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Abstract

Computational audits of social media websites have gener-
ated data that forms the basis of our understanding of the
problematic behaviors of algorithmic recommendation sys-
tems. Focusing on YouTube, this paper demonstrates that
conducting audits to make specific inferences about the un-
derlying content recommendation system is more method-
ologically challenging than one might expect. Obtaining sci-
entifically valid results requires considering many method-
ological decisions, and each of these decisions incurs costs.
For example, should an auditor use logged-in YouTube ac-
counts while gathering recommendations to ensure more ac-
curate inferences from the collected data? We systematically
explore the impact of this and many other decisions and make
important discoveries about the methodological choices that
impact YouTube’s recommendations. Taken together, our re-
search suggests auditing configurations that can be used by
researchers and auditors to reduce economic and computing
costs, without sacrificing inference quality and accuracy.

1 Introduction
The importance of auditing content recommendation
systems is increasing. As social media platforms and the
algorithms they employ continue to strongly influence our
sociopolitical realities, auditing them (accurately) has be-
come increasingly important. After all, effective regulation
around online platforms and their algorithms will rely sig-
nificantly on audits of algorithmic recommendation systems
(WH2 2022) and their role in influencing problematic soci-
etal behaviors such as political polarization (Barberá 2020),
misinformation spread (Hussein, Juneja, and Mitra 2020),
and others. For example, focusing on the YouTube platform,
researchers have uncovered several concerning aspects of al-
gorithmic recommendations systems, including the propen-
sity to create filter-bubbles (Tomlein et al. 2021), recom-
mend age-inappropriate content (Papadamou et al. 2019),
misinformation (Tomlein et al. 2021; Hussein, Juneja, and
Mitra 2020), and even extremist content (Ribeiro et al. 2020;
Papadamou et al. 2020). However, contradictions are fre-
quently found in these prior research efforts — e.g., re-
searchers have claimed that the YouTube recommendation
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system exhibits mainstreaming (i.e., promoting popular con-
tent over niche content) effects (Ledwich and Zaitsev 2019)
as well as the contrasting tendency to promote more niche
and extreme content (Ribeiro et al. 2020). Formulating ef-
fective regulation and developing a meaningful understand-
ing of the impact of algorithms on society is challenging in
these scenarios where contradictory findings are common-
place in algorithm studies. This work uses YouTube as a case
study to show (1) that auditing methods are one source for
such contradictory results and (2) approaches for measuring
the influence of methods on audit inferences.
Conceptually, designing a recommendation algorithm
audit is simple. Researchers rely on the “sock puppet” au-
dit approach (Sandvig et al. 2014) due to the opacity of the
algorithms being audited. The audit can generalize to the
following three-step process.
1. Create sock-puppets. Researchers create sock-puppets
(i.e., personas) that aim to impersonate real human users.
The goal is to use automation tools, typically web crawlers,
to provide the underlying recommendation system a set of
interactions from which it may learn certain characteristics
about the sock puppet. In the context of YouTube, this may
involve having the sock-puppet load a set of videos (referred
to as the training set) that provide a base from which the
recommendation algorithms learn user preferences.
2. Measure the recommendation tree. The sock puppet per-
forms a seed interaction with the algorithm in this step. This
interaction generates recommendations that form the first
layer of the recommendation tree. Recursively interacting
with these recommendations creates a deeper tree of recom-
mendations. Applied to YouTube, this step involves provid-
ing the sock-puppet with a seed video from which all recom-
mendations are gathered. This is followed by then loading
the videos associated with each of these recommendations
themselves to fill the recommendation tree.
3. Hypothesis testing. Finally, researchers test hypotheses
and make inferences about the underlying recommendation
algorithm. This is done by statistical analysis of the recom-
mendation trees associated with different sock puppets.
In practice, algorithm audits are challenging and force
methodological compromises. Although simple at first
glance, researchers often overlook the influence of key de-
cisions in each step of the sock puppet auditing process.
For example, when conducting crawls to construct sock pup-
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pets, researchers are faced with the decisions of what videos
to use as part of their sock puppet training set, how many
videos to include in this training set, and what video to use as
their seed, among others. The uncertainty about the impact
that each video might have on the gathered recommenda-
tions makes these decisions challenging. Complicating mat-
ters, even when rigorous and sound rationale are applied to
the above questions, methodological rigor is associated with
high dollar and computational costs.
Methodological compromises due to high dollar costs. On-
line platforms, including YouTube, make it difficult to auto-
mate the creation of the required number of accounts for a
meaningful audit. Often, web automation tools seeking to
create accounts will encounter CAPTCHAs, face outright
blocking, or require verifiable phone numbers. Circumvent-
ing these challenges can have prohibitively high costs, forc-
ing compromises that can impact the validity of inferences
made from the audit. For example, researchers may simply
associate each sock-puppet with a unique browser (cookie)
and bypass the difficulties (and high costs) associated with
obtaining verifiable phone numbers for each sock-puppet.
However, such circumvention is done with the assumption
that the accuracy of any inferences drawn from the audit
are not harmed — i.e., they operate on the assumption that
YouTube’s algorithms treat logged-in users the same as non-
logged-in users with YouTube’s cookie in their browser.
Methodological compromises due to high computational
costs. YouTube crawlers encounter large numbers of hour-
long (or longer) videos, which makes crawling computation-
ally expensive and time consuming. This, combined with the
need to gather large amounts of data for statistically sound
hypothesis testing, can require 1000’s of hours of machine
time for a single audit. Thus, an auditor faces many dilem-
mas: Should one pay the high computational costs associ-
ated with watching the entirety of each video? Should one
traverse all paths of the recommendation tree to make valid
conclusions? Although sampling sections of the tree and not
watching videos to completion are tractable alternatives, it
is unclear if and how these alternatives will impact the rec-
ommendations gathered by the crawl/audit.

