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Abstract

The exponential growth of user-generated comment data on
social media platforms has greatly promoted research on text
sentiment analysis. However, the presence of conflicting senti-
ments within user comments, known as ’user comments with
noisy labels’, poses a significant challenge to the reliability of
text sentiment analysis models. Many current approaches ad-
dress this issue by either discarding noisy samples or assigning
small weights to them during training, but these strategies can
lead to sample wastage and reduced model robustness. In this
paper, we present SLaNT, a novel semi-supervised label noise-
tolerant framework specifically designed for text sentiment
analysis. SLaNT employs a four-module pipeline that includes
Noisy Data Identification, Data Augmentation, Noisy Data Re-
labeling, and Re-training. Notably, SLaNT introduces an early
stopping strategy to efficiently identify noisy samples. Addi-
tionally, to mitigate confirmation bias during the relabeling of
noisy data, a unique co-relabeling strategy based on ensem-
ble learning is integrated into SLaNT. Experimental results
on four text user comment datasets demonstrate that SLaNT
significantly outperforms four selected strong baselines.

Introduction
With the rapid advancement of social media technology, in-
dividuals can express their sentiments on various social plat-
forms such as Twitter and Facebook. Text Sentiment analysis
models play a pivotal role in discerning users’ emotions by an-
alyzing these comments. For instance, businesses can gauge
the perceived quality of their products by examining cus-
tomer feedback on the Yelp website. Unfortunately, as shown
in Table 1, a substantial number of noisy labels exist in the
extensive corpus of user comments. These noisy comments
manifest as inconsistencies between the sentiments expressed
in comments and the corresponding ratings, such as a posi-
tive comment (It’s one of the most beautiful hotels I’ve seen.)
but attached with a negative rating (1). This paradoxical phe-
nomenon, aptly termed ’user comments with noisy labels’,
significantly impacts the accuracy and reliability of text sen-
timent analysis models (Zhang et al. 2021a).

Many Noise-tolerant learning (Kearns 1998; Tu et al. 2023;
Song et al. 2022) methods have been proposed to ensure the
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Comments Ratings Noisy or Clean
The service of hotel is terrible! 4 noisy

I like this movie. 3 clean

Table 1: Example of clean and noisy user comments. Ratings
range from 0 to 4, with 0 indicating extremely negative and 4
indicating extremely positive.

robustness of model when training with noisy labels. These
methods can be divided into three groups based on how the
sample is processed: (1) Data reweighting, the data that has
an unreliable label will be assigned with a small weight to
reduce its contribution to minimization of the training loss
(Sun et al. 2022a; Zhang et al. 2021b; Shu et al. 2019; Ren
et al. 2018; Jiang et al. 2018). (2) Data filtering, noisy data
will be identified and discarded before training occurs(Xia
et al. 2021; Northcutt, Jiang, and Chuang 2021; Pleiss et al.
2020). (3) Data relabeling, where the noisy data is relabeled,
and then together with clean data, both will be leveraged by
the deep neural network (DNN) (Mallem, Hasnat, and Nakib
2023; Zheng, Awadallah, and Dumais 2021; Tu et al. 2023).
Compared with the first two groups of methods, where only
clean data plays an important role in modeling, methods in
the third group can leverage the noisy samples to further
improve the generalization performance. However, most data
relabeling methods either assume the existence of a small
set of clean data which is sometimes difficult to obtain in
real-world scenarios (Anomaly 2022; Yan et al. 2016; Zheng,
Awadallah, and Dumais 2021; Gong et al. 2022), or there
exist modules closely bound to the image processing field
(Zhou, Wang, and Bilmes 2020; Li, Socher, and Hoi 2020)
and cannot be used for text sentiment analysis.

In fact, given a corpus of noisy user comments, to design
a label noise-tolerant text sentiment analysis model in a data
relabeling manner, two sub-tasks should be carefully consid-
ered, i.e., how to correctly identify the noisy data from the
whole noisy dataset? and how to relabel the noisy data with
the correct ones? Though there already exist some solutions
for these two sub-tasks respectively, their connection hasn’t
been well explored so far for the task of sentiment analysis.

In this paper, we propose SLaNT, a Semi-supervised Label
Noise-Tolerant learning framework for text sentiment anal-
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ysis. First, the mislabeled data is identified through Confi-
dent Learning (CL) (Northcutt, Jiang, and Chuang 2021)
which can effectively measure the label quality for the noisy
dataset by combining different principles of noisy data pro-
cessing. However, due to the memorization effect (Zhang et al.
2021a), DNN model will overfit noisy data, subsequently im-
pacting the performance of CL. To mitigate this issue, we
introduce an early stopping strategy. Compared with other
techniques for identifying noise, e.g., the Gaussian Mixture
Model (GMM) (Li, Socher, and Hoi 2020) and confidence
value strategy (Bai et al. 2021), CL with our early stopping
strategy needs no hyper-parameter for identifying noisy data
and has better performance. Then, a semi-supervised learning
(SSL) strategy is used to correct the noisy data and train the
model. The reason is that the label-noise tolerant problem
can be transformed to SSL if we treat noisy data as unlabeled
data and the rest as labeled data.

Based on the above two main techniques, SLaNT can
help to get a robust DNN model by using the following four
modules: (1) Noisy data identification module, where noisy
training data is divided into clean data and noisy data through
pre-training DNN models with early stopping and Confident
Learning. (2) Data augmentation module, which uses various
textual data augmentation techniques to expand the identified
noisy data for the purpose of consistency regularization of
SSL (Berthelot et al. 2019). (3) Noisy data relabeling module,
where SLaNT first uses an ensemble learning strategy to
predict the pseudo-label for the noisy data then co-relabel
them based on the combination of its original label and the
pseudo label. (4) Re-training module, where SLaNT mixes
both clean data and re-labeled noisy data to retrain the model.
Our contributions can be summarized as follows:

• To counteract the noisy labels in user comments for
sentiment analysis, we propose a semi-supervised learn-
ing framework SLaNT which can help to build a noise-
tolerant DNN model by leveraging both clean and noisy
data.

• To prevent the DNN model from overfitting to noise and
facilitate efficient identification of noisy samples in the
first module, we propose using an early stopping strategy
to train DNN models before applying CL.

