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Abstract

The COVID-19 pandemic has fueled the spread of misinfor-
mation on social media and the Web as a whole. The phe-
nomenon dubbed ‘infodemic’ has taken the challenges of in-
formation veracity and trust to new heights by massively in-
troducing seemingly scientific and technical elements into
misleading content. Despite the existing body of work on
modeling and predicting misinformation, the coverage of
very complex scientific topics with inherent uncertainty and
an evolving set of findings, such as COVID-19, provides
many new challenges that are not easily solved by exist-
ing tools. To address these issues, we introduce SciLander,
a method for learning representations of news sources report-
ing on science-based topics. SciLander extracts four hetero-
geneous indicators for the news sources; two generic indi-
cators that capture (1) the copying of news stories between
sources, and (2) the use of the same terms to mean different
things (i.e., the semantic shift of terms), and two scientific in-
dicators that capture (1) the usage of jargon and (2) the stance
towards specific citations. We use these indicators as signals
of source agreement, sampling pairs of positive (similar) and
negative (dissimilar) samples, and combine them in a unified
framework to train unsupervised news source embeddings
with a triplet margin loss objective. We evaluate our method
on a novel COVID-19 dataset containing nearly 1M news ar-
ticles from 500 sources spanning a period of 18 months since
the beginning of the pandemic in 2020. Our results show that
the features learned by our model outperform state-of-the-art
baseline methods on the task of news veracity classification.
Furthermore, a clustering analysis suggests that the learned
representations encode information about the reliability, po-
litical leaning, and partisanship bias of these sources.

Introduction
The COVID-19 pandemic has resulted in a significant in-
crease in information production and consumption at the
same time. With this came a large increase in unreliable in-
formation, dubbed ‘infodemic’ (Buchanan 2020). This in-
crease was also coupled with the growing scrutiny of me-
dia sources and purposeful amplification of any errors they
made. As the readers sought correct, timely, and trustworthy
information, many news and media sources worked hard to
discredit others and create confusion (Van Bavel et al. 2020).
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Figure 1: Overview of SciLander, including agreement indi-
cator extraction (§ & §), triplet sampling and unsupervised
source embeddings training (§), and evaluation on the down-
stream tasks of classification and clustering (§).

Governments and public health agencies have the respon-
sibility to respond to the crisis and protect the public from
misinformation by utilizing the power of social and news
media (Castillo 2016). Yet, the same social and news media
work as a catalyst for the infodemic, allowing disinforma-
tion to be dispersed on a large scale, regardless of the signif-
icant effort to hinder its spread (McKay and Tenove 2021).

Despite the existing body of work on modeling and pre-
dicting misinformation, coverage of a complex scientific
topic with inherent uncertainty and evolving set of findings,
such as COVID-19, provides many new challenges that are
not easily solved by existing tools (Zarocostas 2020). On
the article level, the evaluation of news stories may be chal-
lenging as they may contain information that cannot be eas-
ily verified. Furthermore, many sources may not have the
necessary staffing for the proper communication of science-
related topics, they may be known to have published incor-
rect information, this information may also have changed
over time, or the source may have later corrected it.

Often, language-based methods fail in such a task because
different sources may use the same terms to mean different
things. Furthermore, many sources may use scientific ref-
erences to back up their claims; however, the validity of
these references is not easily verifiable. Being able to map
out the consequential and systematic patterns of behavior of
such sources in terms of both content and references would
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be particularly useful in such scenarios (Chung, Nam, and
Stefanone 2012). It would allow sources to be compared to
other known sources in terms of their coverage, and develop
explanations to the aspects in which they are similar to or
different from each other.

