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Abstract

Online extremism has severe societal consequences, includ-
ing normalizing hate speech, user radicalization, and in-
creased social divisions. Various mitigation strategies have
been explored to address these consequences. One such strat-
egy uses positive interventions: controlled signals that add
attention to the opinion ecosystem to boost certain opin-
ions. To evaluate the effectiveness of positive interventions,
we introduce the Opinion Market Model (OMM), a two-tier
online opinion ecosystem model that considers both inter-
opinion interactions and the role of positive interventions.
The size of the opinion attention market is modeled in the
first tier using the multivariate discrete-time Hawkes process;
in the second tier, opinions cooperate and compete for market
share, given limited attention using the market share attrac-
tion model. We demonstrate the convergence of our proposed
estimation scheme on a synthetic dataset. Next, we test OMM
on two learning tasks, applying to two real-world datasets
to predict attention market shares and uncover latent rela-
tionships between online items. The first dataset comprises
Facebook and Twitter discussions containing moderate and
far-right opinions about bushfires and climate change. The
second dataset captures popular VEVO artists’ YouTube and
Twitter attention volumes. OMM outperforms the state-of-
the-art predictive models on both datasets and captures latent
cooperation-competition relations. We uncover (1) self- and
cross-reinforcement between far-right and moderate opinions
on the bushfires and (2) pairwise artist relations that correlate
with real-world interactions such as collaborations and long-
lasting feuds. Lastly, we use OMM as a testbed for positive
interventions and show how media coverage modulates the
spread of far-right opinions.

1 Introduction
Online social media platforms are fertile grounds for deliber-
ation and opinion formation (Gupta, Jain, and Tiwari 2022).
Opinions thrive in the online opinion ecosystem, intercon-
nected online social platforms where they interact – coop-
erating or competing for the finite public attention (Wu, Ri-
zoiu, and Xie 2019).

We delineate two types of interventions to mitigate the
spread of extremist views. Negative interventions aim to
subtract attention from the opinion ecosystem by placing
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fact-check warnings on postings (Nekmat 2020), shadow-
banning (Young 2022) or outright banning extremist social
media groups and accounts (Jackson 2019). While negative
interventions are effective (Clayton et al. 2020), they are
available solely to the social media platforms that tend to
use them sparingly (Porter and Wood 2021).

Positive interventions (GIFCT 2021), such as misinforma-
tion debunking (Haciyakupoglu et al. 2018; Shu, Wang, and
Liu 2019) and increasing media coverage (Horowitz et al.
2022), mitigate extremist views by adding attention to the
online opinion ecosystem through informing the public, re-
distributing attention away from extremist, and toward mod-
erate views. Such interventions are typically in the hands
of government and media agencies (Radsch 2016). Testing
the viability of positive interventions requires capturing re-
actions to interventions and inter-opinion interactions.

This work develops a model for the dynamics of the opin-
ion ecosystem and a testbed for evaluating positive interven-
tions. We focus on two open questions. The first question
explores the analogy between opinions and economic goods.
In a competitive economic market of limited resources, co-
existing goods can interact in one of two ways: either they
compete for market share (substitute brands, like Pepsi and
Coke) or reinforce each other (complementary items, like
bread and butter). We argue that opinions in the online
ecosystem behave similarly, allowing us to leverage mar-
ket share modeling tools (Cooper 1993). The first research
question is: Can we model the online opinion ecosystem
as an environment where opinions cooperate or compete
for market share? We propose the Opinion Market Model1
(OMM), a two-tier model to address this question. Fig. 1
showcases a simple opinion ecosystem under intervention,
with two opinions (denoted 0 and 1) on a single social me-
dia platform. Each opinion has two polarities: far-right sup-
porters (+) and moderate debunkers (-). Exogenous signals
(shown in gray in the top panel of Fig. 1) and interventions
(shown in yellow) modulate the dynamics of the opinions’
sizes. Exogenous signals are naturally occurring events like
bushfires, floods, or political speeches. Interventions (like
increased media coverage) are designed to add attention to
the opinion ecosystem, increasing the market share of cer-

1The code and datasets are available at
https://github.com/behavioral-ds/opinion-market-model.
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Figure 1: We illustrate how the positive intervention X(t)
(in Eq. (9)) suppresses far-right opinions on a simulated toy
opinion ecosystem with two far-right (0+, 1+) and two mod-
erate (0-, 1-) opinions. For instance, 0+ and 1+ can rep-
resent the opinions “Greens policies caused the Australian
bushfires” and “mainstream media cannot be trusted,” re-
spectively; 0- and 1- can be obtained as their negations. Top
row: the exogenous signal S(t) (in Eq. (5)) and the interven-
tion X(t). Middle row: total daily opinion market size from
our model’s first tier, split into far-right (+) and moderate (-)
opinion volumes. Bottom row: market shares and the inter-
actions between the four opinions from our model’s second
tier. Nodes are opinions; their sizes indicate market share;
edges show exciting (red) and inhibiting (blue) relations.
X(t) suppresses far-right opinions for t > 50. Shown are
average market shares before (left) and after (right) t = 50.

tain opinions while suppressing others. The first tier of OMM
(middle row in Fig. 1) uses a discrete-time Hawkes pro-
cess to estimate the size of the opinion attention market –
that is, the daily number of postings featuring opinions. The
Hawkes process has been widely used to model online at-
tention (Rizoiu et al. 2017; Zarezade et al. 2017) due to its
ability to account for exogenous factors and the endogenous
“word-of-mouth” through its self- and cross-exciting prop-
erty. The second tier of OMM (bottom row in Fig. 1) lever-
ages a market share attraction model to capture opinion in-

teractions – we assume that online opinions compete for the
users’ limited online attention (Weng et al. 2012; Gelper,
van der Lans, and van Bruggen 2021). For the example in
Fig. 1, opinions 0− and 1+ have a strong reinforcing rela-
tion (shown as red arrows), while 1− and 1+ have a weak
competing relation (blue arrows).

We test OMM on two real-world datasets1. The first con-
tains Facebook and Twitter discussions expressing moder-
ate and far-right opinions on bushfires and climate change
(Kong et al. 2022). The second captures the YouTube views
and Twitter mentions for the most popular VEVO artists’
songs in 2017 (Wu, Rizoiu, and Xie 2019). We evaluate
OMM on two tasks: predicting attention market share and
exposing relationships between online items. For the pre-
dictive task, OMM outperforms the current state of the art
in market share modeling (Correlated Cascades (Zarezade
et al. 2017) and Competing Products (Valera and Gomez-
Rodriguez 2015)) and predictive baselines on both datasets.
For the second task, we leverage the OMM to expose the
relations between opinions on the two platforms. For the
bushfire case study, no significant interactions occurred on
Facebook, as postings were collected from far-right public
groups with limited interaction with the opposing side. On
Twitter, we observe self-reinforcement behavior of both far-
right and moderate opinions, probably due to the echo cham-
ber effect (Cinelli et al. 2021) – reinforcing one’s beliefs due
to repeated interactions with users sharing similar ideologies
on social platforms. Surprisingly, we notice that opposing
views reinforce each other, probably due to the deliberative
nature of Twitter, where far-right sympathizers and oppo-
nents oppose each other. For the VEVO artists case study,
we uncover nontrivial pairwise interactions of music artists
correlating with real-world relationships – such as Ariana
Grande’s and Calvin Harris’ reinforcement relationship due
to their collaboration “Heatstroke” and Taylor Swift’s and
Justin Bieber’s inhibiting relationship.