• To relabel the noisy data reliably, we not only use en-
semble learning to predict the pseudo labels to avoid the
confirmation bias of a single model but also co-relabel
the noisy data by combining the original label with the
pseudo label.

• To validate the performance of SLaNT, we conduct ex-
tensive experiments on four noisy user comment datasets,
and the results show that SLaNT can obtain significant im-
provement in accuracy when compared with four strong
baselines.

The remainder of this paper is organized as follows. Sec-
tion presents the detailed implementation of SLaNT. Section
reports the results of experimental evaluation. The related

work is reviewed in Section . Section concludes the paper.

SLaNT Implementation
Figure 1 shows our SLaNT framework where four modules
are included, i.e., Noisy Data Identification, Data Augmenta-
tion, Noisy Data Relabeling, and Re-training. It is important
to note that although L DNN models are involved in SLaNT
when performing steps of pre-training, early stopping and
ensemble learning, a great amount of training time can be
saved by executing these steps in a parallel manner.

Noisy Data Identification
The purpose of this module is to find noisy labeled sam-
ples as many as possible. To this end, SLaNT firstly pre-
trains the DNN model (e.g., BERT(Devlin et al. 2019))
so that the model could learn the distribution of training
data(Gururangan et al. 2020).

Early stopping. Note that to avoid overfitting the noisy
labels in the late stage of training (Arpit et al. 2017), SLaNT
adopts an early stopping strategy to terminate the optimiza-
tion at the early stage of training for the DNN model (Nguyen
et al. 2020; Bai et al. 2021). Inspired by the work of Bai et al.
(Bai et al. 2021), we understand that noise has a more adverse
effect on the latter layers than the former layers of the net-
work. So we introduce an early stopping strategy where we
first train the whole network with a relatively small number
of epochs, and then only optimize the former layers by fixing
the last output layer to mitigate the influence of noise.

After optimizing with early stopping, the trained DNN
model will be further used for generating a probability ma-
trix by performing prediction for each sample. Next, based
on the probability matrix, SLaNT adopts the component of
Confident Learning (CL) to divide training data X into clean
samples and noisy samples. In fact, according to the theoreti-
cal proof in CL (Northcutt, Jiang, and Chuang 2021), CL is
able to find label errors exactly even when samples’ predicted
probabilities are erroneous, which again ensures the safety of
adopting an early stopping strategy.

CL assumes that each sample in the training data X has a
latent true label y∗, and due to the so-called class-conditional
classification noise process, the true label y∗ may be indepen-
dently mislabeled as the observed label ỹ with a certain prob-
ability. This assumption is commonly used in other works
(Sukhbaatar et al. 2015; Goldberger and Ben-Reuven 2017).
Based on the assumption, two inputs are required in CL: (1)
the m× n matrix P̂ , where n and m denote the number of
training samples and labels respectively, and each element
ˆPk,i indicates the predicted probability of ith training sam-

ple belonging to kth label. (2) ỹ, one-hot encoding over m
original labels. Note that, the probabilities within P̂ can be
computed by the pre-trained DNN models like BERT(Devlin
et al. 2019), Roberta(Liu et al. 2019), etc.

CL estimates the matrix P̂ to identify noisy data. The
pre-trained model θ affects P̂ which in turn affects the per-
formance of CL. The closer the probabilities within P̂ are
to the true probabilities of the training data, the better the
performance of confident learning. Hence, SLaNT pre-trains
the model θ to improve predicted probabilities that impart
the knowledge of the training data distribution to the model θ
without using the noisy labels. Subsequent experiments also
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Figure 1: Overview of SLaNT framework.

prove that further pre-training DNN model can improve the
performance of Confident Learning.

The main procedure of CL comprises the following two
steps:
Step 1. Count: Characterize and Find Label Errors using
the Confident Joint. CL uses confident joint Cỹ,y∗ to parti-
tion and count noisy labels. The definition of the confident
joint is as follows:

Cỹ,y∗ [i][j] :=
∣∣∣X̂ỹ=i,y∗=j

∣∣∣ where

X̂ỹ=i,y∗=j := {x ∈ Xỹ=i : p̂(ỹ = j;x, θ) ≥ tj}
(1)

X̂ỹ=i,y∗=j is the set of samples x labeled ỹ = i with
large enough p̂(ỹ = j;x, θ) to likely belong to class y∗ = j,
determined by a per-class threshold tj . y∗ represents the true
label, and the threshold tj is the average of model’s predicted
probabilities for each class:

tj =
1

|Xỹ=j |
∑

x∈Xỹ=j

p̂(ỹ = j;x, θ) (2)

Step 2. Rank and Prune: Data Cleaning. Following the
estimation of Cỹ,y∗ , SLaNT directly uses the sets of samples
counted in the off-diagonals of Cỹ,y∗ to estimate noisy labels
as {x ∈ X̂ỹ=i,y∗=j : i ̸= j}.

Through the above two steps, SLaNT divides the noisy
training data (X) into a clean labeled dataset (C) and a noisy
labeled dataset (U ) with label-confidence w. For each sample,
label-confidence represents the probability wi(ỹ = j;xi, θ)
of sample xi belonging to its original label when considering
the model parameters (θ). Low label-confidence is a heuristic
likelihood of being a label error.

Data Augmentation for Textual Content
To correct the noisy samples, SLaNT adopts the idea of semi-
supervised learning (SSL) by viewing the noisy data as un-
labeled data. In much recent work for SSL, adding a loss
term on unlabeled data can help the model to generalize bet-
ter to unseen data, and one of the popular strategies for this
loss term is consistency regularization(Berthelot et al. 2019)
which commonly applies data augmentation to achieve the

regularization purpose. Specifically, the label of the data af-
ter data augmentation is the same as the original label. In
other words, sample x should be classified the same as its
augmentation Augment(x).

Existing methods of textual data augmentation can be di-
vided into three groups: paraphrasing, noising and sampling
(Li, Hou, and Che 2021; Feng et al. 2021). The paraphrasing-
based methods make some changes to the words, phrases
and sentence structure which retain the texts’ original se-
mantics (Zhang, Zhao, and LeCun 2015; Hou et al. 2018).
The noising-based methods add some discrete or continuous
noise to texts which has little effect on semantics (Wei and
Zou 2019; Coulombe 2018). The sampling-based methods
sample novel data under the current data distributions (Kang
et al. 2018; Du et al. 2021).