To address these challenges, we introduce a novel method
called SciLander. SciLander builds on a set of novel fea-
tures, based on the deep processing of news articles pub-
lished by a set of sources, producing a vector representation
of these news sources. To build this, we incorporate mea-
sures of similarity and difference between the sources based
on their citation behavior, the republishing of articles from
each other, and their general language usage. In particular,
we use the coverage of COVID-19 to show that this em-
bedding has many desirable features that can help multiple
downstream tasks.
Our Contribution. The technical contributions we intro-
duce are the following:
• We propose four news agreement indicators for sources:

i) the shared content or republished articles, ii) the seman-
tic shift of terms in the common vocabulary, iii) the usage
of scientific jargon, and iv) the citation stance of the news
sources (§ & §);

• We combine these indicators in a unified framework for
training unsupervised news source embeddings (§);

• We evaluate our method using a dataset of news publi-
cations related to COVID-19. Sources in this dataset are
labeled with respect to reliability and political leaning;

• We compare our method to strong baselines on the prob-
lem of veracity classification of news sources and show a
significant gain in performance when combining the indi-
cators proposed in this paper;

• We test the applicability of our method in an online learn-
ing experiment, showing that it can be used to learn fea-
tures from sources even if little data is available or if new
coming sources are presented in the landscape;

• We show that the learned features encode information
about the sources’ reliability level, partisanship bias, and
political leaning through a clustering analysis experiment.

Related Work
We distinguish three levels of granularity for misinformation
in news and social media: claims, articles, and sources. This
is a broad research area where results are scattered through
multiple disciplines and venues; below we present studies
relevant to each of the three aforementioned levels.
Claims & Articles Veracity. Many of the computational
methods for veracity assessment of news articles employ
machine learning techniques in supervised binary or multi-
label classification settings (Baly et al. 2019; Reis et al.
2019; Zhang et al. 2018; Yang et al. 2019; Vishwakarma,
Varshney, and Yadav 2019). In this setting, a news article is
given as the input to a model and it must predict whether the
article contains false information. Other studies aim at de-
tecting the veracity of information at a more granular level
by working with claims and rumors (Zubiaga et al. 2018;
Shaar et al. 2020; Hansen et al. 2019; Jiang et al. 2020;

Smeros, Castillo, and Aberer 2021). This approach consists
in detecting fragments of text, e.g., sentences or paragraphs,
worthy of fact-checking. Thus, a single document or news
article may contain several claims, some of which may be
inaccurate or deceiving.
Source Veracity. Source-based approaches are holistic ap-
proaches that evaluate the quality of a news source as a
whole, without focusing on individual claims or articles ex-
tracted from it. Baly et al. (2018, 2019); Li and Goldwasser
(2019) highlight the importance of features beyond text to
evaluate the veracity of news sources, such as the presence
in social media and the existence of a Wikipedia page about
a source. Furthermore, Shu, Wang, and Liu (2019) explore
the interactions between users, authors, and sources, while
Gruppi, Horne, and Adalı (2021) observe content sharing
trends among news publishers. Finally, Bourgeois, Rappaz,
and Aberer (2018); Rappaz, Bourgeois, and Aberer (2019)
study the selection bias in the topic coverage of news sources
by exploring the co-references of these sources to the same
news events, while Ribeiro et al. (2018) infer the biases of
news sources by utilizing their advertiser insights into the
demographics of their social media audience.

Both claim- and article-level veracity assessments require
data labeling at a very large scale (e.g., individual claims or
articles labeled as reliable or unreliable) and heavily rely on
text-specific features these short pieces of text provide. Our
approach is, to the best of our knowledge, the first approach
that aggregates information about the writing style and cita-
tion behavior of news sources to learn unsupervised source
representations, that is aware of the science-related content
published by them.

Corpus
Our study targets the reliability of sources when reporting
news related to science. Thus, we use a corpus of news ar-
ticles targeted on the emerging scientific topic of COVID-
19, and a corpus of scientific references, also targeted on
COVID-19. We summarize the basic statistics of both cor-
pora in Table 1.
NELA-GT-2020. The collection of news articles contains
a total of 1.78 million articles published by 519 sources
(Gruppi, Horne, and Adali 2021). Each article in the dataset
contains a title, full text, name of the publishing source, and
publication timestamp. We use a subset containing only arti-
cles related to COVID-19, resulting in 991,116 news articles
from 493 sources, published over 18 months, between Jan-
uary 1st 2020 and July 1st 2021. We obtain this subset by
applying keyword-based filtering using the COVID-19 ter-
minology from Shugars et al. (Shugars et al. 2021), selecting
articles that contain at least one COVID-related keyword in
the title or body text.
Media Bias/Fact Check Labels. We retrieve labels for
sources in the corpus from the news assessment agency Me-
dia Bias/Fact Check1. We obtain the political leaning of
news sources, represented by direction (left or right) and
magnitude (mild, moderate, extreme). These are encoded