Our second research question is: Can we test the sensi-
tivity of the opinion ecosystem to positive interventions?
OMM accounts for positive interventions – controlled ex-
ternal signals to boost certain opinions. In Fig. 1 an inter-
vention is performed for t > 50, which suppresses the far-
right opinions (+), leading to the shrinking of their market
share. We use OMM for two tasks: first, to estimate whether
interventions effectively shape the opinion ecosystem and,
second, to construct what-if scenarios as synthetic testbeds
for future interventions. For the bushfire case study, we test
whether news coverage from reputable and controversial
media outlets suppresses or aids the spread of far-right opin-
ions. We fit OMM twice: with and without media coverage.
We find a better fit with the intervention, suggesting that me-
dia coverage actively shapes the opinion ecosystem. We per-
form synthetic what-if experiments: we vary the level of me-
dia coverage, simulate the system and observe the effect on
opinion market shares. On Facebook, reputable media cover-
age reduces the prevalence of far-right opinions. On Twitter,
both reputable and controversial media coverage suppress
far-right opinions. However, for some opinions (like “Main-
stream media cannot be trusted”), reputable news backfires
increasing far-right opinions share.
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The main contributions of the work are as follows:
1. A novel two-tier model of the opinion ecosystem

that allows studying opinion interactions through an
economics-based cooperation-competition lens. We in-
troduce simulation and estimation algorithms and study
the convergence with synthetic tests.

2. A synthetic testbed to uncover interactions across sym-
pathizers and opponents of far-right opinions and likely
effects of positive interventions via media coverage.

3. A curated dataset of Twitter and Facebook discussions on
bushfires/climate change.

Related Work. We focus the discussion of related work
on models for cooperative-competitive interaction in a set
of co-diffusing online items. These models need to be both
predictive and interpretable (usually generative models). We
have observed a lack of recent research in this area, with few
works dating after 2017. Closely related to our proposal is
the Correlated Cascades (CC) model (Zarezade et al. 2017),
a variant of the multivariate Hawkes process to model prod-
uct adoption across a set of competing products in a so-
cial network. It estimates the interaction parameter β, tuning
the market cooperation or competition level. A limitation of
CC is that all products share a single β value. This simpli-
fies existing asymmetric relationships and assumes that all
brands either cooperate or compete. OMM addresses this is-
sue by fully modeling these asymmetric relationships. An-
other closely related work is the Competing Products (CP)
model (Valera and Gomez-Rodriguez 2015), a multivari-
ate Hawkes model for product adoption/use where the fre-
quency of use is affected by the usage of other products.
Limitations of the work are the absence of the assumption
of limited attention and the possibility of negative intensi-
ties since competitive interactions are modeled as negative
parameters. OMM avoids the weaknesses of CP by using a
multiplicative model, thereby avoiding negative intensities
and defining opinion shares as fractions of the total attention
volume. The SLANT model (De et al. 2016) and the follow-
up SLANT+ (Kulkarni et al. 2017) extend the CP model to
differentiate between a user’s latent and expressed opinion
and uses a similar Hawkes process to model the intensity.
However, SLANT requires fine-grained network informa-
tion for training, which is prohibitive considering that online
platforms are becoming more stringent with fine-grained
data access (Venturini and Rogers 2019). On the other hand,
OMM requires only opinion counts for training.

Ethics of Opinion Moderation and Broader Perspec-
tives. OMM is intended to model interactions between opin-
ions and be used as a testbed for evaluating positive inter-
ventions for opinion moderation. As any tool, OMM is un-
aware of the intention of its user and, in theory, could be used
by oppressive regimes to silence or manipulate the liberal
opinions of their opponents (Radsch 2016). In addition, the
fundamental value of freedom of speech for democratic so-
cieties implies that non-widely accepted opinions also have
the right to be expressed. The scientific literature studies this
ethical conundrum in the context of Countering Violent Ex-
tremism (CVE) initiatives (Betz 2016; Radsch 2016). When
viewing OMM as an AI evaluation tool supporting CVE ini-

tiatives (Ferguson 2016), these ethical issues can be miti-
gated using online CVE frameworks in liberal democracies
(Henschke and Reed 2021). We argue that the implement-
ing body is responsible for OMM’s ethical usage, and CVE
regulations should be leveraged to mitigate malicious intent.

Causal Impact. OMM measures the effect of media cov-
erage on the opinion market shares using a generative model
to disentangle endogenous and exogenous factors from ob-
servational data, similar to (Rizoiu and Xie 2017; Fujita
et al. 2018; Garetto, Leonardi, and Torrisi 2021). Our model
works on aggregate observational data (i.e., opinion counts),
and it does not prove the causal impact of media coverage
on individual opinion formation (i.e., behavior change). We
would require a pre-test/post-test control group design to
achieve true causal links. Previous work (King, Schneer, and
White 2017; Guess et al. 2021; Agovino, Carillo, and Spag-
nolo 2021) provides evidence of the interventional role of
media coverage. In Section 8, we explore this further in a
what-if experiment to demonstrate how the level of media
coverage affects opinion market shares.

2 Preliminaries
We introduce two classes of models that form the founda-
tion of our approach: (1) the discrete-time Hawkes process
(Browning et al. 2021), a model of event counts that display
self-exciting behavior, and (2) the market share attraction
model (Cooper 1993), a marketing model that uncovers the
latent competitive structure of brands and interaction with
marketing instruments.

Discrete-time Hawkes Process
The discrete-time Hawkes Process (DTHP) (Browning et al.
2021) is the discrete-time analogue of the popular self-
exciting Hawkes process (Hawkes 1971), where instead of
modeling the occurrence of events given by t ∈ R+, we
model the event count N(t) on [t− 1, t) for t ∈ N.

The DTHP is characterized by the conditional intensity
function λ(t), defined as the expected number of events
that occur at time t, conditioned on the history Ht−1 =
{N(s)|s < t}. For a DTHP, λ(t) is given by

λ(t) = E[N(t)|Ht−1] = µ+
∑
s<t

α · f(t− s) ·N(s), (1)

where µ is the baseline count of events, α determines the
level of self-excitation and is the expected number of events
produced by a single event and f(t) is the triggering ker-
nel, which controls the influence of the past events on the
present. We specify f(t) with the geometric probability
mass function f(t) = θ(1 − θ)t−1, t ∈ N, the discrete-
time analogue of the exponential distribution (Browning
et al. 2021). Given λ(t), model specification is completed by
specifying a probability mass function for the count N(t).
Following (Browning et al. 2021), we setN(t) ∼ Poi(λ(t)).

Market Share Attraction Model
In marketing literature, market share attraction models
(MSAMs) (Cooper 1993) model the competitive structure
of a set of M brands in a product category, predict their
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market shares, and evaluate how a set of marketing instru-
ments affects resulting market shares. MSAMs assume that
the market share si of brand i ∈ {1 . . .M} is proportional
to consumers’ attraction Ai towards brand i:

si =
Ai∑M
j=1Aj

∈ [0, 1]. (2)

Ai is typically modeled as a parametric function of a set
of K marketing instruments {Xki}Kk=1 ∈ RK , where Xki

gives the value of the kth marketing instrument for brand i.
We typically specify Ai as

Ai = exp

βi +
K∑

k=1

M∑
j=1

γkijXkj

 , (3)

where βi measures the inherent attraction of brand i and
γkij ∈ R measures the effect of the value of the kth market-
ing instrument for brand j on brand i’s attraction. Whether
γkij is positive (negative) is indicative of the excitatory (in-
hibiting) relationship from brand j to brand i through mar-
keting instrument Xkj .