However, unlike image data augmentation, where elasti-
cally deforming or adding noise to an input image won’t alter
its label (Cireşan et al. 2010). Improper augmentation of text
can easily alter the original label, which will add extra noise.
For instance, if we randomly drop words from ”I want to
inquire about mobile phone bills.” to ”I want to inquire about
mobile phone.”, the original meaning has been obviously
changed. Therefore, we merely use the paraphrasing-based
and the noising-based methods in SLaNT. For each ui in the
batch of noisy labeled data U , we generate K augmentations
ûi,k = Augment(ui), k ∈ (1, ...,K) (Algorithm 1, line 12)
through above textual data augmentation methods.

Noisy Data Relabeling
Having acquired noisy labeled data U and their augmented
data Ū , SLaNT uses the similar idea of MixMatch (Berth-
elot et al. 2019) to relabel the noisy samples U . MixMatch
computes the average of the predicted class distributions q̄i
across all the K augmentations of ūi as the new label for ui

by:

q̄i =
1

K

K∑
k=1

pmodel (y | ūi,k; θ) (3)

However, q̄i is derived from a single model, which has a
confirmation bias problem that results in a deviation between
predicted probability and true probability of the sample (Tar-
vainen and Valpola 2017). SLaNT makes two improvements
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to MixMatch.
First, to reduce the confirmation bias of a single model,

we perform ensemble learning with the L weak classifiers
obtained after early stopping in the module of noisy data
identification. Specifically, SLaNT averages the L models’
predicted class distributions across all the K augmentations
of ūi by:

q̄i =
1

K ∗ L

K∑
k=1

L∑
l=1

pmodell (y | ūi,k; θ) (4)

Second, we co-relabel for noisy labeled sample by linearly
combining the noisy label ỹi with the q̄i guided by the label-
confidence wi. The new label of noisy sample ȳi is as follows:

ȳi = wiỹi + (1− wi)q̄i (5)

ȳi is an average prediction over L models for the ith sample.
To reduce the entropy of the label distribution, we also apply
a sharpening function(Zhang et al. 2021b):

ŷi = Sharpen (ȳi, T ) = ȳTi /
m∑
j=1

ȳTj , for j = 1, 2, . . . ,m

(6)
where T is a hyperparameter, ȳi is the guessed label. When
T → 0, Sharpen(ȳi, T ) will approach a ’one-hot’ distribu-
tion. m is the number of labels.

Re-training with Relabeled Data
To alleviate the potential errors propagated from the modules
of noisy data identification and noisy data relabeling, SLaNT
further uses the idea of MixUp (Zhang et al. 2018) to retrain
the DNN model on both clean data and noisy data with the
guessed pseudo label. The main idea of MixUp is as follows,
for a pair of samples(x1, y1),(x2, y2), (x′, y′) is computed
by:

λ ∼ Beta(α, α) (7)

λ′ = max(λ, 1− λ) (8)

x′ = λ′x1 + (1− λ′)x2 (9)

y′ = λ′y1 + (1− λ′) y2 (10)

where α is a hyperparameter. SLaNT combines clean labeled
data C with relabeled noisy data Û and shuffles to form W ,
which can be viewed as the corrected version of training data
X:

C = ((ci, pi) ; i ∈ (1, . . . , |C|)) (11)

Û =
(
(ûi,k, qi) ; i ∈ (1, . . . , |Û |), k ∈ (1, . . . ,K)

)
(12)

W = Shuffle(Concat(C, Û)) (13)

For each the ith sample-label pair in C, SLaNT computes
MixUp(Ci,Wi) and adds the result to C ′. Similarly, based
on the remainder of W , MixUp(Ûi,Wi+|C|) is computed
and its result is added to U ′.

Dataset Class Train Test Dev

SST-2 2 7k 2k 1k

SST-5 3 7k 2k 1k

Amazon-5 5 2100k 600k 300k

Yelp-5 5 490k 140k 70k

Table 2: The statistics of datasets used.

Loss Function. Unlike the cross-entropy loss, L2 loss is
bounded and less sensitive to incorrect predictions(Brier et al.
1950). So, SLaNT uses L2 loss on U ′ and cross-entropy loss
on C ′:

LC =
1

|C′|
∑

c,p∈C′

H(p, pmodel (y | c; θ)) (14)

LU =
1

|U ′|
∑

u,q∈Û ′

∥q − pmodel (y | u; θ)∥22 (15)

The total loss is:

L = LC + λULU (16)

where λU is the unsupervised loss weight.

Experiments
In this section, we describe in detail the extensive experi-
ments performed to evaluate the effectiveness of the proposed
framework for text sentiment analysis with noisy labels.

Datasets
We use four text user comment datasets to conduct sentiment
analysis tasks, as listed in Table 2:
• SST: The Stanford Sentiment Treebank (SST) is a widely

used collection of datasets that consists of single sentence
movie reviews (Socher et al. 2013). Two of the most
prominent datasets within SST are SST-2 and SST-5. We
use SST-2 for binary classification and SST-5 for multiple
classification.

• Amazon-5: Amazon-5 is a popular dataset of user re-
views collected from the Amazon website (McAuley and
Leskovec 2013).

• Yelp-5: The Yelp-5 dataset is a local directory service
with user reviews and it detects fine-grained sentiment
labels (Zhang, Zhao, and LeCun 2015).

Noise Settings
Following previous works (Han et al. 2018; Tanaka et al.
2018; Reed et al. 2015), we experiment with two types of
label noise: symmetric noise, asymmetric noise. As shown
in Figure 2, when the noise ratio is 0.5, the original label in
the symmetric noise can flip to any class with the probability
of 0.1. While in asymmetric noise, the original label can
only flip to one of the rest classes with a probability of 0.5.

194



0.6 0.1 0.1 0.1 0.1

0.1 0.6 0.1 0.1 0.1

0.1 0.1 0.6 0.1 0.1

0.1 0.1 0.1 0.6 0.1

0.1 0.1 0.1 0.1 0.6

0

1

2

3

4

0 1 2 3 4

Tr
ue

  L
ab

el

Noisy Label

0.5 0.5 0 0 0

0 0.5 0.5 0 0

0 0 0.5 0.5 0

0 0 0 0.5 0.5

0.5 0 0 0 0.5

0

1

2

3

4

0 1 2 3 4
Noisy Label

Tr
ue

  L
ab

el
Symmetric-noise Asymmetric-noise

Figure 2: The noise transition matrix of symmetric and asym-
metric noise with noise ratio 50%.