1https://mediabiasfactcheck.com
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NELA-GT-2020
Total Articles ~1.8M
COVID-19 Articles ~1M
Total Sources 493
Labeled Sources 316
Reliable Sources 122
Unreliable Sources 194
Partisan Sources 162

Scientific References
COVID-19 Papers (CORD-19) ~300K
Scientific Domains (SciLens) ~1K
References in NELA-GT-2020 ~200K

Table 1: Summary of the used corpora. We see that more
than half of the articles in NELA-GT-2020 are related to the
topic of COVID-19. The labels for reliable, unreliable and
partisan sources are obtained from Media Bias/Fact Check.

as integer numbers in [−3, 3], negative values indicate left-
bias, positive values indicate right bias, and 0 represent cen-
ter sources. Furthermore, we obtain a conspiracy-theory la-
bel, a binary indicator denoting whether a source publishes
conspiracy theories and/or pseudoscience content. These are
often highly unreliable sources and may or may not exhibit
political leaning. Finally, we obtain factual reporting, an in-
teger score from 0 to 5 assigned to each source, where 0
indicates the least credible score and 5 is the most credible
score. A source that constantly publishes misleading con-
tent, fails to fact-check its publications, and does not dis-
close an editorial board tends to be associated with a lower
factual reporting score.

Based on the factual reporting score, we divide news
sources into two reliability classes, namely the Reliable
News Sources and the Uneliable News Sources. The rules
defining each class are described as follows:
• Reliable News Sources: sources whose factual reporting

score is greater than 2.
• Unreliable News Sources: sources flagged as conspiracy-

theory news producers or sources whose factual report-
ing score is less than or equal to 2.

Scientific References. We enhance the news collection de-
scribed above, by extracting the external scientific refer-
ences of news articles, i.e., the outgoing hyperlinks from
the main body of the news articles. We also extract the con-
text of each reference, i.e., the passage of the news article
that surrounds this reference. We consider two repositories
of references provided by CORD-19 and SciLens.

One of the most prominent collection of papers related
to COVID-19, consisting of peer-reviewed papers as well
as preprints and other historical coronavirus research, is
CORD-19 (Wang et al. 2020). We use the 2021-06-14 re-
lease of CORD-19, which contains a total of 310,833 papers.

The second source of scientific references comes from
SciLens (Smeros, Castillo, and Aberer 2019). SciLens pro-
vides a list of the top-1000 university domains (as indi-
cated by CWUR.org), enhanced with a manually curated list
of open-access publishers and grey literature databases. In-
deed, these scientific references are more prevalent in news

Washington PostWashington Post

Charlotte ObserverCharlotte Observer

US NewsUS News

CBS NewsCBS News

Raw StoryRaw Story

Veterans TodayVeterans Today

Global ResearchGlobal Research

The Greanville PostThe Greanville Post

RussophileRussophile

BreitbartBreitbart
The Epoch TimesThe Epoch Times

What Really HappenedWhat Really Happened

Figure 2: Example of a subgraph of the Content Sharing Net-
work where nodes, representing sources, are connected by
directed edges denoting the direction of the copied content
between sources. Node color indicates the reliability class of
the source (green for Reliable, purple for Unreliable), and
edge width indicates the amount of content copied.

than the CORD-19 papers, because their writing style and
terminology used is typically more oriented towards a non-
expert audience.

Content Indicators
In this section, we introduce two content-based indicators
that we use to align news sources. Particularly, we introduce
an indicator regarding the shared content and an indicator
regarding the semantic shift of terms between sources.

Copy Indicator
Content Sharing Network (CSN) is a model of content repli-
cation by sources in the news landscape. The sharing of
news articles has been shown to be a common factor be-
tween news sources that adopt similar narratives around cer-
tain topics, which also correlates with the credibility of these
sources (Horne, Nørregaard, and Adalı 2019). Figure 2 illus-
trates how sources are related in a CSN, where articles are
copied from source to source.