Simply put, there are limited guidelines for sock-puppet-
style audits on platforms such as YouTube. In this paper, we
focus on YouTube and fill this gap. We do this by answering
the following research questions.
RQ1. What is the relationship between sock-puppet
training set, recommendation seed, and recommendation
trees? (§3) We begin by studying the impact that the train-
ing set and seed have on the recommendation trees they gen-
erate. Specifically, we conduct an experiment in which we
train four sets of sock-puppets using all combinations of two
distinctly different seeds and training sets. We then analyze
the recommendation trees they generate to understand how
recommendations change with alterations to the seed and
training set. Our results show that recommendations have
a strong recency bias. Consequently, the choice of recom-
mendation seed is significantly more impactful than choice
of training set.
RQ2. What is the impact of reducing dollar costs during
audits? (§4) We investigate the consequences of one of the

most commonly observed cost-saving measures adopted by
YouTube auditors — avoiding the use of real YouTube ac-
counts for each sock-puppet and instead relying on browser
cookies to leak a sock-puppet’s identity to YouTube. We
conduct this analysis by comparing the recommendation
trees generated by four sets of sock-puppets that reflect com-
monly observed practices in audit research. These sets of
sock-puppets are identical in every way except for their
method of maintaining YouTube account ‘state.’ Our results
highlight the feasibility of relying on cheaper alternatives to
expensive-to-obtain real YouTube accounts during audits.
RQ3. What is the impact of reducing computational
costs during audits? (§5) Finally, we consider the con-
sequences of compromises that are associated with reduc-
ing computational costs. We specifically focus on the im-
pact of time spent on each sock-puppet training video and
the depth/breadth of recommendation tree exploration. We
do so by training sets of sock-puppets that “watch” videos
to varying levels of completion and measuring the differ-
ences in their gathered recommendation trees. We then study
the characteristics of the nodes sampled from all recommen-
dation trees gathered in our study to identify differences in
their properties based on their location in the tree. Our re-
sults show that several cost-saving mechanisms are possible
for auditors, including only watching videos partially.

2 Methodology
We conduct several experiments (Cf. Table 1) in which we
systematically alter specific audit parameters to uncover
their impacts on the recommendation trees they generate.
Here, we describe our audit configurations and methods for
assessing parameter impact.

2.1 Configuration Parameters
Sock-puppet training sets (Tniche, Tmain). In all experi-
ments, we begin by training our sock-puppets with videos ei-
ther belonging to a niche (Tniche) or a mainstream collection
of videos (Tmain). Although prior work found that 22 videos
were enough to personalize the YouTube recommendations
(Papadamou et al. 2021), we decided to use 32 videos1 to
ensure the validity of our study.
Niche training set (Tniche). The videos in Tniche were manu-
ally curated to represent unpopular (i.e., lower number of
views) and fringe (e.g., conspiracy theories) content. The
videos in this set were chosen from fringe subreddits such as
r/climateskeptics and r/theworldisflat, among others. We ex-
tracted all the videos from these subreddits and manually se-
lected eight non-mainstream topic-specific videos from each
subreddit for addition to Tniche. On average, videos in Tniche
had received 25K views.
Mainstream training set (Tmain). Each video in Tmain was
manually curated to cover the same topic as its niche coun-
terpart, except that they were sourced from a YouTube
search of the topic (e.g., ‘flat earth debunked’) associated
with Tniche topics (e.g., ‘flat earth’). The eight most popu-
lar videos from the search results (based on views) were se-

1The full list of videos in each training set is available at: https:
//osf.io/3j5u8/?view_only=c2e21b99dbc3470e86bc9e904b39e6d3
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lected. On average, videos in Tmain had 5.9M views. This
approach of training set construction maintains similarity of
topics while offering sharply differing popularity inputs to
the recommendation algorithms. This ensures that any effect
of training set popularity is measurable.
Recommendation tree seeds (sniche and smain). Seed videos
are the starting point from which recommendation trees are
gathered (i.e., the root of the recommendation tree). We used
one of two seeds (sniche and smain), signifying a niche and
mainstream video, which were selected based on the intu-
ition that they would have sharply differing impacts on the
recommendation tree. The sniche video used in our exper-
iments was a fringe and unpopular video with 7.1K views
and smain was a popular mainstream video with over 3.8M
views. The topics of the seed videos were intentionally cho-
sen (1) to not overlap with the any of the videos from the
Tmain or Tniche so that effects from the training sets could be
distinguished from those of the seed, and (2) to not over-
lap with each other, on topic or popularity characteristics,
to maximize any measurable differences between their rec-
ommendation trees. Observing an absence of differences in
recommendation trees generated from sniche and smain would
indicate that the seed has a marginal influence on the ob-
served recommendations.
Account status parameters (Alogin,Acookies, andAclear). To
improve our understanding about whether the recommenda-
tion algorithm works differently when audits operate under
different YouTube account configurations, we gather recom-
mendation trees using three different types of account con-
figurations. (1)Alogin represents audits in which crawlers are
logged into freshly created YouTube accounts before train-
ing and recommendation gathering begins. This is represen-
tative of the ideal case where each sock-puppet has its own
fresh YouTube account. (2) Acookies represents audits where
crawlers are not logged-in but maintain YouTube’s cookies
in their browser throughout the crawl. This is representative
of the most common crawls observed in audit literature. (3)
Aclear represents audits where crawlers conduct crawls while
logged-in and clear their watch history before the same ac-
count is used for another crawl. This approach is used to
allow account reuse by different sock-puppets.
Watch times (W100pc, W50pc, W25pc, W10pc). Training sock-
puppets can be computationally expensive owing to the long
lengths of videos typically contained within the training sets.
To understand whether videos in the training set need to
be watched to completion, we gather recommendation trees
from four crawlers all configured identically except that they
watch each of the training videos to different levels of com-
pletion before moving on to the next video. W100pc, W50pc,
W25pc, and W10pc watch videos to 100%, 50%, 25%, and
10% of completion, respectively.
Interactions (Iget, Iclick). Programming crawlers to per-
form actual clicks on hyperlinks is a challenging task due
to difficulties with reliability. A commonly used alternative
is to instead obtain links by parsing the DOM and having
the browser load the link of interest. Unfortunately, the ab-
sence of actual clicks is also a signature used by common
bot-detection tools and may result in server-side differential
treatment (Khattak et al. 2016; Ahmad et al. 2020; Jueck-

Question Parameter Configurations #trees #videos

RQ1 Training set Tmain, Tniche 16 32K
Seed video smain, sniche 16 32K

RQ2 Accounts Alogin, Acookies 8 14K
Alogin, Aclear 8 13K

RQ3
Watch Time

W100pc, W50pc 8 15K
W50pc, W25pc 8 15K
W25pc, W10pc 8 15K

Interaction Iget, Iclick 8 16K
Breadth Pleft, Pright all* 69K
Depth Dtop, Dbottom all* 35K

*Data from all trees were used in analysis for these parameters.