Previous studies (Han et al. 2018) have demonstrated that it
is hard to learn a good model for asymmetric noise larger
than 50%. Therefore, we evaluate our framework with noise
rates 20% - 80% (for symmetric noise) and 10% - 40% (for
asymmetric noise). Note that SST-2 is a binary classification
dataset, we experiment with it only for symmetric noise from
0.1 to 0.4 with step 0.1.

Baseline Methods
We compare our proposed framework SLaNT with the fol-
lowing four strong baselines:
• DivideMix, which dynamically fits a Gaussian Mixture

Model (GMM) to identify noisy data and leverages SSL
to correct noisy labels (Li, Socher, and Hoi 2020).

• Confident Learning (CL), which identifies and removes
noisy data before training the model (Northcutt, Jiang,
and Chuang 2021).

• MW-Net, which reweights noisy data through a meta
reweight net (Shu et al. 2019).

• Co-meta, which utilizes a meta-learning framework for
data correction (Lee, Kim, and gyun Seo 2022).

Experiment Settings and Parameter Tuning
SLaNT is implemented by PyTorch (version 1.6.0) (Paszke
et al. 2019) and evaluated on a GeForce RTX 3090 Ti GPU.
All results are averaged over 5 independent runs (Wu et al.
2021; Zhou, Wang, and Bilmes 2020).

Models. Three DNN models (L = 3) are ensembled
in SLaNT: a 12-hidden layer, 768-hidden size Bert-Base-
Uncased model, a 12-hidden layer, 768-hidden size Roberta
model, and a 12-layer, 64-head XLNet (Yang et al. 2019).
Among these, the Bert-Base-Uncased model is for predicting
the probability matrix required by CL and re-training. The
optimization function is AdamW with a momentum of 0.9,
and a weight decay of 0.0005.

Data augmentation. We use three textual data augmenta-
tions (K = 3):
• Dropout, which generates different sentence vector rep-

resentations by changing the dropout parameters of the
fully connected layer (Srivastava et al. 2014).

• CBert, which generates a wider range of substitute words
by using words predicted by a bi-directional language
model (LM) according to the context (Wu et al. 2019).

Dataset
Symmetric Asymmetric

0.1 0.2 0.3 0.4 0.2 0.4

SST-2 0 25 25 150 - -

Symmetric Asymmetric

0.2 0.4 0.6 0.8 0.2 0.4

SST-5 50 150 150 150 25 150

Amazon-5 50 50 150 150 25 150

Yelp-5 25 50 150 150 25 50

Table 3: λU used on four datasets.

• Text Gen, a novel text generation approach for long and
short text (Bayer et al. 2023).

Tuning for λU . Following the work of MixUp (Zhang et al.
2018), we tune the λu ∈ {0, 25, 50, 150} by fixing T = 0.5
and α = 0.5. For all datasets with the noise rate varying from
low to high, we find that a higher noise ratio requires a larger
λU . Hence, we finally use different λu for four datasets listed
in Table 3.

Other hyperparameters: T and α. By tuning T in the
range [0.2, 0.6] and α in the range [0, 1] with step 0.1, we find
SLaNT can achieve relatively good results for all experiments
when setting T = 0.5 and α = 0.5.

Ablation Study
Here, we provide an analysis of our proposed framework
SLaNT by removing different components on four datasets.
We analyze the results in Table 4 as follows.

Overall, the fully equipped SLaNT outperforms other vari-
ants for all test cases, which demonstrates the effectiveness
of integrating all the proposed components. Specifically, for
different SLaNT variants:

• w/o augmentation, where we use no augmentation to pre-
dict pseudo-label, the decrease in accuracy suggests that
using data augmentation is beneficial for SLaNT. More-
over, we can observe that up to 2.32% can be obtained on
SST-5 dataset with symmetric-0.8 noise, respectively.

• w/o ensemble, where we use a single model to predict
the pseudo label for identified noisy samples. The results
suggest that the ensemble of multiple models is better
than merely using a single one. The most significant im-
provements are gained on Yelp-5 dataset with up to 2.63%
increase in accuracy for symmetric-0.8 noise..

• w/o label-confidence, where we relabel the noisy sample
without considering the original label, i.e., set the label-
confidence w to 0 in Equation 5. We find that considering
label-confidence for noisy sample relabeling is effective
for SLaNT, and the best improvements occur on Amazon-
5 dataset, i.e., SLaNT increases the accuracy by up to
2.19%.
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Dataset Method/Noise
Symmetric Asymmetric

0.1 0.2 0.3 0.4 0.2 0.4

SST-2

SLaNT w/o augmentation 84.31 82.12 80.41 51.84 - -
SLaNT w/o ensemble 83.87 81.71 79.09 51.16 - -

SLaNT w/o label-confidence 84.72 82.29 79.92 51.25 - -
SLaNT w/o Mix Up 84.64 82.51 80.78 51.53 - -

SLaNT 85.28 83.64 82.06 52.47 - -

Symmetric Asymmetric

0.2 0.4 0.6 0.8 0.2 0.4

SST-5

SLaNT w/o augmentation 50.07 47.12 38.25 25.26 50.16 48.37
SLaNT w/o ensemble 48.93 45.81 37.24 25.70 49.04 45.43

SLaNT w/o label-confidence 49.57 47.63 37.72 24.60 49.81 48.35
SLaNT w/o Mix Up 50.11 46.95 37.28 26.04 49.53 48.10

SLaNT 51.32 48.96 40.25 27.58 51.73 50.14

Yelp-5

SLaNT w/o augmentation 60.39 58.13 51.06 36.54 60.52 58.51
SLaNT w/o ensemble 60.45 58.07 50.63 36.32 60.39 57.94

SLaNT w/o label-confidence 61.53 59.26 50.97 37.20 61.74 59.23
SLaNT w/o Mix Up 60.17 58.87 52.34 36.11 60.23 58.92

SLaNT 61.68 59.72 53.26 38.19 61.97 60.04

Amazon-5

SLaNT w/o augmentation 59.58 55.98 49.23 38.57 59.92 56.27
SLaNT w/o ensemble 59.72 56.19 50.77 39.04 60.38 55.32

SLaNT w/o label-confidence 60.63 56.34 50.04 39.43 61.07 56.84
SLaNT w/o Mix Up 60.14 56.17 50.83 38.25 60.43 56.56

SLaNT 60.95 57.28 52.13 40.89 61.26 57.95

Table 4: Accuracy of ablation study on four datasets.

