in the graph. The results consistently demonstrate that SA-
GNN outperforms all GNN-based baselines across all eval-
uation metrics, highlighting the effectiveness of skip aggre-
gation in leveraging user behavioral information. Moreover,
even when we exclude the utilization of relational informa-
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Figure 4: Performance analysis results in terms of tweet
length.

tion (as demonstrated by SA-GNNw/o relation in Table 1), our
model’s performance remains superior to that of the GNN-
based baselines. These findings underscore the indispens-
able contribution of skip aggregation to the outstanding per-
formance achieved by SA-GNN.

Effect of Relational Information To assess the effect of
relation information and the capacity of SA-GNN to utilize
such information, we conduct a comparison involving SA-
GNN and its variant SA-GNNw/o relation, as well as RGAT.
The results, as presented in Table 1, clearly illustrate a no-
table disparity between SA-GNN and its variant, which con-
firms our intuition that the information contained in the two
edges between the tweet node pair is indeed valuable. Sim-
ilar trends are discernible when comparing RGAT to GAT,
which further demonstrates that incorporating relational in-
formation can lead to certain improvements. Notably, SA-
GNN surpasses RGAT by considerable margins, achieving
improvements of 0.77, 1.05, and 0.75 points in terms of Ac-
curacy, F1 score, and AUC, respectively. These results in-
dicate that SA-GNN exhibits superior efficacy in leveraging
relational information, thereby enabling more effective uti-
lization of user behavioral information.

Performance on Short Texts This section presents a per-
formance analysis to explore the capabilities of SA-GNN
specifically when applied to short texts. We begin by exam-
ining the distribution of tweet lengths in our dataset. The
length of a tweet is defined as the number of sub-word to-
kens split by the WordPiece tokenizer used in BERT. Statis-
tics indicate that approximately 30% of the tweets in our
dataset have a length no greater than 32, which we categorize
as short texts. Subsequently, we compare the performance of
SA-GNN with that of BERT on these short texts. Figure 4 il-
lustrates the performance trends for both models.

Notably, BERT exhibits a significant decline in per-
formance when dealing with short texts. Conversely, SA-
GNN demonstrates remarkable stability, experiencing only
a marginal reduction in performance. This noteworthy out-
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Figure 5: Impact of model depth on performance.

come can be attributed to SA-GNN’s effective utilization of
user behavioral information. In general, tweets tend to devi-
ate from strict grammatical rules and, when even short, in-
herently contain limited linguistic features, often lacking the
necessary context. Consequently, determining the stances
expressed in such tweets based solely on their content be-
comes challenging, resulting in BERT’s underperformance.
In contrast, SA-GNN mitigates this challenge by leveraging
the graph structure, aggregating information from other rel-
evant tweets through graph convolution. This approach en-
riches the representation of short texts and empowers the
classifier to capture stances based on more comprehensive
information.

Impact of Model Depth In this part, we investigate the
impact of model depth on the performance of SA-GNN and
two GNN-based baseline models: HGT and RGAT. We ex-
plore a range of depths, spanning from 1 to 6, and present
the accuracy trends of the three models on the test set in
Figure 5.

In general, we observe that the performance of all three
models improves with increasing model depth, up to a cer-
tain point. SA-GNN achieves its peak performance with
3 layers, while HGT and RGAT exhibit their best perfor-
mance with 5 and 4 layers, respectively. Notably, the perfor-
mance of 1-layer HGT and RGAT falls significantly short
when compared to their performance with multiple lay-
ers. This discrepancy can be explained by the fact that 1-
layer GNN-based baseline models only aggregate informa-
tion from first-order neighbors, which primarily consist of
user nodes containing limited information. Consequently,
their performance is even worse than the BERT baseline.