Table 1: ‘Parameters’ indicate the values we modified in
each experiment. ‘Configuration’ indicate the values as-
signed to the parameter in the experiment. Cf. §2.1 for de-
scriptions of each parameter and their respective configura-
tions. The ‘# trees’ column indicates the total number of rec-
ommendation trees gathered for analysis and the ‘# videos’
column indicates the total number of recommendations ob-
served in these trees.

stock et al. 2021). We conduct an experiment to understand
whether clicking on recommended videos impacts subse-
quent recommendations. Iclick represents an audit in which
each crawler actually performs a mouse click on videos to
load them during the recommendation tree crawl. Iget rep-
resents an audit in which each crawler simply obtains the
video’s URL from the DOM and instructs the browser to
load that URL.
Breadth of exploration (Pleft, Pright). YouTube’s recom-
mendations are dynamically loaded and recommendation
options often continue to appear while a user scrolls down
the page. This increases the width of the recommendation
tree at each level. In our pilot tests, we observed that the
minimum number of recommendations was at least 40 for
each video (and much higher in many cases). We conduct
analyses on the videos that appear at the top of the recom-
mendation list during a recommendation tree crawl (i.e., the
left-most path in the tree denoted by Pleft) and those that
appear at the bottom of the recommendation list (i.e., the
right-most path in the tree denoted by Pright).
Depth of exploration (Dtop, Dbottom). Finally, we consider
the importance of performing deep crawls on measured char-
acteristics of the recommendation tree. We do this by an-
alyzing the characteristics of all videos observed after just
loading the seed video (i.e., the 1st level in the recommen-
dation tree denoted by Dtop) and comparing them with the
characteristics of all videos observed at the 10th level of the
tree (i.e., the bottom of our gathered recommendation trees
denoted by Dbottom).

2.2 Data Gathering
Minimizing the influence of latent confounding vari-
ables. Recommendation trees are influenced by a large
number of variables, some in researchers’ control (e.g., our
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configuration parameters) and others not. In our study, we
make a best-effort attempt to minimize these latent effects
with the following approaches.
Accounting for updates to the search index. Due to large
amounts of new content being created on YouTube, there
are continuous changes to the search index and recommen-
dation candidate lists. Therefore, two crawls gathering rec-
ommendations at time periods that are far spaced apart, may
not be comparable due to vastly different recommendation
possibilities. We mitigate such impacts by synchronizing
the crawls conducted in each experiment such that for ev-
ery crawler using one configuration to gather a recommen-
dation tree, there is another synchronized crawler using the
alternate configuration to gather the comparison recommen-
dation tree. This synchronization is done at the node level
— i.e., we ensure that each tree arrives at the exact same
node position in its respective recommendation tree within,
at most, a few seconds of its counterpart. Therefore trees
gathered using alternate configurations of the same parame-
ter are comparable.
Accounting for distributed infrastructure and effects of ge-
olocation. As shown in prior work (Hannak et al. 2013),
web servers may be distributed across a wide region and
servers in different locations or data centers may have in-
consistencies in their search indices or perform geo-specific
recommendations. To mitigate these effects on our gathered
trees, we conduct all our data gathering experiments from
the same location and use a static DNS entry for YouTube
which ensures that all our content requests and interactions
with the platform are served by web servers, at the very least,
in the same region.
Accounting for A/B testing. Platforms have been known to
conduct A-B testing on their users while testing new fea-
tures or algorithm updates (Facebook 2022). We make a
best-effort attempt to mitigate the effects of such testing by
gathering data from at least eight identical and synchronized
crawls for each parameter tested in our study.
Collecting recommendation trees. Once a sock-puppet has
been trained and has a seed video, we begin exploration
of the recommendation tree. Unfortunately, complete explo-
ration of a recommendation tree is infeasible due to the need
for one sock-puppet for each configuration being tested for
each tree being gathered for each path being traversed. This
is necessary due to the fact that prior watched videos will
impact future recommendations and therefore a sock-puppet
can only perform one-way (downward) traversals of the rec-
ommendation tree. Further, we are collecting at least 40 rec-
ommendations for each video. Therefore, a recommendation
tree of depth n will have at least 40n paths from root to leaf
node each needing a unique sock-puppet. In our traversals
of the tree, we explored five unique paths — the left-most
path (comprised of the first recommendation at each node),
the right-most path (comprised of the last recommendation
at each node), and three pre-selected paths from the mid-
dle (sampled with zipfian weights to account for a prefer-
ence for videos higher in the recommendation list). We ex-
plore each of these paths simultaneously, using a unique but
identically trained, configured, and seeded sock-puppet ded-
icated to each, to a depth of ten and record all recommenda-

Figure 1: Each path (flat arrows) in this figure represents the
set of videos that form the sock-puppets, nodes represent
videos, and directed edges between any two nodes (parent,
child) indicate that child was recommended after direct in-
teraction with the parent. The root of this tree represents the
seed video used to generate the first set of recommendations.

tions along the way. We stitch these paths and observations
together to obtain a subset of the complete recommendation
tree upon which our analysis is conducted. We gather at least
four such trees for each parameter configuration while ensur-
ing synchronization with alternately configured audits. An
example of such a tree is shown in Figure 1.