The CSN is modeled as a directed graph where nodes rep-
resent news sources and edges indicate sources that copy
articles verbatim from one another. Edges weights are pro-
portional to the amount of content copied between the con-
nected sources. The adjacency matrix C of such network
represents the affinity between the news sources. We obtain
this matrix using the method proposed by Horne et al. (2019)
which consists of computing document vector representa-
tions for news articles using a TF-IDF bag-of-words repre-
sentation. Articles are considered verbatim copies of each
other if the cosine similarity between their vectors is greater
than a threshold of 0.85, and the direction of the copying is
determined by the publication date of the article. The sim-
ilarity threshold is defined following the recommendations
from Horne, Nørregaard, and Adalı (2019).

The final adjacency matrix is obtained by aggregating all
copied articles at the source level. Thus, a directed edge from
node i to j exists if source j copies articles from source i.
The complement of the degree of relatedness distance be-
tween sources i and j, is given as a function of the weight of
the edge (i, j) and is defined as:

dcpy(i, j) = 1− |Ai ∩Aj |
|Aj |
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Source Usage
Modern Alternative
Mama

{...} these specific herbs have strong
antiviral actions, including against
other strains of coronavirus.

Healthy Holistic
Living

{...} Garlic is known to have potent an-
tibacterial, antiviral, antifungal and an-
tiprotozoal abilities.

The Guardian {...} overwhelming emergency depart-
ments and causing governments to over-
spend on antiviral medications.

The Washington
Post

{...} although the antiviral drug remde-
sivir has been shown to help some pa-
tients {...}

Table 2: Semantic shift of the term “antiviral”. We observe
a contextual shift of the word. In the top two cases, the term
is used to describe alternative medicine with herbs, while
in the bottom two cases, the term is used with its ordinary
(scientific) connotation.

where Ai and Aj are articles published by sources i and j;
thus, their intersection should contain articles from source
i copied by source j. The value of dcpy increases as fewer
articles are copied from i to j and decreases as more articles
in j are copied from i.

Shift Indicator
We analyze how specific technical terms are used differently
between news sources. Different uses of a certain term in
two pieces of text can occur if that same term is used in
a different context in each of the texts. Semantic shift is the
process through which the usage of a given word drifts when
compared across different sources. Specifically, we consider
the lexical semantic shift, which posits the semantics of a
word to be defined by its contextual relationships to other
lexicons (Cruse et al. 1986). We argue that significant con-
textual shifts of topic-related words may serve as a signal
of source disagreement, i.e., two sources using a certain tar-
get word in significantly different contexts may indicate that
they use such words with different intents. An illustrative
example is shown in Table 2. Note, in both examples, the
word antiviral is still used to indicate “something that is ef-
fective against viruses”; however, the contexts give different
connotations to what the antiviral product is.

Semantic shift has been used extensively in computa-
tional linguistics studies of language evolution (Hamilton,
Leskovec, and Jurafsky 2016) and, more recently, in stud-
ies quantifying the linguistic differences across domains
(Yin, Sachidananda, and Prabhakar 2018; Schlechtweg et al.
2019). In our method, we use semantic shift as an indi-
cator of agreement among sources as it helps to uncover
unique narratives created by unreliable sources, especially
those based on conspiracy theories, deviating significantly
from the narratives from reliable media.

The semantic shift between two sources i and j is mea-
sured by the deviation in the usage of words they have in
common. Specifically, we define semantic shift as the aggre-

gated distance between word embeddings for terms in the
common vocabulary of sources i and j. However, because
the word embeddings are trained independently from each
other, they cannot be directly compared. For example, sup-
pose that va and vb denote word vectors for the word virus
learned from the sources The Washington Post and Global
Research, respectively. The cosine distance dcos(va, vb) is
not meaningful unless we first create a mapping between
the embedding spaces of each source. This mapping can be
achieved by applying an orthogonal transformation to one
of the embedding spaces to minimize the sum of the pair-
wise Euclidean distances between word vectors of the com-
mon vocabulary. Being orthogonal means that this transfor-
mation preserves the inner product of the embeddings in
the transformed space; for that reason, this mapping is also
called embedding alignment (Hamilton, Leskovec, and Ju-
rafsky 2016; Joulin et al. 2018).