MSAMs are interpreted via the model elasticity
e(si, Xkj), the ratio of the percent change in the market
share si given a percent change in the value of the kth mar-
keting instrument for brand j. For example, an elasticity of
e(si, Xkj) = 0.1 means that a 1% increase in Xkj corre-
sponds to a 0.1% increase in si. That is,

e(si, Xkj) =
∂si/si

∂Xkj/Xkj
=

∂si
∂Xkj

· Xkj

si
. (4)

The elasticity e(si, Xkj) captures the overall effect of
brand j’s marketing instrument Xkj on brand i’s market
share si: both the direct effect of Xkj on si, controlled by
γkij , and the indirect effect of Xkj on si through its effect
on the attraction of other brands {j 6= i}.

3 The OMM Model
In this section, we develop a two-tier model of the opinion
ecosystem. The first tier models the total size of the opinion
attention market on multiple online platforms. The second
tier models the market share of opinions on each platform.
Next, we introduce a scheme for parameter estimation.

OMM consists of two tiers; the first tier, which we call the
opinion volume model, tracks the size of the opinion atten-
tion market, while the second tier, the opinion share model,
tracks the market shares of the different opinions. Table 1
summarises the notation for important variables in the OMM.
The full table is available in the online appendix (Calderon,
Ram, and Rizoiu 2024).

Opinion Volume Model. Suppose our opinion ecosys-
tem consists of P social media platforms. The opinion vol-
ume model tracks the attention volume, i.e. the number of
opinionated posts Np(t), on each platform p ∈ {1, . . . P}
and time t ∈ N. We model {Np(t)}p as a P−dimensional
DTHP (defined analogous to the multivariate Hawkes pro-
cess (Hawkes 1971)) with conditional intensity {λp(t)}p,

λp(t) = µp · S(t) +
P∑

q=1

∑
s<t

αpq · f(t− s) ·Nq(s). (5)

In contrast to Eq. (1), we use a time-varying exogenous
signal S(t), which accounts for the baseline volume of
events of exogenous origin. The signal S(t) accounts for
natural tendencies and events (i.e., epidemics, elections) and
typically cannot be controlled. We introduce a scaling term
µp for each platform p such that µp · S(t) represents the ex-
ogenous opinion count for platform p on time t.

Since online platforms are not siloed and have significant
user overlap, we allow the P platforms to interact via intra-
and inter-platform excitation. The parameter αpq > 0 sets
the level of intra-platform (for p = q) and inter-platform
(for p 6= q) excitation. Lastly, we set Np(t) ∼ Poi(λp(t)).

Opinion Share Model. With the attention volumes for
each platform p estimated in the first tier, the second tier
models the market share spi (t), calculated as the fraction of
opinionated posts on platform p conveying opinion i. Given
the limited attention market size, opinions compete for at-
tention within each platform.

Suppose that there are M different opinion types. We
set Np

i (t) to be the number of opinionated posts convey-
ing opinion i on platform p on time t, and λpi (t) to be its
conditional intensity. Using the notion of limited attention
(Zarezade et al. 2017), we relate λpi (t) to λp(t) in Eq. (5) by
introducing the market share spi (t) ∈ [0, 1] as the fraction of
opinion i posts on platform p. That is,

λpi (t) = λp(t) · spi (t), (6)

and
∑M

i=1 s
p
i (t) = 1.

Similar to Eq. (2), we model spi (t) with attraction Ap
i (t),

spi (t) =
Ap

i (t)∑M
j=1A

p
j (t)

. (7)

Leveraging the MNL form in Eq. (3), we define attraction

Ap
i (t) = exp T p

i (t), (8)

where T p
i (t) consists of two parts, accounting for interven-

tions and endogenous dynamics, and is described in detail
below,

T p
i (t) =

K∑
k=1

γpik · X̄k(t)︸ ︷︷ ︸
interventions

+
P∑

q=1

M∑
j=1

βpq
ij · λ

q(t|j)︸ ︷︷ ︸
endogenous

, (9)

X̄k(t) =
∑
s<t

f(t− s) ·Xk(s), and

λp(t|j) = µp
j · S(t) +

P∑
q=1

∑
s<t

αpq · f(t− s) ·Nq
j (s), (10)

where µp =
∑M

j=1 µ
p
j .

In the first term of Eq. (9), we introduce a set of K
positive interventions {Xk(t)}k that modify the opinion
market shares in the opinion ecosystem. The interventions
{Xk(t)}k have a different to S(t) in Eq. (5), as the latter
modifies the attention market size. Parameter γpik ∈ R mea-
sures the direct effect of the kth intervention on the market
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Notation Interpretation

P number of social media platforms
M number of opinion types
K number of positive interventions
T terminal time

Variables

S(t) input signal, volume of exogenous events
Xk(t) input signal, kth positive intervention
spi (t) market share of opin. i on platform p at time t
λpi (t) conditional intensity of opinion i
Np

i (t) #posts with opinion i on platform p at time t
e(spi (t), ·) opinion share model elasticity

Data

npt /n
p
i,t #posts on platform p at time t / with opinion i

spi,t fraction of opin. i posts on platf. p at time t

Parameters

µp
j exogenous scaling term for opin. j on platf. p
αpq excitation parameter for intra-platform (p =

q) and inter-platform (for p 6= q) dynamics
θ memory parameter, describing how fast an

event is forgotten, θ ∈ [0, 1]
γpik direct effect of the kth intervention on share of

opinion i on platform p
βpq
ij direct effect that opinion j on platform q has

on share of opinion i on platform p.

Table 1: Summary of important quantities and notations.

share of opinion i on platform p. If γpik is positive (negative),
then Xk(t) reinforces (inhibits) opinion i on platform p.

In the second term of Eq. (9) we model the contribution of
endogenous dynamics on the attraction of opinion i. To rep-
resent the prevalence of opinion j on platform q, we make
use of the conditional intensity λp(t|j) in Eq. (10), which
models the dynamics of opinion j independent of other opin-
ions. Parameter βpq

ij ∈ R captures the direct effect that opin-
ion j on platform q has on the market share of opinion i
on platform p. Similar to γpik, we allow βpq

ij to be positive
(negative), representing a reinforcing (inhibiting) relation-
ship from opinion j to i on platform q and p, respectively.

Estimation. Over the observation period t ∈ {1, . . . , T},
assume that we observe the exogenous signal S(t), the K
interventions {Xk(t)}k, and the number npi,t of posts con-
veying opinion i on platform p for each i and p. Our goal is
to estimate the parameter set Θ = {µp

j , α
pq, θ, γpik, β

pq
ij }.

The structure of our two-tier model allows us to cast pa-
rameter estimation as a two-tier optimization problem. Let
Θ1 = {µp, αpq, θ}. The key observation here is that the
first-tier parameter set Θ1 can be estimated using only the
opinion volume model in Eq. (5), independent of the opin-
ion share model in Eq. (9). By optimizing the likelihood
L1(Θ1|{np

t }p,t) of the platform-level volumes {npt }p,t, we
can obtain an estimate Θ̂1 of Θ1.