2.3 Recommendation Tree Characteristics
In our analysis, we focus on studying the influence of the
aforementioned crawl configurations (§2.1) on the popular-
ity, channel diversity, and topics of videos observed their
corresponding recommendation trees. We select these char-
acteristics since platform audits often focus on them (or their
variations) to identify echo-chamber, rabbit-holing, or main-
streaming effects caused by recommendation algorithms.
Popularity of recommendations. Popularity of recom-
mended content, measured using video views as a proxy,
can capture the algorithm’s tendency to recommend niche
or mainstream content. We record the distribution of views
observed in recommended videos at each node. A recom-
mendation tree largely containing videos with low popular-
ity at each node suggests the tendency to recommend niche
content for the associated sock-puppet configuration. Con-
versely, a tree largely containing videos with high popular-
ity at each node suggests the tendency to recommend main-
stream content for the associated sock-puppet configuration.
Significant differences in the within- and across-group dif-
ferences between the trees generated by two configurations
would suggest that one of the two configurations tends to
more mainstream (popular) recommendations than the other.
Channel diversity of recommendations. Each video
about a topic reflects the unique perspective of the channel
that uploaded the video and the community that consumes
it. Therefore, we use the diversity of channels in the trees
as an approximation for the range of perspectives provided
by the recommended content. We take the position that even
when two channels discuss the same topic, they frequently
produce different perspectives due to differences in their cre-
ative teams and communities. Therefore, a recommendation
tree with a high entropy of recommended content at each
node indicates high recommendation diversity and suggests
at the absence of a rabbit-holing effect. We measure the
channel diversity by recording the entropy of channels ob-
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served in the recommended content at each node. Significant
differences in the within- and across-group differences be-
tween the trees generated by two configurations would sug-
gest that one of the two configurations tends to show less
diverse recommendations than the other.
Semantic similarity of recommendations. We extract the
titles and descriptions associated with each video observed
in our tree. We combine these processed texts for all videos
observed at each node in a tree and use it as a repre-
sentation of the content semantics observed in the recom-
mendations at that node. To finalize our approach, we con-
ducted the following pilot study: two very similar nodes (of
forty videos each) and two dissimilar nodes (forty videos
each) were extracted from our dataset whose similarity be-
tween texts was manually determined by the researchers
based on the titles and descriptions 2. Different text rep-
resentations, including semantic (LSI (Rosario 2000) and
SpaCy’s docism (SpaCy 2022)), lexicographic (LDA (Blei,
Ng, and Jordan 2003)), and transformer-based (sentence-
BERT (Reimers and Gurevych 2019)) were used to calcu-
late the similarity scores. Two experts rated the similarity of
the texts. The inter-rater agreement was the highest for the
sentence-BERT similarities. Significant within- and across-
group differences between trees generated by two configu-
rations suggest that one of the two configurations results in
measurably different recommended topics.
Selecting and interpreting metrics. We selected the above
three metrics because prior audits have largely focused on
evaluating their more complicated variants and functions.
For example, Hussein et al. focus on identifying tendencies
to recommend misinformative content with specific stances,
which we consider as a variant of the channel diversity and
topic-related metrics. During interpretation of our results,
we focus on holistically considering differences in all three
metrics to understand the impact of parameters on recom-
mendations. This allows us to make nuanced determinations
of the underlying algorithms. For example, observing signif-
icant differences in the ‘channel diversity’ metric but not in
the ‘semantic similarity’ metric suggests a different perspec-
tive on the rabbit-holing tendencies of the recommendation
algorithms. Further, observing significant difference in all
three metrics allows us to make stronger claims regarding
the influence of the corresponding parameter configuration.

2.4 Comparison of Audit Configurations
Each of our experiments result in two sets of recommen-
dation trees — one set for each audit parameter configura-
tion being tested (e.g., Alogin and Acookies). Trees in each set
are gathered in synchronization with each other. Given these
sets of recommendation trees, we compute the across-group
(e.g., between Alogin and its synchronized Acookies tree) and
within-group (e.g., between two synchronized Alogin (or,
Acookies) trees) differences along the three dimensions de-
scribed in §2.3. We describe this process below.
Recording characteristics of a recommendation tree
node. Let nij denote a traversed node (i.e., viewed video)

2We use a pre-trained MPNet model (Song et al. 2020) to com-
pute our sentence embeddings.

located on path Pi and at depth j in a recommendation
tree and rijk denote the kth recommendation observed at
nij . At each node nij we record: (1) a popularity scalar
value pop(nij) = µ(views(rij,1) . . . views(rij,40)) repre-
senting the view counts of all observed recommended
videos at this node; (2) a channel entropy scalar value
div(nij) = entropy(channel(rij,1), . . . , channel(rij,40))
representing the diversity of channels in the recommended
videos at this node; and (3) a document vector doc(nij) =
docvec(desc(rij,1), . . . , desc(rij,40)) which represents the
document vector associated with the video descriptions ob-
tained from all recommended videos at this node.
Comparing characteristics of recommendation trees.
Given two recommendation trees T and T ′, we compute the
differences in characteristics in a node position-dependant
manner — i.e., we compute differences in the popularity
vector, channel entropy, and document vector for each node
position in T and T ′. These differences are computed as fol-
lows:

δpop(T, T ′) = mean([∀i, ∀j : pop(nij)− pop(n′
ij)])

δdiv(T, T ′) = mean([∀i, ∀j : div(nij)− div(n′
ij)])

δsem(T, T ′) = mean([∀i, ∀j : sim(doc(nij), doc(n
′
ij))])

These values effectively capture the mean node-to-node
differences between T and T ′. This node-to-node compar-
ison is possible because all trees gathered in our study tra-
versed the same set of paths in the recommendation tree.
Maintaining this node position dependence in tree compar-
isons is important because it handles differences in charac-
teristics that might arise from the position of a node in the
recommendation tree. For example, comparing the first rec-
ommendation at depth=1 from T with the 40th recommen-
dation at depth=10 from T ′ could result in misattributing
differences in tree characteristics that arise from changes in
recommendation ranks to the impact of an audit configura-
tion change.
Computing within- and across-group differences. Given
two auditing configurations C and C′ which generate the sets
of trees T and T ′, respectively, we compute: (1) the within-
group differences as the distribution of differences in charac-
teristics observed between trees within T and T ′; and (2) the
across-group differences as the distribution of differences
observed between trees across T and T ′. These are denoted
by:

∆within
x (T ) = [∀(Ti, Tj) ∈ (T × T ) : δx(Ti, Tj)]

∆across
x (T , T ′) = [∀(Ti, Tj) ∈ (T × T ′) : δx(Ti, Tj)]

∀x ∈ {pop, div, sem}
The within-group differences, computed over all trees gen-
erated with identical audit configurations, allow us to estab-
lish a baseline of characteristic variations caused by factors
outside the control of the auditor (e.g., probabilistic recom-
mendation algorithm, A/B testing, etc.). The across-group
differences showcase the differences caused by the change
in audit configuration and external factors.
Quantifying the impact of audit parameter configura-
tions. Given distributions ∆within

x and ∆across
x associated

245



Parameters Video Popularity Channel Diversity Content Semantics

Fixed Varied (Views in millions) (Entropy in bits) (Similarity score)
µviews Effect (95% CI) µeffect µentropy Effect (95% CI) µeffect Effect(95% CI) µeffect

smain
Tmain 7.15 [0.34, 1.33] 0.84 3.63 [-0.16, 0.17] 0.00 [-0.06, 0.01] -0.03
Tniche 4.94 3.49

sniche
Tmain 4.32 [1.46, 2.19] 1.82 3.38 [-0.27, 0.19] -0.04 [-0.10, -0.03] -0.06
Tniche 1.80 3.26

Tmain
smain 10.71 [0.73, 2.31] 1.51 3.17 [-0.14, 0.14] 0.00 [-0.12, -0.05] -0.08
sniche 7.78 2.97

Tniche
smain 4.93 [2.68, 3.05] 2.87 4.02 [0.12, 0.45] 0.28 [-0.10, -0.03] -0.06
sniche 1.72 3.44