Furthermore, given that SA-GNN aggregates information
from second-order neighbors, the GNN-based baselines re-
quire twice as many layers as SA-GNN to capture a compa-
rable amount of relevant tweet information. However, as the
number of layers increases, issues such as vanishing gradient
and over-smoothing gradually emerge, leading to a decline
in performance.
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Pro-Biden Pro-Trump

Trigram r Trigram r

covid covid covid 0.542 president donald trump 0.485
joe biden president 0.506 trump trump trump 0.562
vote joe biden 0.473 make america great 0.598
removal office legal 0.431 god bless america 0.569
fascist donald trump 0.577 love president trump 0.659
vote biden harris 0.566 love mr president 0.597
health care plan 0.430 god bless president 0.570
vote vote vote 0.539 vote president trump 0.579
super spreader event 0.583 keep america great 0.589
vote life depends 0.565 vote donald trump 0.570

Table 3: Top ten most frequent trigrams in each stance cate-
gory and their Pearson correlation coefficients with respec-
tive categories.

Descriptive Analysis
In this section, we provide a descriptive analysis of our
dataset, aiming to uncover prevalent language patterns in
tweets supporting or opposing each candidate.

To commence, we extract the top ten most frequently oc-
curring trigrams in both pro-Biden and pro-Trump tweets,
respectively. Subsequently, we assess the statistical signif-
icance of these trigrams by calculating the Pearson corre-
lation coefficient between the tweets within each category
and the trigrams generated by the corresponding category of
tweets (Islam, Roy, and Goldwasser 2023). This calculation
is grounded in BERT embeddings. The summarized results
are presented in Table 3.

Upon a thorough examination of Table 3, several key find-
ings emerge. Pro-Biden tweets prominently feature trigrams
such as joe biden president, vote joe biden, vote biden harris,
which indicate strong support for Joe Biden. Additionally,
some trigrams express opposition to Donald Trump, as seen
in removal office legal and fascist donald trump. These tri-
grams reflect the criticism of Trump’s presidency. Trump’s
handling of the COVID-19 pandemic is a frequent target of
criticism, evident in trigrams like covid covid covid and su-
per spreader event.

In contrast, pro-Trump tweets frequently include trigrams
like president donald trump, trump trump trump, make
america great, and god bless america, underscoring enthusi-
astic support for Donald Trump. Supporters emphasize their
desire for Trump’s re-election through trigrams like vote
president trump and keep america great. Notably, unlike
the pro-Biden category, there are no prominent trigrams ex-
pressing opposition to Joe Biden.

To visually represent the qualitative differences between
the two categories, we create word clouds in Figure 6 to
showcase the most commonly used words in the tweets. In
these word clouds, the size of each word corresponds to
its frequency of occurrence. The word cloud for pro-Biden
tweets prominently features terms like vote and covid, re-
flecting the energetic pre-election campaigning by Biden’s
supporters and their criticism of Trump’s pandemic re-
sponse. Conversely, the word cloud for Pro-Trump tweets
emphasizes words such as president and vote, highlight-

(a) pro-Biden

(b) pro-Trump

Figure 6: Word clouds for each stance category.

ing the fervent desire among Trump supporters for his re-
election.

Limitations
While leveraging SA-GNN to derive behavior-aware tweet
representations from the user-tweet bipartite graph has
yielded substantial improvements in performance, we ac-
knowledge that it has certain limitations that warrant con-
sideration.

Primarily, our SA-GNN model is designed around the
construction of the user-tweet bipartite graph, making it
less suitable for datasets comprised solely of text. To effi-
ciently annotate large-scale tweets in our dataset, we em-
ploy a hashtag-based automatic annotation method, which
inevitably introduces some noise. Additionally, a notable
limitation arises when dealing with tweets that are less pop-
ular or posted by inactive users on the platform. In such sce-
narios, the model’s ability to aggregate information during
the graph convolution phase is constrained due to the lim-
ited availability of relevant tweets. As a result, the model’s
performance may suffer as it lacks access to an adequate
amount of information. Similarly, for newly posted tweets
beyond the scope of our initial data collection, their authors
or retweeters may not be included in the previously con-
structed bipartite graph, posing challenges for our model in
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Figure 7: Performance analysis results in terms of the num-
ber of second-order neighbors of tweets in the graph.