The second-tier parameter set Θ2 = {µp
j , γ

p
ik, β

pq
ij }

can be obtained by optimizing the likelihood
L2(Θ2|Θ̂1, {npi,t}i,p,t) of the opinion volumes {npi,t}i,p,t,
conditioned on our estimate of the first-tier parameters Θ̂1.
Our full estimated parameter set is given by Θ̂ = Θ̂1 ∪ Θ̂2.
The technical details of the estimation and the derivation of
the likelihoods L1(·) and L2(·) and gradients ∂Θ1

L1(·) and
∂Θ2
L2(·) are available in the online appendix (Calderon,

Ram, and Rizoiu 2024).
Simulation. Suppose we are given the opinion volume

npi,0 at time t = 0 for each platform p and opinion i, such
that npt =

∑
i n

p
i,t. A sample of npi,t from OMM can be ob-

tained by calculating the conditional intensity λpi (t) using
Eq. (6), and then sampling npi,t from Poi (λpi (t)). We obtain
{npi,t}i,p,t by repeating these steps over {1, . . . , T}.

Numerical Considerations. To improve model fit in our
real-world case studies, we implement three augmentations
to the model and estimation method, outlined below and
fully detailed in the online appendix. First, we modify the
attractionAp

i (t) in Eq. (7) to prevent numerical overflow/un-
derflow. Second, we add a regularization term in the second-
tier optimization problem in Section 3 to impose structural
constraints on {γ̂pik} and improve estimation. Third, we ap-
ply log-scaling on λq(t|j) and standardize both λq(t|j) and
X̄k(s) in Eq. (9) to solve scaling issues.

Stability Assumption. We implicitly assume that the
opinion attention market is stable over the timeframe of
the analysis, in the sense that the parameters Θ governing
the behavior of the process stay constant within the time-
frame. In situations where this assumption is not expected to
hold (e.g. extreme events) and parameters change within the
timeframe, a change-point model extension (Browning et al.
2021) of the OMM is necessitated.

4 Learning with Synthetic Data
In this section, we consider the parameter estimation task
with synthetic data. First, we discuss our experimental setup
and the synthetic dataset. Next, we show that parameter
recovery error decreases and stabilizes as we increase the
training time T and the number of samples nsamples.

Experimental Setup. We set P = M = K = 2.
We set [µ1

1, µ
1
2, µ

2
1, µ

2
2] = [15, 5, 5, 20], and θ = 0.5 and

draw αpq ∼ Unif(0, 0.5), βpq
ij ∼ Unif(0, 0.1) and γpik ∼

Unif(0, 0.1). The exogenous signals are S(t) = 1, X1(t) =
5 sin(0.1x) + 5, and X2(t) = 10 sin(0.05x+ 1.25) + 10.

We construct our synthetic dataset using the simulation al-
gorithm in Section 3 to get 400 samples of opinion volumes{
npi,t
}
i,p,t

for t ∈ {1, . . . , T = 300}. We implement joint
fitting (Rizoiu et al. 2022): we partition the 400 samples into
20 groups of nsamples = 20 samples each. The likelihoods
L1(Θ1) and L2(Θ2|Θ1) of each group are maximised to
get an estimate Θ̂, yielding 20 sets of parameter estimates.

Model Evaluation. To study the convergence of our
learning algorithm, we compute the root mean-squared er-
ror (RMSE) of our estimated Θ̂ = {µ̂p

j , α̂
pq, θ̂, γ̂pik, β̂

pq
ij }

with respect to the true Θ, following (Valera and Gomez-
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Figure 2: Parameter recovery results on synthetic data. In (a), we show the convergence of the RMSE of the α and β estimates
and the negative log-likelihood as we increase the training time T . In (b), we show the difference between our estimates for
{µ,α,β,γ} and the true values. Dashed green lines and orange lines are the mean and median values, respectively.

Rodriguez 2015). We report the average RMSE per parame-
ter type, where the average is taken over the components of
the matrix or tensor corresponding to the parameter type.

In Fig. 2(a), we see that training on a longer timeframe
leads to lower RMSE for α̂pq and β̂pq

ij and better model fit
measured by the likelihood L2. Results for µ̂p

j , θ̂ and γ̂pik,
and on varying nsamples are in the online appendix.

In Fig. 2(b), we plot the difference distribution between
our estimates and the true values. We recover first-tier pa-
rameters {µ̂p

j , α̂
pq} well, as evidenced by our mean esti-

mates coinciding with the true values. We observe a slight
overestimation of {γ̂pik, β̂

pq
ij }, given the nonconvexity of L2

and the high dimensionality of the second-tier parameter set.

5 Real-World Datasets
This section introduces two real-world datasets we have cu-
rated to evaluate the OMM.

Bushfire Opinions Dataset
We construct the Bushfire Opinions dataset, containing
90 days of Twitter and Facebook discussions about bush-
fires and climate change between Nov. 1, 2019 to January
29, 2020. The Facebook postings are a subset of the So-
cialSense dataset (Kong et al. 2022), which was collected
with the approval of the Human Research Ethics Commit-
tee of the University of Technology Sydney (approval num-
ber: ETH19-3877); we select posts and comments about
bushfires and climate change (SocialSense also contains dis-
cussions around COVID-19). Using CrowdTangle2, we un-
obtrusively collected public far-right Australian Facebook
discussions, identified via a digital ethnographic study (see
(Kong et al. 2022) and (Calderon, Ram, and Rizoiu 2024)
for details). We build the Twitter discussions using the Twit-
ter Academic v2 API; we collect tweets emitted between
November 1, 2019 to January 29, 2020 that mention bush-
fire keywords such as bushfire, arson, australiaburns (see
the full list in (Calderon, Ram, and Rizoiu 2024)). We use

2https://www.crowdtangle.com/

the AWS Location Service3 to geocode users based on their
free-text location and description fields and filter only for
tweets from Australian users.

Our focus on the 2019-2020 Australian bushfires is mo-
tivated by the availability of human-annotated topics, opin-
ions (Kong et al. 2022) and stance classifiers (Ram et al.
2022) trained on the same topic and timeframe. We use these
classifiers to filter and label our dataset.

Moderate and Far-Right Opinion Labeling. To filter
and label relevant Facebook and Twitter postings, we use
the textual topic and opinion classifiers developed by Kong
et al. (2022), with a reported 93% accuracy in classifying
Facebook and Twitter posts on bushfires and climate change.
We select the following most prevalent six opinions, cover-
ing 95% of Twitter and 81% of Facebook postings:
0. Greens policies are the cause of the Australian bushfires.
1. Mainstream media cannot be trusted.
2. Climate change crisis is not real / is a UN hoax.
3. Australian bushfires and climate change are not related.
4. Australian bushfires were caused by random arsonists.
5. Bushfires are a normal summer occurrence in Australia.
Furthermore, we deploy the far-right stance detector intro-
duced by Ram et al. (2022) – which leverages a textual
homophily measurement to quantify the similarity between
Twitter users and known far-right activists. On the Bushfire
Opinions Twitter dataset, the stance detector achieves a 5-
fold CV AUC ROC score of 0.889. An opinion is labeled as
far-right if the posting agrees with the opinion (denoted as
+), or moderate if the posting disagrees with the opinion (-).
We represent our opinion set as {(i−, i+)|i ∈ {0, . . . , 5}}.
In summary, we consider P = 2 platforms with 74, 461
tweets and 7, 974 Facebook postings labeled with M = 12
stanced opinions. We aggregate posting volumes by the
hour, resulting in T = 2, 160 time points over 90 days from
Nov 1, 2019, to Jan 29, 2020.