Table 2: Impact of changes caused by varying training sets (top 2 rows) and seeds (bottom 2 rows). Columns represent the
mean node values observed in each group for a particular characteristic, the 95% confidence interval for the measured effect
sizes (i.e., difference between within- and across-group differences; Cf. §2.4), and the mean effect size. Values in bold indicate
a statistically significant effect size at the corresponding confidence level.

with configurations (C, C′), we use bootstrapping with 1M
samples (DiCiccio and Efron 1996; Efron 1987) to cre-
ate 95% confidence intervals around the mean within- and
across-group differences. We also use these bootstrapped
samples to compute 95% confidence intervals around the
effect size — i.e., the difference between the within- and
across-group differences bootstrap samples. Let [CIlower,
CIupper] be the N% confidence interval for the effect size.
The effect is statistically significant at this confidence level
if and only if (CIlower ≤ CIupper < 0) or (CIupper ≥
CIlower > 0) — i.e., iff N% of the bootstrapped samples
have observed effect sizes of the same polarity. In our work,
we report the 95% confidence interval for effect sizes. We
also report the average effect size as the mean of all effect
sizes observed in the bootstrap samples.

3 Training Sets and Seeds
Experiment setup. Our goal is to measure the im-
pact of training sets and seeds on the characteristics of
recommendation trees generated by an audit. To accom-
plish this, we gathered 32 recommendation trees from
four different audit configurations: eight trees each from
an audit using Tmain and smain, Tmain and sniche, Tniche
and smain, and Tniche and sniche. We split each of these
into two sets of four and refer to them as (Tmain,main,
T ′

main,main), (Tmain,niche,T ′
main,niche), (Tniche,main,T ′

niche,main), and
(Tniche,niche,T ′

niche,niche) respectively. These trees were gath-
ered in synchrony (Cf. §2.2) in order to facilitate accurate
within- and across-group comparisons (Cf. §2.4). By split-
ting each of our sets of eight trees into two sets of four, we
avoid reusing trees for testing multiple hypotheses.
Measuring impact of a training set change. To uncover the
impact of the training set used in an audit on the charac-
teristics of recommendation trees, we compute the means,
95% confidence interval associated with the within-group
differences, across-group differences, and effect sizes (Cf.
§2.4) obtained from two analyses: (1) comparing Tmain,main
with Tniche,main — i.e., using the same mainstream seed while

varying the training set; and (2) comparing Tmain,niche with
Tniche,niche — i.e., using the same niche seed while varying
the training set.
Measuring impact of a seed change. We repeat our method
for the following analyses: (1) comparing T ′

main,main with
T ′

main,niche — i.e., varying the seed while using a mainstream
training set focused on controversial topics; and (2) compar-
ing T ′

niche,main with T ′
niche,niche — i.e., varying the seed while

maintaining a fringe and controversial training set.
Results. Our results are summarized in Table 2. In gen-
eral, we find that altering the characteristics of the training
set or the seed always impacts the popularity of the videos
observed in an audit. This, however, is not the case for the
channel diversity and semantics. More specifically, our anal-
ysis yields the following insights.
There appears strong evidence of a ‘recency bias’ in recom-
mendations. Paying attention to the bottom two rows of Ta-
ble 2, we see that the effects of altering the seed from a niche
video to a mainstream video are nearly always statistically
significant and of high magnitude, with only one exception
when channel diversity is recorded using Tmain for training.
The (significant) effects on the popularity and entropy of
recommended videos are also higher than the effects ob-
served on alterations of the training set (top two rows). The
most notable effects of altering seeds are in the ‘popularity’
dimension where the mean effect of switching a seed video
from niche to mainstream results in video recommendations
that, on average, have 1.51M and 2.87M more views when
trained with Tmain and Tniche, respectively. Surprisingly, the
highest effect size in the semantics of recommended videos
also occur when only seeds are altered from mainstream to
niche and training sets are kept the same. Focusing on the
bottom two entries of Table 2, we observe that on average,
recommended videos are 8% and 6% less semantically sim-
ilar just by seed alteration when trained with Tmain and Tniche
respectively. A deeper look into the tree level topics (focus-
ing on the top 12) reveals striking differences. With main-
stream seed, recommendations included topics like scandal
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involving Will Smith, J. Depp and Amber Heard. Health and
medicine related science topics were also prevalent. In the
domain of religion, terms such as "bible" and "jesus" were
dominant. Conversely, the niche seed resulted in news being
the dominant topic, with Fox News contributing the most.
This was followed by political activism, highlighted by men-
tions of J.B Peterson, Chomsky, and Mearsheimer. In the re-
ligious cluster, terms like "Aquinos", "catholic", "christian",
and "white-america" were most visible. What’s intriguing is
that the mainstream seed did make occasional recommen-
dations aligned with dominant themes from the niche seed,
such as mentions of J.B Peterson and Fox News. However,
the opposite was not observed: the niche seed did not sug-
gest any predominant mainstream topics. This suggests that,
independently of the training set used, the choice of seed can
drastically alter the characteristics of a recommendation tree
and the audit inferences. Extrapolating this finding suggests
that the most recent video will have an outsized impact on
future recommendations as shown in Figure 2.
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Figure 2: The figure displays the similarity between nodes
that are separated by ‘n’ steps (or ‘n-hops’) within the same
path and tree. It includes data from all the configurations (ex-
cept [Pleft, Pright ] and [Dtop, Dbottom ]). A noticeable pattern
emerges: nodes further down the same path are less (seman-
tically) similar.

Channel diversity is not always dependent on the training
set and seed. Our analysis shows that the channel diver-
sity is largely unaffected by the choice of training set and
seed. Only one exception occurs: when seeds are altered for
a Tniche training set audit (Cf. row four in Table 2). Here we
see the effect of switching from smain to sniche reduces the
channel diversity by an average of 0.28 (entropy in bits) at
each node. While it appears that this finding lends credence
to the claims of the algorithms’ rabbit-holing tendencies, it
is important to note that this decrease only appears when
the audit has interacted with fringe content (in the train-
ing set and the seed). Given that the effect disappears when
any other interaction occurs, this finding could be explained
by the small number of creators addressing the topic of the
niche content.

Takeaways. Assessed together, these results put a differ-
ent perspective on YouTube’s recommendation system and
the audits that study it. Not only do researchers need to pay
particular attention to training and seeding, but also must
understand that their measurements of recommended videos
are heavily dependent on the most recent nodes already tra-
versed by their sock-puppets. Specifically, it appears that the
recency bias can lead to a single video overwhelming the ef-
fects of a large number of prior videos — thus impacting the
final inferences from the audit. Generally, we recommend
that audit inferences (e.g., presence of a mainstreaming ef-
fect) are conditioned: (1) on the specific characteristics of
the training set and seed; and (2) on the specific strategies
used to select nodes from a recommendation tree.