• w/o MixUp, where we re-train relabeled noisy data with-
out using MixUp. The degraded performance proves that
combining clean and noisy data for re-training is effective.
On SST-2 dataset, SLaNT has the most obvious improve-
ment, i.e., up to 1.28% for accuracy.

Comparison with Baseline Methods
We compare SLaNT with baselines on four user comment
datasets and report their results in Table 5. Generally, SLaNT
achieves the best performance for all test cases and noise
rates. For example, even on the high noise rates (Yelp-5
dataset with symmetric-0.6 noise), our method also achieves
better classification results (53.26%). Specifically, SLaNT
outperforms MW-Net by up to 5.27% and 4.36% of accuracy
on SST-5 and Amazon-5 datasets with symmetric-0.8 noise,
respectively. This is because MW-Net has no mechanism for
correcting noisy labels where it only assigns small weights
to noisy samples. Similarly, the main reason for CL’s poor
performance is that it discards too many noisy samples when
the noise ratio is high which reduces the performance of

DNNs. A discernible trend observed from the outcomes on
both Yelp-5 and Amazon-5 datasets suggests that the efficacy
of Co-meta experiences a decline with an increase in the
noise ratio. This phenomenon can be attributed to its esti-
mated parameter update method, which inadvertently leads
the label corrector to conform to the noise in the data, thereby
compromising overall performance.

Moreover, compared with the results on SST5 dataset, the
advantage of SLaNT is more obvious on Amazon-5 dataset.
For example, SLaNT achieves 57.28% accuracy under 40%
symmetric noise, which is significantly higher than that ob-
tained by DivideMix (56.05%) and Co-meta (55.73%).

Inside Study
Based on the accuracy metric, we now perform an inside
study to further investigate how SLaNT achieves its effective-
ness and mainly try to answer the following two questions:
(1) How the SSL strategy performs in SLaNT? (2) How can
SLaNT perform better than DivideMix which also follows the
similar SSL based pipeline?
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Symmetric Asymmetric

0.1 0.2 0.3 0.4 0.2 0.4

SST-2

DivideMix 84.86 83.32 81.12 51.24 - -
Confident Learning 83.54 81.95 77.64 46.82 - -

MW-net 83.97 82.12 81.05 50.39 - -
Co-meta 84.23 82.48 80.83 51.18 - -
SLaNT 85.28 83.64 82.06 52.47 - -

Symmetric Asymmetric

0.2 0.4 0.6 0.8 0.2 0.4

SST-5

DivideMix 50.93 48.09 38.94 25.12 51.26 49.35
Confident Learning 50.28 46.85 38.07 21.44 50.49 46.93

MW-net 50.37 47.24 38.61 22.31 50.57 47.30
Co-meta 50.51 47.53 38.59 22.46 50.82 48.52
SLaNT 51.32 48.96 40.25 27.58 51.73 50.14

Yelp-5

DivideMix 61.32 58.67 51.79 35.41 61.68 58.89
Confident Learning 60.74 55.42 48.67 31.32 60.83 56.05

MW-net 60.35 56.96 50.04 32.24 61.04 57.37
Co-meta 61.29 58.34 51.23 34.05 61.35 58.51
SLaNT 61.68 59.73 53.26 38.19 61.97 60.04

Amazon-5

DivideMix 60.23 56.05 50.34 38.17 60.45 56.97
Confident Learning 58.72 54.16 47.65 34.31 59.89 55.01

MW-net 59.16 55.02 48.17 36.53 60.37 56.13
Co-meta 60.34 55.73 49.58 38.20 60.92 56.86
SLaNT 60.95 57.28 52.13 40.89 61.26 57.95

Table 5: Comparison with state-of-the-art baseline methods on four datasets.

For the first question, based on Table 5 we plot the accuracy
of SLaNT and CL baseline in Figures 3(a), 3(c), 4(a), and
4(c). Note that, no label correction strategy is used in CL,
i.e., the identified noisy samples are removed and the DNN
model is trained only on the rest samples. So far, we can easily
observe SLaNT performs better than CL, and this is because
SLaNT which adopts the SSL strategy can fully utilize the
noisy samples to achieve better generalization performance
while CL cannot. To further study how SSL performs within
SLaNT, we then plot the corresponding numbers of removed
noisy samples in Figures 3(b), 3(d), 4(b), and 4(d). As shown
in these figures, the number of removed noisy samples goes
up as the noise ratio becomes high. For example, SLaNT uses
more than 150K with symmetric-0.6 and 250K asymmetric-
0.8 noisy samples than CL does on Yelp-5 dataset, while 6K
around symmetric and 3k around asymmetric noisy samples
are ignored by CL on SST-5 dataset.

Similarly, these above figures also suggest that MW-Net
has underutilized the potential contribution of noisy samples
to the model, as it assigns lower weights to the noisy samples,

resulting in it being less effective than SLaNT. Consequently,
it is reasonable to conclude that label correction methods
generally outperform sample filtering and sample reweighting
methods, especially in high-noise scenarios.

To answer the second question, we should be aware of two
main differences between SLaNT and DivideMix: (1) The
main component for identifying noisy data, i.e., DivideMix
uses GMM while SLaNT adopts CL; (2) The relabeling strat-
egy for noisy data, i.e., DivideMix uses two networks to
perform label co-guessing without considering the informa-
tion of original noisy label, while SLaNT relabels the noisy
data by combining the original label and the pseudo label pre-
dicted by ensemble learning. Then we investigate as follows.