Exogenous Signal S and Intervention X. The exogenous
signal S(t) (Eq. (5)) modulates the total size of the attention

3https://aws.amazon.com/location/
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Figure 3: Fitting and predicting with OMM on the Bushfire Opinions dataset. We train OMM on the first 1800 timesteps and
predict on timesteps 1801 to 2160 (shaded area). We show results for Facebook (top row) and Twitter (bottom row). (a) Actual
(dashed blue lines) vs. fitted/predicted (orange lines) volumes; (b) Actual (left panels) and fitted during training and predicted
during testing (right panels) opinion market shares on Facebook and Twitter. We aggregate the far-right and moderate opinions.

market in the first tier of OMM. We use the 5-day rolling av-
erage of the Google Trends query bushfire+climate change
in Australia, normalized to a max value of 1. Google Trends
captures the baseline interest on topics (Sheshadri and Singh
2019) and is a proxy for offline events (ex. actual bushfires
and government measures) (Milinovich et al. 2014).

The interventions {Xk(t)} modulate the market share of
far-right and moderate opinions. Our interventions consist
of two sources of news coverage: reputable (R) mainstream
Australian publishers (e.g., The Sydney Morning Herald,
Canberra Times, Crikey) and controversial (C) international
publishers (e.g., Sputnik News, Breitbart, Red State). For
each opinion i ∈ {0, . . . , 5}, we consider a pair of interven-
tions (Ri(t), Ci(t)), consisting of reputable and controver-
sial daily news volumes discussing opinion i. We assemble
the intervention set {Xk(t)} (K = 12) so that the first six in-
terventions correspond to {R0(t), . . . , R5(t)} while the last
six correspond to {C0(t), . . . , C5(t)}.

We sourced reputable Australian news publishers from
the Reputable News Index (RNIX) (Kong, Rizoiu, and Xie
2020). We query Factiva (Johal 2009) to obtain the daily
news volume of these outlets for each of the six opinions us-
ing a keyword search. We similarly obtain the news volumes
from controversial international publishers from NELA-GT-
2019 (Gruppi, Horne, and Adalı 2020) using a keyword
search. We subtract the Google Trends signal from the news
volumes for each intervention. We compute the standardized
form of Xk(t) as X̂k(t) = newsk(t) − maxt newsk(t)

maxt S(t) S(t).

For brevity, in the bushfire case study, we denote X̂k(t) as
Xk(t) (i.e., always in standardized form). After standardiza-

tion, Xk(t) indicates whether reputable or controversial me-
dia over- or under-reports relative to the public’s attention.

VEVO 2017 Top 10 Dataset
We assemble the VEVO 2017 Top 10 dataset by aligning
artist-level time series of YouTube views and Twitter post
counts (P = 2) for the top M = 10 VEVO-affiliated artists
over T = 100 days from Jan 2, 2017 to Apr 11, 2017.

The YouTube time series are obtained from the VEVO
Music Graph dataset (Wu, Rizoiu, and Xie 2019), contain-
ing daily view counts for music videos posted by verified
VEVO artists in six English-speaking countries (USA, UK,
Canada, Australia, New Zealand, and Ireland). We combine
the view counts for all music videos that belong to a given
artist to obtain artist-level YouTube view time series. For
Twitter, we leverage the Twitter API to get daily counts of
posts with text containing an input query. We obtain the
artist-level Twitter post time series using the artist’s name
as the input query.

Unlike the single exogenous signal S(t) in the Bushfire
Opinions dataset, we use a different exogenous signal Si(t)
for each artist i – the Google Trends for each artist i. Using
the set {Si(t)} instead of a single S(t) requires several small
changes to Eq. (5), Eq. (10), and the model gradients. We
fully detail these changes in the online appendix. We do not
consider any interventions {Xk(t)} as we seek to uncover
endogenous interactions across artists.

6 Predictive Evaluation
This section evaluates the OMM’s predictive capabilities on
two real-world datasets. We introduce our prediction task,
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evaluation metrics and baselines, then present the results.
Model Setup. We use a temporal holdout strategy simi-

lar to prior literature (Rizoiu et al. 2017, 2018; Kong, Ri-
zoiu, and Xie 2020): we fit OMM on Tobs and evaluate per-
formance on Tpred. Backtesting is another viable alternate
evaluation approach; however, it is significantly more com-
putationally intensive, and we prefer the temporal holdout.
For the bushfire case study, Tobs = {1, . . . , 1800} where
time is in hours (i.e., days 1-75 of our period of interest) and
Tpred = {1801, . . . , 2160} (i.e., days 76-90). For the VEVO
case study, Tobs = {1, . . . , 75} and Tpred = {76, . . . , 100}.

We consider two tasks: (1) opinion volume prediction and
(2) opinion share prediction. For the first task, we predict the
total volume of opinionated posts on the P platforms dur-
ing the evaluation period. We measure performance using
the platform-averaged symmetric mean absolute percentage
error (SMAPE) of predicted volumes {n̄pt |t ∈ Tpred} on
platform p relative to the actual volumes {npt |t ∈ Tpred},

SMAPE =
1

P

P∑
p=1

(
100%

360

2160∑
t=1801

|n̄pt − n
p
t |

|n̄pt |+ |n
p
t |

)
. (11)

The predicted opinion volumes {n̄pt } are obtained using the
OMM simulation algorithm. We (1) condition on {npi,t|t ∈
Tobs}, (2) run the algorithm to sample {np

i,t} on Tpred, then
(3) sum over opinion types {i} to get predicted opinion vol-
umes npt =

∑
i n

p
i,t. We repeat R = 5 times, and average

over the samples to obtain {n̄pt |t ∈ Tpred}.
For opinion share prediction, we predict the opinion mar-

ket shares {spi,t} for each platform p on the evaluation pe-
riod. To evaluate how well we predict opinion market shares,
we calculate the KL divergence of predicted market shares
{s̄pt |t ∈ Tpred} (obtained similar to {n̄pt } described above)
relative to actual market shares {spt |t ∈ Tpred},

KLp(t) =

M∑
i=1

spi,t log
s̄pi,t
spi,t

. (12)

Baselines. We compare OMM with the discretized ver-
sions of the Correlated Cascades (CC) model (Zarezade
et al. 2017) and Competing Products (CP) model (Valera and
Gomez-Rodriguez 2015) – the current state-of-the-art mod-
els in product share modeling, covered in related works. For
the bushfire study, we test the effectiveness of interventions
by fitting OMM without {Xk(t)} (indicated as OMM\X).

We also consider a feature-based predictive baseline – the
multivariate linear regression (MLR), used previously for
online popularity prediction (Pinto, Almeida, and Gonçalves
2013; Rizoiu et al. 2017). We build MLR with a one-week
sliding window of three types of features: the previous event
counts, exogenous signal S(t) and interventions {Xk(t)}.
The predictive targets are the event counts {np

i,t} for each
point on Tpred. Analogous to OMM fitted without interven-
tions {Xk(t)}, we additionally train MLR without {Xk(t)}
(indicated as MLR\X) for the bushfire case study.