4 Dollar-Cost Saving Configurations
Experiment setup. In this section, we focus on under-
standing the impact on recommendation trees generated by
commonly used sock-puppet account management strategies
(e.g., login vs cookies, etc.)
Measuring the effectiveness of cookie-based sock puppets.
To find out the differences in cookie-based sock puppets
against real accounts, we gathered four recommendation
trees for Tfull and Tcookies each. All the parametric configu-
rations for these two sets were kept identical except Tfull was
using a logged-in profile while Tcookies was only maintain-
ing YouTube cookies. Both Tfull and Tcookies used the (Tmain,
smain) training set and seed.
Measuring the effectiveness of clearing account history. To
verify whether clearing account history purges the watch
history effect (i.e even after deleting watch history, user
keeps getting similar recommendations), we collected four
recommendation trees for T ′

full and Tclear each. Both T ′
full and

Tclear use logged-in profiles (Tmain, smain) training set and
seed. However, before collecting recommendations, watch
history of Tclear was deleted.

Results. The results are summarized in Table 3. Our analy-
sis yielded two conclusive results.
Audits do not need fresh accounts for each sock-puppet.
First, focusing on the impact of changing between a sock-
puppet with a logged-in YouTube account (Tlogin) and one
which only maintains its browser cookies (Tcookies), we
found that there were no significant differences in any
measured characteristics of their recommendations. Which
means that the content personalization experience for both a
logged-in account and a browser instance with cookies is the
same. Based on the marginal effect sizes across all three di-
mensions of row one in Table 3, we hypothesize that the ob-
jective function of the recommendation system for cookies
and free accounts is likely aligned. This may be due to nei-
ther configuration involving monetary payment, and revenue
being primarily generated through ads. This presents signif-
icant cost-saving opportunities that arise from being able to
associate a sock-puppet with a browser instance rather than
having to navigate the barriers associated with automating
account creation and phone number verification.
The potential for account reuse by clearing history. There
is a significant difference in popularity and content seman-
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Parameters
Video Popularity Channel Diversity Content Semantics

(Views in millions) (Entropy in bits) (Similarity score)
µviews Effect (95% CI) µeffect µentropy Effect (95% CI) µeffect Effect (95% CI) µeffect

Alogin 9.20 [-0.90, 0.99] 0.05 3.36 [-0.11, 0.31] -0.01 [-0.06, 0.03] -0.01
Acookies 7.72 3.57

Aclear 12.34 [1.82, 3.46] 2.65 3.55 [-0.03, 0.53] 0.26 [-0.12, -0.05] -0.08
Alogin 8.47 2.86

Table 3: Impact of changes caused by varying login status (row 1) and purging watch history (row 2). Columns represent the
mean node values observed in each group for a particular characteristic, the 95% confidence interval for the measured effect
sizes (i.e., difference between within- and across-group differences; Cf. §2.4), and the mean effect size. Values in bold indicate
a statistically significant effect size at the corresponding confidence level.

tics for Tfull sock-puppets when compared with identically
configured and synchronized Tclear sock-puppets, suggest-
ing that, by clearing history Tclear has reset the popularity-
context and topic-context (picked up during training phase)
which Tfull still maintains. Simply put, by clearing account
history, one might be able to reuse an account for a large-
scale study — particularly where the popularity and con-
tent semantics are being measured (e.g., in audits quantify-
ing mainstreaming and rabbit-holing effects). However, we
do not make the claim that clearing watch history is equiva-
lent to creating a fresh account (a fresh account would mean
Google doesn’t have any data stored for the profile at the
back-end, which we did not check for).
Takeaways. These findings present an opportunity for au-
ditors to save huge dollar-costs involved in account creation
and curation. We have shown that a browser that maintains
YouTube cookies is as good as a YouTube account. Further-
more, account re-use (after clearing history) is a viable op-
tion for auditors studying the platform for its popularity and
content semantics.

5 Computational Compromises
Experiment setup. In this section, we analyze the im-
pact of three compromises that may be made to save com-
putational resources: (1) watching only a pre-determined
fraction of each video in the recommendation tree; (2) us-
ing the driver.get(URL) method of selenium rather
than automating user clicks on recommended videos through
ActionChains(driver); and (3) performing low-
depth and narrow-breadth audits.
Measuring impact of video watch times. To answer whether
audits need to ‘watch’ videos to completion, we gathered
and analyzed four recommendation trees in which the audit
‘watched’ all videos to completion (Tw=100), eight trees in
which the audit only ‘watched’ videos to 50% of their du-
ration (Tw=50, T ′

w=50), and four trees in which the audit only
‘watched’ videos to 25% of their duration (Tw=25). Both sets
of audits used the (Tmain, smain) training set and seed.
Measuring impact of interaction mechanics. We gathered
four recommendation trees where the audit actually lo-
cated and clicked the recommendations video links (Tclick)
and four trees where the audit simply identified the URL
of the recommended videos and fetched the video with a

driver.get(URL) command (Tget). Both sets of audits
used the (Tmain, smain) training set and seed.
Measuring the impact of crawl-breadth and -depth. We ana-
lyzed the characteristics of the leftmost and rightmost paths
of all 96 recommendation trees gathered in this study (Tleft
and Tright). These correspond to the paths obtained from only
clicking the top and bottom recommendation at each video,
respectively. We also analyzed the characteristics of the rec-
ommendations observed at depth 1 and 10 for all 96 trees
obtained in this study (Ttop and Tbottom).
Results. Our results are shown in Table 4. Notably, be-
sides configurations with varying crawl depth, none of our
changes yielded statistically significant differences in their
measured recommendation characteristics. This has several
key implications for auditors.
Videos do not need to be watched to completion. In all
our audit configurations that varied video watch time frac-
tions, there was no statistical relationship between change
in the characteristics of recommended videos and the audit’s
configured watch fraction. This is a surprising finding that
suggests even watching 10% of a video impacts the subse-
quent recommendations to no different extent as watching
100%. Upon further investigation, we discovered evidence
showing that YouTube only requires a watch time of 30 sec-
onds (sometimes even 10 seconds) or intentional initiation
of watching a video for a ‘view’ to be registered (Ram and
Davim 2018; Parsons 2017; Funk 2020). Based on these
speculations, we hypothesize that these ‘view’ metrics are
also used to determine whether a video should impact subse-
quent recommendations. Since, we were interacting with all
the videos by turning off auto play, skipping ads, and paus-
ing as part of synchronous crawls, it might have depicted
user-intentionality. It’s also plausible that many of the videos
had lengths greater than 30 seconds, even if we watched 10%
of them. This finding that videos do not need to be watched
to any specific fraction of completion presents a promis-
ing (accuracy-independent) computational cost-saving av-
enue for future auditors.
It is unnecessary to automate clicks on recommended videos.
Our analysis showed no statistically significant differences
between any recommendation tree characteristics observed
in Tget and Tclick. This suggests that using browser automa-
tion tools (e.g., Selenium webdriver’s action chains) to ex-
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Parameters
Video Popularity Channel Diversity Content Semantics