First, we compare the accuracy of SLaNT and DivideMix
for identifying noisy data. As shown in Figure 5, SLaNT has
higher accuracy than that of DivideMix, e.g. the improvement
of accuracy is up to 5.27% on Amazon-5 with symmetric-
0.8, which indicates that CL has better performance than that
of GMM for identifying noisy data and less errors will be
propagated to the following components in SLaNT.
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Figure 3: Inside study for SSL on SST-5. (a) and (c): accuracy of SLaNT and CL; (b) and (d): noisy samples removed for CL.
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Figure 4: Inside study for SSL on Yelp-5 and Amazon-5 with symmetric noise. (a) and (c): accuracy of SLaNT and CL on Yelp-5
and Amazon-5, respectively; (b) and (d): noisy samples removed for CL Yelp-5 and Amazon-5, respectively.

Second, we construct a new pipeline by combining CL
with the relabel strategy (co-guessing) of DivideMix, denoted
as CL+DivideMix relabel, and report the comparison results
in Figure 6. Obviously, SLaNT significantly outperforms the
constructed baseline in all cases, which demonstrates that our
relabeling strategy is more effective than that of DivideMix.

Related Work
Text Sentiment Analysis
With the rise of social media platforms such as Twitter and
Facebook, individuals now have the means to share their
opinions with a global audience. Social media has emerged
as one of the most significant modes of communication today.
Consequently, a vast amount of associated text data has been
generated, leading to the development of sentiment analysis
technology for its analysis. Text sentiment analysis can be
categorized into three levels: sentence level, document level,
and aspect level, depending on the dataset. In this paper, we
focus on conducting sentiment analysis based on sentence
text. The objective of text sentiment analysis is to employ
natural language processing techniques to assess the attitudes
expressed in user-generated content, which can be positive,
negative, or neutral.

Noisy Label Learning
We note several prior works that have been developed against
label noise.

Data reweighting. Much existing work focused on
reweighting the noisy data (Ren et al. 2018; Jiang et al. 2018).
Ren et al. (Ren et al. 2018) proposed a meta-learning method
to reweight noisy data based on their gradient directions.
Jiang et al. (Jiang et al. 2018) trained an auxiliary LSTM-

based MentorNet to reweight noisy data. Both of these meth-
ods require an additional clean dataset, which can be costly in
terms of labeling. Zhang et al. (Zhang et al. 2021b) presented
a new meta re-weighting model without clean data, to reduce
the labeling cost. Sun et al. (Sun et al. 2022a) proposed a
hierarchical probabilistic method named warped probabilis-
tic inference (WarPI) to reweight data, where they used a
meta-network to estimate the distribution of noisy data. A
boosting technique (Miao et al. 2015) is employed to update
the weights using a manually designed re-weighting function.
Another approach, introduced in the form of CleanNet (Lee
et al. 2018), involves a joint neural embedding network aimed
at minimizing the need for human supervision in label noise
cleaning. CleanNet operates effectively with only a fraction
of categories verified by human experts, and the knowledge
acquired for label noise correction can subsequently be trans-
ferred to other classes. All of these methods usually assign
small weights to noisy samples which reduce the contribution
of noisy samples to the model and degenerate the robustness
of DNN.

Data filtering. Another promising area focuses on training
with clean data (Northcutt, Jiang, and Chuang 2021; Elkan
and Noto 2008; Pleiss et al. 2020). These methods try to iden-
tify the noisy data, and then discard them before training the
model. Xia et al. (Xia et al. 2021) addressed the uncertainty
of losses by adopting interval estimation rather than point
estimation. Specifically, they utilized the lower bounds of
confidence intervals for losses, derived from distribution-free
concentration inequalities, as criteria for data selection. Con-
fident Learning (CL) (Northcutt, Jiang, and Chuang 2021)
divided the training data into clean and noisy data then dis-
carded the noisy data before training the model. Elkan et al.
(Elkan and Noto 2008) estimated noisy data using positive-
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Figure 5: Accuracy of SLaNT and DivideMix for identifying noisy data. (a) and (b): SST-5; (c) and (d): Amazon-5.
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Figure 6: Accuracy of relabeling strategy. (a) and (b): SST-5; (c) and (d): Amazon-5.

unlabeled learning which is limited to binary classification.
AUM (Pleiss et al. 2020) measured the average difference be-
tween the logit values for each data assigned class to identify
noisy data. However, all of them have a shortcoming. When
the noise ratio is high, a significant amount of data would be
discarded which reduces the robustness and generalization
performance of DNNs. SELF (Nguyen et al. 2020) adopts the
idea of self-ensemble to gradually identify the noisy labels
and uses the Mean Teacher model (Tarvainen and Valpola
2017) to train DNNs with the entire dataset. However, SELF
assumes the correct labels can be viewed as representative
to achieve high model performance and no label correction
is conducted, which hinders its application to sophisticated
scenarios where the noisy labels are not randomly generated.

Data relabeling. These methods try to correct the noisy
data and then train with clean data which leverages all the
train data. Pnp (Sun et al. 2022b) introduced a straightfor-
ward yet highly effective approach where two networks are
concurrently trained: one for predicting the category label,
and the other for correcting the noise. Mallem et al. (Mallem,
Hasnat, and Nakib 2023) first proposed a meta label correc-
tion net which needs a set of clean data to relabel noisy data.
DivideMix (Li, Socher, and Hoi 2020) used the GMM to
identify noisy data and trained two networks to relabel the
noisy data. Unlike DivideMix (Li, Socher, and Hoi 2020), we
only use multiple networks in the step of relabeling. The final
re-training of our framework is merely performed on a single
network, which makes SLaNT computationally much lighter.
Moreover, both the strategies of noisy data identification and
the relabeling in these works are different from SLaNT.

Conclusion and Future Work
In this paper, our primary objective is to enhance the ro-
bustness of DNN models when confronted with the chal-
lenge of noisy labels in the context of sentiment analysis.

To address this issue, we introduce a novel semi-supervised
label noise-tolerant learning framework known as SLaNT.
SLaNT can train a robust DNN model under noisy supervi-
sion through a pipeline of model early stopping, noisy data
identification, data augmentation, noisy data relabeling and
model re-training. Importantly, our extensive experimentation
validates the superiority of SLaNT over current four state-
of-the-art methods. In multiple instances, SLaNT achieves
significantly improved results, enabling it to be an effective
approach for addressing label noise in the domain of text
sentiment analysis.