Finding the best alignment of two embedding spaces
is not a trivial task. Learning a transformation from all
the words in the common vocabulary is often undesired,
as the objective of the mapping is to minimize the dis-
tance between every pair of word vectors, hence minimiz-
ing the distance between words that are potentially semanti-
cally distinct (Yin, Sachidananda, and Prabhakar 2018). To
learn alignments between word embeddings, we employ the
state-of-the-art self-supervised semantic shift (S4) method
(Gruppi, Chen, and Adali 2021), which is designed to select
the best words for generating a mapping between two em-
beddings. This procedure is applied to embeddings trained
using Word2Vec (Mikolov et al. 2013).

Once we train and align the embeddings, we compute the
semantic distance between sources i and j as the average
cosine distance between the top 10% most frequent words
in i and j (stop words excluded). Thus, the distance between
sources i and j is defined as:

dsem(i, j) =

∑
v∈Vi∩Vj

cos(embi(v), embj(v))

|Vi ∩ Vj |

where Vi and Vj are the vocabularies of sources i and j,
embi(v) and embj(v) compute the embeddings representa-
tion of word v, and cos computes the cosine distance be-
tween the embeddings. Additionally, Vi and Vj may be re-
placed with subsets of the common vocabulary to avoid us-
ing every word in the analysis (e.g., filter for the most fre-
quent words).

Reference Indicators
In this section, we introduce the reference indicators that we
used to align news sources. Particularly, we introduce two
dedicated scientific indicators, namely, the usage of scien-
tific jargon and the citation stance. These indicators are ref-
erence indicators, i.e., they define a distance among sources
given a common (scientific) reference.

Reference Context Extraction
To compute the reference indicators, we need the textual
context of the references, i.e., the paragraph in which these
references are cited. To extract this context, we: i) locate the
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Source Reference Context
TheNewYorkerIn June, just three months into a historic health cri-

sis, a survey by the Center for Disease Control and
Prevention found that forty per cent of Americans
were already struggling with at least one mental-
health issue.

RedState It is no wonder that many Americans have lost
their faith throughout 2020. Too many leaders
have been inconsistent in their actions minus their
continued breaches of the public trust.

Reference Title
CDC Mental Health, Substance Use, and Suicidal

Ideation During the COVID-19 Pandemic —
United States, June 24–30, 2020.

Table 3: Usage of scientific jargon when citing a report by
CDC (Czeisler et al. 2020). We highlight that the citation
context of TheNewYorker is semantically closer to the report
than the citation context of RedState.

references by parsing the raw HTML page of each news ar-
ticle of our data collection, and ii) traverse the structural tree
of the page to discover the most fine-grained text passage
that contains the reference. Currently, we do not support
end-notes within articles, i.e., anchors at the bottom of ar-
ticles where all the scientific references are listed, because it
is a journalistic practice rarely appearing in our corpus.

Jargon Indicator
This indicator quantifies the scientific nature of the context
in which a reference is used. To estimate this indicator, we
need a lexicon of terms (jargon_terms in the following)
that are considered jargon in the scientific domain of our
corpus. Since, as we explain in §, our corpus contains news
articles related to COVID-19, we use the vocabulary of CDC
A-Z Index2, manually enhanced with common COVID-19
terminology. After applying standard cleaning (e.g., punctu-
ation removal), we compute the following distance:

djar(i, j) = |ctxr(i) ∩ ctxr(j) ∩ jargon_terms|
where ctxr(i) and ctxr(j) are the terms in the citation con-
texts of sources i and j for each common reference r.