(Views in millions) (Entropy in bits) (Similarity score)
µviews Effect (95% CI) µeffect µentropy Effect (95% CI) µeffect Effect (95% CI) µeffect

W100pc 7.69 [-0.86, 0.28] -0.29 3.74 [-0.23, 0.22] 0.00 [-0.05, 0.00] -0.02
W50pc 7.84 3.51
W50pc 12.13 [-3.52, 1.53] -1.03 3.21 [-0.41, 0.15] -0.13 [-0.05, 0.05] 0.00
W25pc 9.55 3.60
W25pc 14.11 [-2.10, 0.43] -0.85 3.61 [-0.56, 0.12] -0.22 [-0.03, 0.06] 0.01
W10pc 13.59 3.47

Iclick 7.62 [-0.59, 0.64] 0.02 3.79 [-0.20, 0.11] -0.04 [-0.03, 0.05] 0.01
Iget 6.93 3.88

Pleft 8.33 [-0.65, 0.98] 0.16 3.72 [-0.03, 0.20] 0.08 [-0.08, -0.03] -0.06
Pright 7.47 3.33

Dtop 13.73 [5.04, 6.67] 5.86 4.59 [1.05, 1.24] 1.14 [-0.12, -0.06] -0.09
Dbottom 5.97 3.12

Table 4: Impact of changes caused by varying video watch times (rows 1-3), interaction mechanisms (row 4), recommendation
selection strategy (row 5), and crawl depth (last row). Columns represent the mean node values observed in each group for a
particular characteristic, the 95% confidence interval for the measured effect sizes, and the mean effect size. Values in bold
indicate a statistically significant effect size at the corresponding confidence level.

plicitly click on video links is unnecessary. Without sacri-
ficing on accuracy of audit inferences, this allows auditors
to replace a computationally expensive, high programmer
overhead, and unreliable approach to navigate to subsequent
recommendations with the simple and reliable approach of
programming browsers to fetch specific URLs in the DOM.
Crawl depth impacts recommendation characteristics. Our
analysis on the impact of crawl-depth yields statistically sig-
nificant results for all recommendation tree characteristics.
Specifically, we notice that nodes at the top of the recom-
mendation tree generally appear to be significantly more
popular, diverse, and less semantically similar to recommen-
dations at the bottom of the tree. This finding once again
showcases the possibility of a strong recency bias that im-
pacts recommendations. Interestingly, we do not see sta-
tistically significant differences between the highest- and
lowest-recommended videos — suggesting that auditors
need to pay specific attention to the depth of their crawls.
Takeaways. Our analysis yields two significant computa-
tional cost-savings for researchers. Specifically, finding that
videos do not need to be watched to completion and that
clicking on videos causes no different outcomes than simply
‘getting’ the URL of the corresponding video reduces the
computational and engineering overhead associated with an
audit. In addition, our work highlights that different depths
of a recommendation tree could result in different recom-
mendation characteristics. To account for these effects, it is
important that any inferences from an audit are conditioned
on the depth of the trees that were used.

6 Related Work
Algorithmic audits. Sock puppets and other controlled ap-
proaches (Metaxa et al. 2021) are a way to check if the al-

gorithm aligns with the expected behavior. To better under-
stand the impact of the algorithm on the users, ecological
studies, e.g extension-based based methods (Hosseinmardi
et al. 2021; Chen et al. 2023) are more useful, as they are
more representative of the real user behavior. There has been
a lot of work discussing the importance of algorithmic audits
and devising general guidelines on conducting them (Sand-
vig et al. 2014; Metaxa et al. 2021; Goodman and Trehu
2023). These studies have a conceptual approach to auditing,
and primarily emphasize the theoretical importance of vari-
ous methodologies. While our work draws inspiration from
these studies, it differs from them by taking an empirical ap-
proach. We demonstrate that even when focusing on a single
methodology, there are intricate details that affect the repro-
ducibility of the study. Consequently, our research is dedi-
cated to formulating guidelines for sock-puppet-style audits
on platforms similar to YouTube.
Audits of YouTube’s recommendation system. This paper
was inspired by a recent influx of YouTube audit research
which often showed contrary results. For instance, Lutz et al.
(2021) provided evidence of the absence of a rabbit-holing
effect while demonstrating a mainstreaming effect for a va-
riety of political ideologies. Other work (Ledwich and Za-
itsev 2019; Munger and Phillips 2022; Hosseinmardi et al.
2021; Makhortykh and Urman 2020) has also challenged
the notion of rabbit-holing on YouTube and shown evidence
of recommendations swaying users towards mainstream and
neutral content. Contrary to these findings, Haroon et al.
(2022) provided evidence that YouTube pushes users to-
wards increasingly biased and radical political content on
‘up-next’ and homepage recommendations. These findings
are complementary to another body of work (Bryant 2020;
Ribeiro et al. 2020; Tomlein et al. 2021; Papadamou et al.
2019, 2021) which has argued that YouTube recommenda-
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tions have promoted polarization in the political, scientific,
and health-related domains. While differences may arise due
to the qualitative or quantitative nature of a study, it is con-
cerning to find contradictions when the two methodologies
are comparable. Comparing the recent works of Ibrahim
et al. (2023) and Haroon et al. (2022) which conclude the
YouTube algorithm is right and left leaning respectively, we
find evidence of potentially problematic differences in their
methods including differences in the way they maintained
account state, watch fractions, and even seed video selec-
tion. As shown in our analysis, each of these can have signif-
icant influences on the characteristics of recommended con-
tent. Unlike these previous efforts, our goal is not to support
or undermine specific theories about YouTube’s tendency to
impact polarization. Rather, we aim to uncover the possi-
ble reasons for these differences and provide guidelines to
avoid such confusion and contradictions within the audit-
ing community. More recently, Ribeiro et al. (2023) presents
evidence for de-amplification of niche content for a utility
based model. In contrast, a blind model (a simulation which
only follows the up-next path), always got increasingly ex-
posed to niche content. In a study focusing on YouTube’s
demonetization algorithm, Dunna et al. (2022) found evi-
dence that the recommendation and demonetization algo-
rithms were linked. There are also numerous publications
from Google describing the recommendation algorithm used
for YouTube. These have suggested the use of user profiles,
watch histories, video watch times, and click-through rates
as features in their content ranking algorithm (Zhao et al.
2019; Tang et al. 2019; Fu et al. 2016; Covington, Adams,
and Sargin 2016; Zhao et al. 2015). These descriptions in-
formed our choice of audit parameters.
Improving the reliability of crawler-based research.
There have been similar efforts to ours in the Internet mea-
surement community. These have largely focused on fa-
cilitating more reliable and reproducible research in the
realm of Web measurement and privacy. Yadav et al. (2015)
studied a set of open-source web crawlers and showcased
how each was suitable for different use cases. More re-
cently, Ahmed et al. (2020) showed the impact that different
crawlers had on measurement and security research infer-
ences. Along similar lines, Zeber et al. (2020) and Jueck-
stock et al. (2021) also showed how the choice of crawler
and configuration could harm the repeatability of an ex-
periment. Our work extends these efforts by identifying
platform-specific audit challenges.