OMM, CC and CP are generative models typically de-
signed for explainability and are known to be suboptimal
for prediction (Mishra, Rizoiu, and Xie 2016). In contrast,

feature-driven approaches (e.g., MLR) use machine learn-
ing to predict using training features. Such approaches are
designed mainly for prediction and have weaker explain-
ability since they do not model the data-generation process
(Mishra, Rizoiu, and Xie 2016). In this work, we are inter-
ested in the dual tasks of predicting and explaining opinion
market shares, hence our focus on generative approaches.

Predict Opinion Volumes. Fig. 3(a) showcases the ob-
served (blue line) and modeled (orange line) opinion vol-
umes for the bushfire dataset. We visually observe that OMM
achieves a tight fit on both the training and the prediction pe-
riod (hashed area). The VEVO dataset results are shown in
the online appendix. We further compare OMM’s predictive
performances against baselines. The top row of boxplots in
Figs. 4(a) and 4(b) shows the platform-averaged SMAPE of
predicted volumes for the bushfire and VEVO datasets, re-
spectively. We make two observations. First, in both case
studies, OMM outperforms all baselines on opinion volume
prediction. Second, OMM outperforms OMM\X, indicating
the role of media coverage in shaping attention.

Predict Opinion Market Share. Fig. 3(b) visualizes the
observed (left column) and fitted during training and pre-
dicted during testing (right column) opinion market shares
for the bushfire dataset. We see that the opinion distribution
on Twitter has significantly more variation than on Face-
book, and that OMM closely captures the trend in opin-
ion shares on both platforms. The VEVO dataset results
are in the online appendix. Figs. 4(a) and 4(b) show the
KL-divergence of predicted market shares for the bushfire
(Facebook and Twitter) and VEVO (YouTube and Twitter)
datasets, respectively. We make several observations. First,
on the bushfire dataset, performance is better for Twitter than
Facebook (KLTW (t) < KLFB(t)) due to Facebook having
lower opinion counts than Twitter. Similarly, on the VEVO
dataset KLY T (t) < KLTW (t). Second, OMM consistently
outperforms all baselines on both datasets, except for Twit-
ter on bushfires, where CP and OMM are comparable. CC
performs poorly since it does not model asymmetric opin-
ion interactions and assumes all opinions reinforce or inhibit
one another. CP performs poorly on Facebook (Twitter) for
the bushfire (VEVO) dataset due to CP not having the no-
tion of limited total attention. Due to higher bushfire post-
ings on Twitter, CP pays more attention to Twitter. Lastly,
OMM with {Xk(t)} outperforms OMM without {Xk(t)} on
the bushfire dataset, suggesting that mainstream and contro-
versial media effectively shape the opinion ecosystem.

7 Interpreting OMM Elasticities
In this section, we leverage the fitted OMM to uncover inter-
actions across opinions and platforms in the bushfire dataset
and artists in the VEVO dataset.

Uncovering Opinions Interactions. To study opinion in-
teractions in the bushfire dataset, we calculate the opinion
share model elasticities (see Eq. (4)) accounting for the en-
dogenous volume λp(t|j) and the intervention X̄k(s) (see
Eq. (9)). The endogenous elasticities e(spi (t), λq(t|j)) quan-
tify the competition-cooperation interactions across opin-
ions. The intervention elasticity e(spi (t), X̄k(t)) quanti-
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Figure 4: Predictive evaluation of OMM on (a) Bushfire Opinions and (b) VEVO 2017 Top 10 datasets. Boxplots are sorted left
to right by the mean (shown with green triangle). Shaded boxplots correspond to versions of OMM. The top panels show the
platform-averaged SMAPE of volumes on Tpred. Bottom panels plot the KL divergence of predicted and actual market shares.

fies the sensitivity of opinion market shares to interven-
tion Xk(t). We derive the elasticities and show results for
e(spi (t), X̄k(t)) in the online appendix. Fig. 5(a) reports the
time averages of e(spi (t), λq(t|j)).

First, we study intra-platform reinforcement (top-left &
bottom-right in Fig. 5(a)). We see different behaviors for
Facebook and Twitter. For Twitter, we have two observa-
tions. First, there is strong self-reinforcement for opinions
(i.e., main diagonal), indicative of the echo chamber ef-
fect (Cinelli et al. 2021). Second, there is significant cross-
reinforcement among far-right sympathizers and opponents
(i.e., diagonals on the upper-right & lower-left submatrices),
implying exchanges or arguments between opposing camps.
For Facebook, OMM detects little interaction among opin-
ions, aside from the generally inhibitory effect of the opin-
ions “Australian bushfires and climate change are unrelated”
(3+) and “Bushfires are a normal summer occurrence” (5+)
on other opinions. This is because Facebook far-right groups
have limited interaction with the opposing side.

How to Effectively Suppress Far-Right Opinions. The
above implies that confrontation is not the most effective
method to suppress far-right opinions, as it has the potential
to backfire by bringing even more attention to them. A more
effective method is boosting related counter-arguments; for
instance, to suppress “Australian bushfires were caused by
random arsonists” (4+) on Twitter, OMM indicates to pro-
mote “Climate change is real” (2-) and “Greens are not the
cause of the bushfires” (0-). Boosting the opposite argument,
i.e., “Australian bushfires were not caused by random ar-
sonists” (4-), would backfire. The opinion “Bushfires are a
normal summer occurrence in Australia” (5+) shows a dif-
ferent behavior: it reinforces most moderate opinions and

inhibits far-right opinions. In particular, the “Bushfires are
normal” opinion (5+) appears to trigger “Climate change is
real” (2-), probably due to the diametric opposition nature of
these opinions. The effect of 5+ on 2- holds across every pair
of platforms. Additionally, on Facebook, “Australian bush-
fires and climate change are not related” (3+) has a similar
effect on other opinions as the “Bushfires are normal” opin-
ion (5+), probably due to the similarity of their topic content.

Cross-Platform Reinforcement is generally weak due
to the Facebook far-right groups acting as a filter bub-
ble. Apart from the effect of “Bushfires are normal” (5+)
(see above), there is little cross-reinforcement among opin-
ions from Twitter to Facebook. In the bottom-left matrix
of Fig. 5(a), we see that “Australian bushfires and climate
change are not related” (3+) affects other opinions in a sim-
ilar way to “Bushfires are normal” (5+); furthermore, “Cli-
mate change is real” (2-) triggers “Australian bushfires were
caused by arsonists” (4+).

Interactions Across VEVO Artists. Lastly, in Fig. 5(b),
we shift our attention to the VEVO dataset and look at
the YouTube-to-YouTube elasticities e(sY T

i (t), λY T (t|j))
across our set of artists. The Twitter and cross-platform elas-
ticities are available in the online appendix.