making precise inferences.
To substantiate our concerns about these limitations, we

conduct a performance analysis. Specifically, we compare
the performance of SA-GNN and BERT across tweets with
varying numbers of second-order neighbors in the graph. As
shown in Figure 7, the performance of BERT, unaffected
by graph-related factors, demonstrates an upward trend as
the number of second-order neighbors increases. This ob-
servation suggests that tweets with more neighbors in the
graph often exhibit clearer stances or employ more formal
language, enabling the model to make more accurate predic-
tions. However, the performance of SA-GNN experiences a
notable decline for tweets with no more than 3 second-order
neighbors, even falling below that of BERT. This perfor-
mance deterioration aligns with a common challenge faced
by GNNs, which tend to exhibit bias against low-degree
nodes in the graph (Tang et al. 2020).

While BERT’s performance is inferior to graph-based
models, it offers greater flexibility and efficiency as it relies
solely on the linguistic information within the tweet. There-
fore, we have plans to address these limitations in the fu-
ture by integrating user behavioral information into BERT.
This could be achieved through the design of novel pre-
training objectives or the utilization of contrastive learning
techniques. By doing so, we aim to develop a more flexible
and efficient political stance detection model while main-
taining a high level of performance.

Conclusion
In this study, we embark on the task of detecting politi-
cal stances in tweets related to the 2020 US presidential
election. To support our research, we curate a large-scale
dataset sourced from Twitter, annotating it using hashtags as
indicators of political polarity. Our developed GNN-based
framework incorporates a novel skip aggregation mecha-
nism, enabling the extraction of behavior-aware tweet repre-
sentations from a user-tweet bipartite graph. Through exten-

sive experiments on our annotated dataset, our model con-
sistently demonstrates its superiority over various state-of-
the-art models in the field. Additionally, we conduct thor-
ough analyses to underscore the robustness of our frame-
work when applied to short texts. Furthermore, we present
compelling visualizations to showcase the prevailing lan-
guage observed within our dataset. In closing, we discuss
the limitations of our work and propose promising avenues
for future research.

Ethical Considerations
This paper primarily focuses on the 2020 US presidential
election, analyzing the stances expressed in election-related
tweets regarding the candidates. Our approach, involving
hashtag-based annotation and bipartite graph analysis, is
adaptable and can be readily applied to other political events,
such as the upcoming 2024 US presidential election. How-
ever, it is important to acknowledge that the misclassifica-
tion made by our approach may affect the prediction of elec-
tion outcomes and the assessment of the political landscape.

Our dataset is sourced from the Twitter platform. How-
ever, Twitter users are not representative of the entire U.S.
population. They tend to be younger, more urban, and more
politically engaged. This demographic bias may potentially
skew the results of downstream tasks including election pre-
diction.

We uphold ethical principles by refraining from exploit-
ing user information, such as profile descriptions, to ini-
tialize features for user nodes in the graph. Instead, our
model allows tweet nodes to aggregate information from
second-order neighbors in the graph, comprised of other
tweet nodes. Nevertheless, safeguarding the privacy of the
dataset is of utmost importance to prevent the inadvertent
disclosure of personal information. To ensure privacy pro-
tection, we have implemented stringent measures that in-
clude the removal or obfuscation of any personally identi-
fiable information, including usernames and any other sen-
sitive data that could potentially be used to identify individ-
uals.

We strongly emphasize that our research should never be
used for malicious intent or inappropriate purposes. Specifi-
cally, we discourage any attempt to use our findings to target
individuals or groups based on their political beliefs.
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1. For most authors...

(a) Would answering this research question advance sci-
ence without violating social contracts, such as violat-
ing privacy norms, perpetuating unfair profiling, exac-
erbating the socio-economic divide, or implying disre-
spect to societies or cultures? Yes.

(b) Do your main claims in the abstract and introduction
accurately reflect the paper’s contributions and scope?
Yes, see the Abstract and the end of the Introduction.