7 Concluding Remarks
Broader perspectives. This study broadly improves our
understanding of how audit configurations can influence
our understanding of the behavior of recommendation al-
gorithms. This understanding is expected to become espe-
cially important in the coming years because of the grow-
ing conversations relating to regulating AI, content recom-
mendation systems, and online platforms (WH2 2022). In
the more immediate future, we expect that the findings and
recommendations contained within our work will lead to an
improvement of the reliability and accuracy of YouTube au-
dit studies, while simultaneously introducing context around

(seemingly) contradictory inferences. Other platforms, such
as e-commerce and economy sharing platforms, may differ
in their interactions. However, sock-puppet approaches are
still common ways to study their recommendation systems.
Therefore, our high-level approach of configuration-specific
investigations can be used to identify cost-saving mecha-
nisms for their audits. It should be noted that the recommen-
dations made in this paper are specific to the YouTube plat-
form. One platform-independent recommendation that our
study suggests is that auditors carefully detail the configu-
rations associated with their audits to prevent confusion re-
garding algorithmic behaviors and to facilitate reproducibil-
ity. We do not anticipate harmful societal consequences as a
result of our research. However, there are associated limita-
tions and ethical considerations which we outline below.
Limitations. Fundamentally, our work is a best-effort study
to understand the impact of different audit methodological
decisions on the characteristics of content recommended by
YouTube — one of the most commonly audited online plat-
forms. Thus, our study is not without limitations. First, we
ourselves are computationally and economically limited and
had to make decisions about crawl parameters to explore.
This impacted our ability to (1) perform exploration of more
paths in each recommendation tree; (2) conduct more than
eight synchronized tree explorations; and (3) explore rec-
ommendation trees to a greater depth. We mitigate any in-
correct inferences that might result from these limitations by
only performing like-for-like node- and position-dependent
comparisons and ensuring that any differences measured in
our study account for the general probabilistic nature of the
recommendation algorithm by measuring across-group dif-
ferences and comparing them with within-group differences.
Second, there are latent effects that cannot be controlled
from our external vantage point which is effectively measur-
ing a black-box system. We do our best to identify several of
these (e.g., A/B testing, data center location, measurement
location, etc.) and attempt to counter each of them. However,
it is possible that unaccounted effects might still impact our
results. Finally, we acknowledge that our choice of a train-
ing set and seed video might ultimately not be sufficient to
observe all effects of interactions on the recommendation
system. Regardless, we provide useful data points for con-
sideration to a community grappling with an ever-growing
list of contradictory results.
Ethical considerations. Our study involves crawling and
scraping of the YouTube platform, which necessitates ethi-
cal considerations along two dimensions: platform costs and
privacy harms. Platform costs. Our study does interact with
the YouTube platform, servers, and content. However, the
costs incurred by YouTube from our measurements were
minimal and no more than necessary to complete our analy-
sis with statistical rigor. Specifically, our study ensured this
with four decisions. First, our study leveraged the official
YouTube API whenever possible and used a fully-fledged
web browser only when the API did not provide the data
required for our study (e.g., recommended videos). Second,
the costs incurred by YouTube from our crawls are expected
to be insignificant since we only viewed ≈ 4.5K videos
over the duration of this study. Third, when YouTube ac-
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counts were required by our study we purchased accounts
directly from Google via a Google Workspace account (at
$8/month/account). Finally, whenever possible our crawlers
skipped any displayed ads and did not actively interact (be-
yond viewing) with content or users encountered during the
crawl. Thus, our influence on the ad and recommendations
algorithms were minimized. Overall, our crawls were in line
with typical auditing studies as described in (Sandvig et al.
2014) and are legally permissible (Addicks 2022; Berzon
2022).
Privacy harms. Our study does not involve any human sub-
jects or gather any personally identifiable information. In our
public release, all videos are only listed by their URL —
therefore, they automatically respect the privacy choices of
their associated creators (unlisting the video will make our
link inactive). Overall, we respect the principle of benefi-
cence as outlined by the Belmont report (Beauchamp 2008).
Conclusions. This work showcased the effect of audit con-
figurations on the characteristics of recommendation trees
generated by them. Specifically, we showed that although
training sets do have a statistical impact on recommenda-
tions, their effects can be significantly dampened by a ‘re-
cency bias’ in YouTube’s recommendations (§3). Therefore,
specific care needs to be taken when selecting videos to view
in an audit. More importantly, these decisions need to be
disclosed and any audit inferences must be conditioned on
them. Our analysis of different types of auditing profiles (§4)
showed that the expensive task of obtaining clean YouTube
accounts would not yield significantly different outcomes
than simply maintaining the YouTube cookie for the entire
duration of an audit. Further, our findings also suggest that
account reuse can be possible by using the ‘clear history’
feature provided by YouTube. Finally, our analyses of var-
ious computational compromises in audits (§5) show that
audits do not need to watch a specific fraction of a video for
it to impact subsequent recommendations (rather, a preset
threshold appears sufficient), challenging automation tasks
such as programming cursor clicks on videos do not need
to be performed by auditors, and that the depth of a crawl
can impact characteristics of the recommendation tree (and
should therefore be used to condition any reported infer-
ences from audits).
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