In future work, we are interested in exploring other effec-
tive components that can be embedded in SLaNT. We are also
interested in adapting SLaNT to other social media scenarios,
accommodating the specific characteristics and challenges of
different domains.
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Gururangan, S.; Marasović, A.; Swayamdipta, S.; Lo, K.;
Beltagy, I.; Downey, D.; and Smith, N. A. 2020. Don’t Stop
Pretraining: Adapt Language Models to Domains and Tasks.
In ACL, 8342–8360.
Han, B.; Yao, Q.; Yu, X.; Niu, G.; Xu, M.; Hu, W.; Tsang,
I. W.; and Sugiyama, M. 2018. Co-teaching: Robust training
of deep neural networks with extremely noisy labels. In
NIPS.
Hou, Y.; Liu, Y.; Che, W.; and Liu, T. 2018. Sequence-to-
Sequence Data Augmentation for Dialogue Language Under-
standing. In ACL, 1234–1245.
Jiang, L.; Zhou, Z.; Leung, T.; Li, L.-J.; and Fei-Fei, L. 2018.
Mentornet: Learning data-driven curriculum for very deep
neural networks on corrupted labels. In ICML, 2304–2313.
PMLR.
Kang, D.; Khot, T.; Sabharwal, A.; and Hovy, E. 2018. Ad-
vEntuRe: Adversarial Training for Textual Entailment with
Knowledge-Guided Examples. In ACL, 2418–2428.
Kearns, M. 1998. Efficient noise-tolerant learning from sta-
tistical queries. JACM, 45(6): 983–1006.
Lee, D.-M.; Kim, Y.; and gyun Seo, C. 2022. Context-
based Virtual Adversarial Training for Text Classification
with Noisy Labels. In LREA, 6139–6146.

Lee, K.-H.; He, X.; Zhang, L.; and Yang, L. 2018. Cleannet:
Transfer learning for scalable image classifier training with
label noise. In CVPR, 5447–5456.
Li, B.; Hou, Y.; and Che, W. 2021. Data Augmentation
Approaches in Natural Language Processing: A Survey. arXiv
preprint arXiv:2110.01852.
Li, J.; Socher, R.; and Hoi, S. C. 2020. DivideMix: Learning
with Noisy Labels as Semi-supervised Learning. In ICLR.
Liu, Y.; Ott, M.; Goyal, N.; Du, J.; Joshi, M.; Chen, D.;
Levy, O.; Lewis, M.; Zettlemoyer, L.; and Stoyanov, V. 2019.
Roberta: A robustly optimized bert pretraining approach.
arXiv preprint arXiv:1907.11692.
Mallem, S.; Hasnat, A.; and Nakib, A. 2023. Efficient Meta
label correction based on Meta Learning and bi-level opti-
mization. Engineering Applications of Artificial Intelligence,
117: 105517.
McAuley, J.; and Leskovec, J. 2013. Hidden factors and hid-
den topics: understanding rating dimensions with review text.
In Proceedings of the 7th ACM conference on Recommender
systems, 165–172.
Miao, Q.; Cao, Y.; Xia, G.; Gong, M.; Liu, J.; and Song, J.
2015. RBoost: Label noise-robust boosting algorithm based
on a nonconvex loss function and the numerically stable base
learners. TNNLS, 27(11): 2216–2228.
Nguyen, T.; Mummadi, C.; Ngo, T.; Beggel, L.; and Brox,
T. 2020. SELF: learning to filter noisy labels with self-
ensembling. In ICLR.
Northcutt, C.; Jiang, L.; and Chuang, I. 2021. Confident
learning: Estimating uncertainty in dataset labels. JAIR, 70:
1373–1411.
Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.;
Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.;
et al. 2019. Pytorch: An imperative style, high-performance
deep learning library. NIPS, 32: 8026–8037.
Pleiss, G.; Zhang, T.; Elenberg, E.; and Weinberger, K. Q.
2020. Identifying mislabeled data using the area under the
margin ranking. NIPS, 33: 17044–17056.
Reed, S. E.; Lee, H.; Anguelov, D.; Szegedy, C.; Erhan, D.;
and Rabinovich, A. 2015. Training Deep Neural Networks
on Noisy Labels with Bootstrapping. In ICLR.
Ren, M.; Zeng, W.; Yang, B.; and Urtasun, R. 2018. Learning
to reweight examples for robust deep learning. In ICML,
4334–4343. PMLR.
Shu, J.; Xie, Q.; Yi, L.; Zhao, Q.; Zhou, S.; Xu, Z.; and Meng,
D. 2019. Meta-weight-net: Learning an explicit mapping for
sample weighting. NIPS, 32.
Socher, R.; Perelygin, A.; Wu, J.; Chuang, J.; Manning, C. D.;
Ng, A. Y.; and Potts, C. 2013. Recursive deep models for
semantic compositionality over a sentiment treebank. In
EMNLP, 1631–1642.
Song, H.; Kim, M.; Park, D.; Shin, Y.; and Lee, J.-G. 2022.
Learning from noisy labels with deep neural networks: A
survey. TNNLS.
Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; and
Salakhutdinov, R. 2014. Dropout: a simple way to prevent
neural networks from overfitting. JMLR, 15(1): 1929–1958.