We highlight three key observations. First, there is strong
self-reinforcement for most artists (i.e., the main diagonal),
an intuitive result reflecting these popular artists’ strong fan-
base. Second, OMM picks up non-trivial artist interactions
that correspond with real-world events – the animosity and
friendship relations show up in their popularity dynamics.
For instance, we see that Calvin Harris inhibits both Tay-
lor Swift (the two broke up in 20164) and Katy Perry (the

4people.com/celebrity/taylor-swift-calvin-harris-breakup-timeline/
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Figure 5: Interpretability of OMM. (a) Endogenous elasticities e(spi (t), λq(t|j)) across opinion pairs (i, j) on respective plat-
forms (p, q) in the bushfire dataset. Elasticities have direction and should be read from column (source) to row (target) for the
platform and within each matrix. For example, the bottom-right matrix corresponds to influences from Twitter to Twitter; the
cell {4−, 4+} ({row, column}) is the influence of opinion 4+ on 4−, positive and large meaning that 4+ has a strong reinforc-
ing effect on 4−. (b) YouTube elasticities e(sY T

i (t), λY T (t|j)) across artist pairs (i, j) in the VEVO 2017 Top 10 dataset.

two had a long-lasting feud5, due to Harris pulling out of
Perry’s 2011 tour last minute). Similarly, Taylor Swift and
Justin Bieber have a mutually inhibiting relationship. The
two have a well-known uneasy relationship6 since Justin
Bieber and Selena Gomez used to date and the latter is one
of Taylor Swift’s close friends. Meanwhile, Calvin Harris
and Ariana Grande have a reinforcing relationship, correlat-
ing with their collaboration “Heatstroke” released in March
2017. OMM picks up these relationships because we fit on
online popularity driven by audience response. Fans of a
given artist can choose to support or not support another
artist based on real-world interactions, as indicated by the
results above. Our third observation relates to the complex-
ity of fanbase support for artists occupying the same genre:
similar artists do not all just cooperate or compete for mar-
ket share but can have unique pairwise relationships. For in-
stance, Katy Perry, Taylor Swift and Ariana Grande occupy
a similar niche (mainstream pop). However, our model un-
covers that Taylor Swift and Katy Perry reinforce each other,
while these two inhibit (and are inhibited by) Ariana Grande.

8 OMM as a Testbed for Interventions
The interventions {Xk(t)} can lead to delayed effects in the
opinion ecosystem due to the opinion dependency structure.
For example, if an intervention is designed to boost a target
opinion, it will indirectly boost all other opinions with a co-
operative relationship with the target opinion. Furthermore,
it will inhibit opinions with a competitive relationship with
the target. Since elasticities only inform us of the instanta-
neous effect on opinion market shares, we perform a what-if

5nme.com/news/music/katy-perry-ends-six-year-beef-calvin-harris-2128100
6people.com/music/justin-bieber-selena-gomez-relationship-look-back/

exercise to study the role of interventions in the bushfire case
study. We vary the size of the intervention and synthetically
sample outcomes to observe the long-term effects of media
coverage on the opinion ecosystem.

What-if Can Inform A/B Test Design. We train OMM
on observational data; therefore, the inferred effects of inter-
ventions {Xk(t)} are not causal impact estimates but rather
evidence of causal effects. However, the previous section
demonstrates that OMM can uncover complex relationships
across opinions, providing compelling evidence that OMM
is also able to uncover relationships between opinions and
interventions. Therefore, the what-if exercise in this section
showcases OMM as a testbed for interventions, usable for de-
signing A/B testing that determines true causal effects. The
OMM informs us of the effectiveness of interventions, allow-
ing us to prioritize which specific interventions to test.

“What-if” Setup. We test the effect of interventions by
synthetically increasing or decreasing their volumes past
a given time point (see top panel of Fig. 1) and measur-
ing the percentage change in far-right opinions. Let k∗ ∈
{1, . . . ,K} be the index of the modulated intervention. We
modulateXk∗(t) asX(r)

k∗ (t) = Xk∗(t)+r ·µXk∗ ·1(t>1800),
where 1(·) is the indicator function and µXk∗ is the mean
volume ofXk∗(t) on Tobs. The parameter r controls the per-
cent increase (r > 0) or decrease (r < 0) in media coverage
beyond the change point t = 1800; r = 0 is the original
Xk∗(t). We run OMM with X(r)

k∗ (t) for various r, and keep
Xk(t) fixed for k 6= k∗. We quantify the effects of interven-
tionXk∗(t) as the average percent change (relative to r = 0)
in the opinion market shares after the change point, i.e.,
Tpred. We perform this procedure for all k∗ ∈ {1, . . . ,K}.

How News Influences Far-Right Opinions. Fig. 6 shows
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Figure 6: We modulate the volume of reputable (R) and con-
troversial (C) news for each opinion (in {0, 1, 2, 3, 4, 5})
from −100% to 100% of the mean volume and simulate
OMM to see the percent change in the far-right (+) opinion
market shares on Facebook (left) and Twitter (right).

the average percent changes in the market share of far-right
opinions when modulating the interventions {Ri(t), Ci(t)}
one at a time for various r over 50 simulations. On Face-
book, far-right opinions are suppressed by reputable news
and reinforced by the majority of controversial news, ex-
cept for news concerning “Greens policies are the cause
of the Australian bushfires” (R0) and “Australian bush-
fires were caused by arsonists” (R4). On Twitter, both rep-
utable and controversial news suppress far-right opinions,
except for reputable news concerning “Australian bushfires/-
climate change are unrelated” (R3), “Australian bushfires
were caused by arsonists” (R4) and to a lesser extent “Main-
stream media cannot be trusted” (R1).

We have two key insights. First, we see that the effect of
the news on Facebook is modest compared to Twitter since
the far-right public groups on Facebook behave as almost
perfect filter bubbles in which news has little penetration.
Second, indiscriminately increasing reputable news is not an
effective strategy for suppressing far-right opinions on Twit-
ter (see R3 and R4). Doing so can backfire since it brings
even more attention to far-right users and their narratives
(Peucker, Fisher, and Davey 2022).

How to Effectively Use the Testbed. Assuming that A/B
testing is performed by an entity in control of reputable news
coverage (Ri here above), the results above indicate that the
test should mainly concentrate on the effects of increasing
R1 (on Facebook), increasing R0 and decreasing R3 and R4

(on Twitter). We leave as future work the design and exe-
cution of such an experiment. Our analysis in this paper fo-
cuses on mitigating far-right opinions with media coverage.
However, OMM can be leveraged as an intervention evalu-
ation tool for information operations in other domains and
fighting mis- & disinformation and online propaganda.

9 Summary and Discussion
This work introduces the Opinion Market Model (OMM), a
novel two-tier model of the dynamics of the online opin-

ion ecosystem. The first tier models the size of the atten-
tion market, and the second tier models opinions compet-
ing or cooperating for limited public attention under the in-
fluence of positive interventions. We develop algorithms to
simulate and estimate OMM, showing the convergence us-
ing synthetic data. We demonstrate real-world applicability
on a dataset of Facebook and Twitter discussions contain-
ing moderate and far-right opinions on bushfires and climate
change (Kong et al. 2022) and a dataset of YouTube and
Twitter attention volumes for popular artists on VEVO (Wu,
Rizoiu, and Xie 2019). We show OMM predicts opinion mar-
ket shares better than state-of-the-art baselines (Valera and
Gomez-Rodriguez 2015; Zarezade et al. 2017) and uncovers
latent competitive and cooperative interactions across opin-
ions: self-reinforcement attributable to the echo chamber ef-
fect and interactions between far-right sympathizers and op-
ponents. Lastly, we quantify the effect of reputable and con-
troversial media coverage on Facebook and Twitter.