1218



(c) Do you clarify how the proposed methodological ap-
proach is appropriate for the claims made? Yes, see the
Methodology.

(d) Do you clarify what are possible artifacts in the data
used, given population-specific distributions? Yes, see
the Ethical Considerations.

(e) Did you describe the limitations of your work? Yes,
see the Limitations.

(f) Did you discuss any potential negative societal im-
pacts of your work? Yes, see the Ethical Considera-
tions.

(g) Did you discuss any potential misuse of your work?
Yes, see the Ethical Considerations.

(h) Did you describe steps taken to prevent or mitigate po-
tential negative outcomes of the research, such as data
and model documentation, data anonymization, re-
sponsible release, access control, and the reproducibil-
ity of findings? Yes, see the Ethical Considerations.

(i) Have you read the ethics review guidelines and en-
sured that your paper conforms to them? Yes.

2. Additionally, if your study involves hypotheses testing...

(a) Did you clearly state the assumptions underlying all
theoretical results? NA

(b) Have you provided justifications for all theoretical re-
sults? NA

(c) Did you discuss competing hypotheses or theories that
might challenge or complement your theoretical re-
sults? NA

(d) Have you considered alternative mechanisms or expla-
nations that might account for the same outcomes ob-
served in your study? NA
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(g) Did you discuss the implications of your theoretical
results for policy, practice, or further research in the
social science domain? NA

3. Additionally, if you are including theoretical proofs...

(a) Did you state the full set of assumptions of all theoret-
ical results? NA

(b) Did you include complete proofs of all theoretical re-
sults? NA

4. Additionally, if you ran machine learning experiments...

(a) Did you include the code, data, and instructions
needed to reproduce the main experimental results (ei-
ther in the supplemental material or as a URL)? Yes, in
order to preserve anonymity, our intention is to make
our code accessible via a URL upon the acceptance of
our paper.

(b) Did you specify all the training details (e.g., data splits,
hyperparameters, how they were chosen)? Yes, see the
Implementation Details in the Experiments.

(c) Did you report error bars (e.g., with respect to the ran-
dom seed after running experiments multiple times)?
Yes, see the Table 1.

(d) Did you include the total amount of compute and the
type of resources used (e.g., type of GPUs, internal
cluster, or cloud provider)? Yes, see the Implementa-
tion Details in the Experiments.

(e) Do you justify how the proposed evaluation is suffi-
cient and appropriate to the claims made? Yes, see the
Main Results and the Performance Analysis in the Ex-
periments. Our evaluation not only demonstrates the
superior performance of our model in comparison to
baseline models through comparative experiments, but
it also provides a thorough assessment of each compo-
nent’s substantial contribution to our model.

(f) Do you discuss what is “the cost“ of misclassification
and fault (in)tolerance? Yes, see the Ethical Consider-
ations.

5. Additionally, if you are using existing assets (e.g., code,
data, models) or curating/releasing new assets, without
compromising anonymity...

(a) If your work uses existing assets, did you cite the cre-
ators? NA

(b) Did you mention the license of the assets? NA
(c) Did you include any new assets in the supplemental

material or as a URL? NA
(d) Did you discuss whether and how consent was ob-

tained from people whose data you’re using/curating?
NA

(e) Did you discuss whether the data you are using/cu-
rating contains personally identifiable information or
offensive content? NA

(f) If you are curating or releasing new datasets, did you
discuss how you intend to make your datasets FAIR?
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(g) If you are curating or releasing new datasets, did you
create a Datasheet for the Dataset? NA

6. Additionally, if you used crowdsourcing or conducted
research with human subjects, without compromising
anonymity...

(a) Did you include the full text of instructions given to
participants and screenshots? NA

(b) Did you describe any potential participant risks, with
mentions of Institutional Review Board (IRB) ap-
provals? NA

(c) Did you include the estimated hourly wage paid to
participants and the total amount spent on participant
compensation? NA

(d) Did you discuss how data is stored, shared, and dei-
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