We note that we do not aggregate for all common refer-
ences between sources i and j; hence, we do not limit to a
single distance between these sources. In this way, we en-
code the co-citation volume between sources i and j, which
is useful for our triplet sampling strategy (details in ). Af-
ter computing djar(i, j), we apply Min-Max Normalization
in the interval [0, 1] to comply with the previously-defined
distances. As we observe in Table 3, even such a simplistic
metric is able to capture cases in which news sources com-
pletely distort the scientific message of the cited reference.

Stance Indicator
This indicator quantifies the sentiment charge of the con-
text in which a reference is cited. To measure this sentiment

2https://www.cdc.gov/az

Source Reference Context
FiveThirtyEight {...} based on current CDC guidelines {...} ex-

perts said that undercounting (deaths) was still
more likely than overcounting.

The Truth
About Cancer

Perhaps worst, the CDC has continued to lie
about the death count by artificially inflating
it. CDC guidelines for determining COVID-19
deaths include: Anyone who tests positive, even
if they died from other causes. Anyone who had
COVID-19 symptoms, even if they aren’t tested.

Reference Title
CDC Guidance for Certifying Deaths Due to Coron-

avirus Disease 2019 (COVID-19).

Table 4: Stance of news sources when citing (using the
underlined hypertext) a webinar by CDC (Anderson et al.
2020). We highlight that The Truth About Cancer uses more
emotionally loaded words than FiveThirtyEight.

charge, we use the Multi-Genre Natural Language Inference
model BART for zero-shot classification (Lewis et al. 2020).
This model3 computes the probability that we infer a cer-
tain hypothesis given a premise. Thus, the model needs no
explicit training on the downstream task of stance classifi-
cation since the desired classes are provided implicitly in
the hypothesis. After experimenting with various templates
for premise and hypothesis, we report the ones that yield the
most reliable results:

premise = reference context
hypothesis = “The stance of this example is negative”

The output of this model is a value in the interval [0, 1], de-
noting the probability a given premise implies our hypoth-
esis. We note that, by using this premise and hypothesis,
we treat neutral and positive stances similarly, i.e., as non-
negative stances, because we want to highlight extremely
negative stances (Table 4). Using this model we compute
the following distance:

dref (i, j) = |stance(ctxr(i)) − stance(ctxr(j))|
where stance(.) computes the stance of the citation contexts
of sources i and j for each common reference r.

Similarly as above, after computing dref (i, j), we apply
Min-Max Normalization in the interval [0, 1]. As we observe
in Table 4, this indicator distinguishes between the sentiment
of sources towards a common reference.

Unsupervised Source Embeddings
The previous section described the heterogeneous indicators
that we extract from each news source. In this section, we de-
scribe how we combine these indicators in a unified frame-
work to learn unsupervised representations of news sources.
The triplet loss function aims at coupling different parts of
the input spaces (here, our indicators) into a single repre-
sentation (Weinberger and Saul 2009). The triplets sampling

3https://huggingface.co/facebook/bart-large-mnli
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and embeddings training methods employed in this frame-
work are well-established methods (Hoffer and Ailon 2015)
used mainly in learning-to-rank recommendation systems
(Chen et al. 2016; Wang et al. 2021).

Triplets Sampling
Our goal is, using the distances defined by the indicators,
to discover pairs of similar sources and pairs of dissimilar
sources. By joining these two sets of pairs, we create triplets
of the form (anchor, positive, negative), where anchor is the
common element of the pairs, positive is the element simi-
lar to the anchor, and negative is the element dissimilar to
the anchor. For simplicity, in the following, we will refer to
these triplets as (a, p, n).

We note that these triplets may not occur from the same
indicator, i.e., the positive pair may occur from an indicator
that is more appropriate for capturing the affinity between
sources, and the negative pair may occur from an indica-
tor that is more appropriate for capturing the disparity be-
tween sources. In our experimental evaluation (§), we evalu-
ate each indicator in its ability to produce good positive and
negative pairs as well as full triplets.

Positive Pair Sampling. We use the distances computed
for each indicator to generate pairs of similar sources. For
all indicators we introduce in § & §, short distance denotes
similarity. Given an indicator f (copy, shift, jargon, or
reference), we generate a positive pair of similar sources
i, j with a probability inversely proportional to the distance
between i and j:

ppf (i, j) =
d−1
f (i, j)∑

k d
−1
f (i, k)

∀j ̸= i

We draw l positives samples from this distribution for each
indicator and each source in the dataset, producing a total of
l positive source pairs (a, p).