Scope of Study. This work focuses on the manifestation
of far-right opinions in the context of the 2019-2020 Aus-
tralian bushfires. Note that far-right ideology manifests in
other political issues (e.g., gun control, LGBT rights, xeno-
phobia), which we do not tackle here. Moreover, we do not
focus on the general political science of far-right ideology
since we are projecting onto a specific context.
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1. For most authors...

(a) Would answering this research question advance sci-
ence without violating social contracts, such as violat-
ing privacy norms, perpetuating unfair profiling, exac-
erbating the socio-economic divide, or implying disre-
spect to societies or cultures? Yes, we have designed
the OMM as a tool to promote social good, function-
ing as a testbed to evaluate positive interventions in
opinion moderation.

(b) Do your main claims in the abstract and introduction
accurately reflect the paper’s contributions and scope?
Yes, the main claims in the abstract and introduction
reflect the scope of the paper.

(c) Do you clarify how the proposed methodological ap-
proach is appropriate for the claims made? Yes, in Sec-
tion 1 we discuss how the OMM models the online
opinion ecosystem using an analogy between opinions
and economic goods. In Sections 4 and 6 we show how
our approach predicts better than competing models.
In Sections 7 and 8 we show how the OMM unveils
latent relationships and acts as a testbed for positive
interventions.

(d) Do you clarify what are possible artifacts in the data
used, given population-specific distributions? Yes, to
curate the Bushfire Opinions dataset we performed a
filtering procedure which we describe in detail in Sec-
tion 5 of the main text and Section G of the Appendix.

(e) Did you describe the limitations of your work? Yes,
we discuss the limitations of the model in the ‘Causal
Impact’ subsection of Section 1 and the limitations of
the scope of study in Section 9.

(f) Did you discuss any potential negative societal im-
pacts of your work? Yes, we discuss potential negative
societal impacts (i.e. misuse by oppressive regimes) in
the ‘Ethics of Opinion Moderation and Broader Per-
spectives’ subsection of the Introduction.

(g) Did you discuss any potential misuse of your work?
Yes, we discuss potential misuse in the ‘Ethics of
Opinion Moderation and Broader Perspectives’ sub-
section of the Introduction.

(h) Did you describe steps taken to prevent or mitigate po-
tential negative outcomes of the research, such as data
and model documentation, data anonymization, re-
sponsible release, access control, and the reproducibil-
ity of findings? Yes, we described how to mitigate eth-
ical issues when deploying the OMM in the real world
(i.e. online CVE frameworks) in the ‘Ethics of Opin-
ion Moderation and Broader Perspectives’ subsection
of the Introduction.

(i) Have you read the ethics review guidelines and en-
sured that your paper conforms to them? Yes, we have
completed the Ethics checklist and included a discus-
sion on ethical implications of the work in the ‘Ethics
of Opinion Moderation and Broader Perspectives’ sub-
section of the Introduction.

2. Additionally, if your study involves hypotheses testing...

(a) Did you clearly state the assumptions underlying all
theoretical results? Yes, the OMM model is fully spec-
ified and developed in Section 3. We discuss stability
assumptions at the end of Section 3. Full implementa-
tion details are provided in the Appendix.

(b) Have you provided justifications for all theoretical re-
sults? Yes, proofs of theoretical results are contained
in the Appendix.

(c) Did you discuss competing hypotheses or theories that
might challenge or complement your theoretical re-
sults? Yes, we consider alternative models in the Re-
lated Works section of Section 1. In Section 6 we com-
pare against other models (Correlated Cascades and
Competing Products) and show that the OMM fits and
predicts better.

(d) Have you considered alternative mechanisms or ex-
planations that might account for the same outcomes
observed in your study? Yes, we consider alternative
models based on different assumptions (Correlated
Cascades and Competing Products) and show that the
OMM fits and predicts better.

(e) Did you address potential biases or limitations in your
theoretical framework? Yes, we discuss how the OMM
does not prove causal impact in the ‘Causal Impact’
subsection in Section 1.

(f) Have you related your theoretical results to the exist-
ing literature in social science? Yes, in Section 7 we
connect results from the OMM with the echo chamber
effect discussed in prior literature.

(g) Did you discuss the implications of your theoretical re-
sults for policy, practice, or further research in the so-
cial science domain? Yes, we discuss how the OMM
can be used as an intervention evaluation tool for in-
formation operations in Section 8.

3. Additionally, if you are including theoretical proofs...

(a) Did you state the full set of assumptions of all theoret-
ical results? Yes, model assumptions are discussed in
Section 3, particularly the Stability Assumption sub-
section.

(b) Did you include complete proofs of all theoretical re-
sults? Yes, proofs of theoretical results are contained
in the Appendix.

4. Additionally, if you ran machine learning experiments...

(a) Did you include the code, data, and instructions
needed to reproduce the main experimental results (ei-
ther in the supplemental material or as a URL)? Yes,
the Appendix contains implementation details and we
have linked the code repository as a URL.

(b) Did you specify all the training details (e.g., data splits,
hyperparameters, how they were chosen)? Yes, train-
ing details are discussed in the Experimental Setup
subsection in Sections 4 and 6.

(c) Did you report error bars (e.g., with respect to the ran-
dom seed after running experiments multiple times)?
Yes, error bars are indicated in Figures 2 and 4.
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(d) Did you include the total amount of compute and the
type of resources used (e.g., type of GPUs, internal
cluster, or cloud provider)? No, but we discussed im-
plementation details in the Appendix.

(e) Do you justify how the proposed evaluation is suf-
ficient and appropriate to the claims made? Yes, we
demonstrate how the OMM outperforms the state-of-
the-art in predicting opinion volumes and opinion mar-
ket shares in Section 6. In Section 7 we discuss inter-
pretation of results and connect it with existing litera-
ture on echo chambers in social media.

(f) Do you discuss what is “the cost“ of misclassification
and fault (in)tolerance? No, our work deals with re-
gression (i.e. predicting opinion volumes and market
shares). Fault tolerance is not relevant at the moment
as we are proposing a model, but would be if the OMM
is integrated as a component of an automated system.

5. Additionally, if you are using existing assets (e.g., code,
data, models) or curating/releasing new assets, without
compromising anonymity...

(a) If your work uses existing assets, did you cite the
creators? Yes, datasets are described and attributed in
Section 5. Comparison models are discussed and at-
tributed in the Baselines subsection in Section 6.

(b) Did you mention the license of the assets? No, but we
have appropriately cited all datasets we used and mod-
els we compared against.

(c) Did you include any new assets in the sup-
plemental material or as a URL? Yes, we in-
cluded the code and data used in the experiments
as a URL: https://github.com/behavioral-ds/opinion-
market-model.

(d) Did you discuss whether and how consent was ob-
tained from people whose data you’re using/curating?
No, because the data that we used (SocialSense) only
consists of publicly available social media posts.

(e) Did you discuss whether the data you are using/cu-
rating contains personally identifiable information or
offensive content? Yes, we describe the SocialSense
dataset that we use in Section G of the Appendix, and
discuss how it consists of online content expressing
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(f) If you are curating or releasing new datasets, did you
discuss how you intend to make your datasets FAIR?
No, but we intend to do it as a next step.

(g) If you are curating or releasing new datasets, did you
create a Datasheet for the Dataset? No, but we intend
to do it as a next step.

6. Additionally, if you used crowdsourcing or conducted
research with human subjects, without compromising
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(a) Did you include the full text of instructions given to
participants and screenshots? NA

(b) Did you describe any potential participant risks, with
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