200



Sukhbaatar, S.; Bruna, J.; Paluri, M.; Bourdev, L.; and Fergus,
R. 2015. Training convolutional networks with noisy labels.
ICLR.
Sun, H.; Guo, C.; Wei, Q.; Han, Z.; and Yin, Y. 2022a. Learn-
ing to rectify for robust learning with noisy labels. Pattern
Recognition, 124: 108467.
Sun, Z.; Shen, F.; Huang, D.; Wang, Q.; Shu, X.; Yao, Y.; and
Tang, J. 2022b. Pnp: Robust learning from noisy labels by
probabilistic noise prediction. In CVPR, 5311–5320.
Tanaka, D.; Ikami, D.; Yamasaki, T.; and Aizawa, K. 2018.
Joint optimization framework for learning with noisy labels.
In CVPR, 5552–5560.
Tarvainen, A.; and Valpola, H. 2017. Mean teachers are better
role models: Weight-averaged consistency targets improve
semi-supervised deep learning results. In ICONIP, 1195–
1204.
Tu, Y.; Zhang, B.; Li, Y.; Liu, L.; Li, J.; Wang, Y.; Wang, C.;
and Zhao, C. R. 2023. Learning from noisy labels with de-
coupled meta label purifier. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
19934–19943.
Wei, J.; and Zou, K. 2019. EDA: Easy Data Augmentation
Techniques for Boosting Performance on Text Classification
Tasks. In EMNLP-IJCNLPE, 6382–6388.
Wu, X.; Lv, S.; Zang, L.; Han, J.; and Hu, S. 2019. Con-
ditional bert contextual augmentation. In ICCS, 84–95.
Springer.
Wu, Y.; Shu, J.; Xie, Q.; Zhao, Q.; and Meng, D. 2021. Learn-
ing to purify noisy labels via meta soft label corrector. In
AAAI, volume 35, 10388–10396.
Xia, X.; Liu, T.; Han, B.; Gong, M.; Yu, J.; Niu, G.; and
Sugiyama, M. 2021. Sample Selection with Uncertainty of
Losses for Learning with Noisy Labels. In International
Conference on Learning Representations.
Yan, Y.; Xu, Z.; Tsang, I.; Long, G.; and Yang, Y. 2016.
Robust semi-supervised learning through label aggregation.
In AAAI, volume 30.
Yang, Z.; Dai, Z.; Yang, Y.; Carbonell, J.; Salakhutdinov,
R. R.; and Le, Q. V. 2019. Xlnet: Generalized autoregressive
pretraining for language understanding. NIPS, 32.
Zhang, C.; Bengio, S.; Hardt, M.; Recht, B.; and Vinyals, O.
2021a. Understanding deep learning (still) requires rethink-
ing generalization. COMMUN ACM, 64(3): 107–115.
Zhang, H.; Cisse, M.; Dauphin, Y. N.; and Lopez-Paz, D.
2018. mixup: Beyond empirical risk minimization. ICLR.
Zhang, X.; Zhao, J.; and LeCun, Y. 2015. Character-level
convolutional networks for text classification. NIPS, 28: 649–
657.
Zhang, Y.; Liu, F.; Fang, Z.; Yuan, B.; Zhang, G.; and Lu, J.
2021b. Learning from a complementary-label source domain:
theory and algorithms. TNNLS.
Zheng, G.; Awadallah, A. H.; and Dumais, S. 2021. Meta
label correction for noisy label learning. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 35,
11053–11061.

Zhou, T.; Wang, S.; and Bilmes, J. 2020. Robust curricu-
lum learning: From clean label detection to noisy label self-
correction. In ICLR.

Paper Checklist
1. For most authors...

(a) Would answering this research question advance sci-
ence without violating social contracts, such as violat-
ing privacy norms, perpetuating unfair profiling, exac-
erbating the socio-economic divide, or implying dis-
respect to societies or cultures? Our method does not
violate the social contract.

(b) Do your main claims in the abstract and introduction
accurately reflect the paper’s contributions and scope?
Yes.

(c) Do you clarify how the proposed methodological ap-
proach is appropriate for the claims made? Yes.

(d) Do you clarify what are possible artifacts in the data
used, given population-specific distributions? Yes.

(e) Did you describe the limitations of your work? No.
(f) Did you discuss any potential negative societal impacts

of your work? No.
(g) Did you discuss any potential misuse of your work?

No.
(h) Did you describe steps taken to prevent or mitigate po-

tential negative outcomes of the research, such as data
and model documentation, data anonymization, respon-
sible release, access control, and the reproducibility of
findings? No.

(i) Have you read the ethics review guidelines and ensured
that your paper conforms to them? Yes.

2. Additionally, if your study involves hypotheses testing...
(a) Did you clearly state the assumptions underlying all

theoretical results? N/A.
(b) Have you provided justifications for all theoretical re-

sults? Answer
(c) Did you discuss competing hypotheses or theories that

might challenge or complement your theoretical re-
sults? N/A.

(d) Have you considered alternative mechanisms or ex-
planations that might account for the same outcomes
observed in your study? N/A.

(e) Did you address potential biases or limitations in your
theoretical framework? N/A.

(f) Have you related your theoretical results to the existing
literature in social science? N/A.

(g) Did you discuss the implications of your theoretical
results for policy, practice, or further research in the
social science domain? N/A.

3. Additionally, if you are including theoretical proofs...
(a) Did you state the full set of assumptions of all theoreti-

cal results? N/A.
(b) Did you include complete proofs of all theoretical re-

sults? N/A.

201



4. Additionally, if you ran machine learning experiments...
(a) Did you include the code, data, and instructions needed

to reproduce the main experimental results (either in
the supplemental material or as a URL)? No. We will
release the code after the paper is officially accepted

(b) Did you specify all the training details (e.g., data splits,
hyperparameters, how they were chosen)? Yes.

(c) Did you report error bars (e.g., with respect to the ran-
dom seed after running experiments multiple times)?
Yes.

(d) Did you include the total amount of compute and the
type of resources used (e.g., type of GPUs, internal
cluster, or cloud provider)? Yes.

(e) Do you justify how the proposed evaluation is sufficient
and appropriate to the claims made? Yes.

(f) Do you discuss what is “the cost“ of misclassification
and fault (in)tolerance? No.

5. Additionally, if you are using existing assets (e.g., code,
data, models) or curating/releasing new assets, without
compromising anonymity...

(a) If your work uses existing assets, did you cite the cre-
ators? Yes.

(b) Did you mention the license of the assets? No.
(c) Did you include any new assets in the supplemental

material or as a URL? No.
(d) Did you discuss whether and how consent was obtained

from people whose data you’re using/curating? No. In
this paper, the datasets are all public.

(e) Did you discuss whether the data you are using/cu-
rating contains personally identifiable information or
offensive content? No.

(f) If you are curating or releasing new datasets, did you
discuss how you intend to make your datasets FAIR
(see ?)? N/A.

(g) If you are curating or releasing new datasets, did you
create a Datasheet for the Dataset (see ?)? N/A.

6. Additionally, if you used crowdsourcing or conducted
research with human subjects, without compromising
anonymity...

(a) Did you include the full text of instructions given to
participants and screenshots? N/A.

(b) Did you describe any potential participant risks, with
mentions of Institutional Review Board (IRB) ap-
provals? N/A.

(c) Did you include the estimated hourly wage paid to
participants and the total amount spent on participant
compensation? N/A.

(d) Did you discuss how data is stored, shared, and deiden-
tified? N/A.
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