Negative Pair Sampling. For negative sampling, we em-
ploy two strategies. For some indicators (e.g., the stance in-
dicator), a large distance between sources denotes opposing
sentiment, thus disagreement (e.g., the sources in Table 4).
Hence, we use the inverse distribution we used for generat-
ing positive pairs to generate negative pairs:

npf (i, j) = 1− ppf (i, j) ∀j ̸= i

Similarly as above, we draw l negative samples from this
distribution for each indicator and each source in the dataset,
producing a total of l negative source pairs (a, n).

Nonetheless, there are indicators (e.g., the copy indicator)
for which a large distance between sources does not neces-
sarily denote disagreement; it only denotes the absence of
agreement. In these cases, we draw the negative pairs uni-
formly from the set of sources.

Finally, we employ a cleaning heuristic to increase the ac-
curacy of our triplets (detailed experiment in §). Specifically,
we make sure that we do not select a negative pair (a, n)
which we have already selected as positive pair (a, p):

(a, p) ∧ (a, n) ⇒ p ̸= n

Embeddings Training
Once we extract all the triplets, we use them for training a
dense representation model for news sources with the Triplet
Margin Loss (Balntas et al. 2016). The learning objective of
Triplet Margin Loss is to minimize the distance between an
anchor and a positive sample while maximizing the distance
between the anchor and the negative sample.

The procedure we employ is the following. First, we
initialize the embeddings for all the sources into a low-
dimensional, dense vector space by randomly setting the
weights in the embedding layer following a normal distri-
bution N(0, 1). Then, given the input triplets (a, p, n), we
train these embeddings by minimizing the loss function L:

L(a, p, n) = max{d(a, p)− d(a, n) +M, 0}
where d is the distance function, and M is the margin pa-
rameter that controls the gap between positive and negative
distances. The larger M is, the larger is the gap between
d(a, p) and d(a, n). We train the embeddings over several
epochs until convergence and then use them as the represen-
tation of the news sources.

The parameters of this method are the margin M , the dis-
tance function d, and the size of the output vectors s. We
release the optimal training parameters as well as the trained
sources embeddings in our code release (§).

Experiments
Our experimental evaluation is three-fold; first, we evaluate
the indicators individually, then we evaluate the source em-
beddings on the downstream task of source reliability classi-
fication, and finally, we perform an unsupervised clustering
where we analyze the patterns in the news sources captured
by the learned features. In the following experiments, the
labels from Media Bias/Fact Check are used, and word em-
beddings for the semantic shift are trained using Word2Vec
with dimension 100, context window of 10, and minimum
word count of 20. The parameters for SciLander are margin
M = 1, vector size s = 50, and distance d used in the loss
function is the cosine distance.

Indicator Coverage
In our first experiment, we measure the overlap of the intro-
duced indicators in terms of source and triplet coverage. We
also measure the accuracy of the triplets computed by these
indicators.

We define the source coverage (sc) and the triplet cover-
age (tc) between two indicators i, j as follows:

sc(i, j) =
|src(i) ∩ src(j)|

|src(i)| , tc(i, j) =
|trpl(i) ∩ trpl(j)|

|trpl(i)|

where src(.) and trpl(.) compute the distinct set of sources
and triplets covered by a given indicator. We note that sc and
tc are non-symmetric; consequently, the heatmaps in Fig-
ure 3 are also non-symmetric.

To measure the accuracy of the computed triplets, we use
the metric Area Under the Receiver Operating Characteris-
tics (AUROC), which measures the True Positive Rate over
the False Positive Rate. We also break down the AUROC
of the triplets into i) the AUROCp of the positive part of
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the triplets (a, p), ii) the AUROCn of the negative part of
the triplets (a, n), and iii) the AUROCf of the full triplets
(a, p, n). Specifically, for each individual AUROC, we con-
sider the following as true positives:

AUROCp : {(a, p) s.t. label(a) = label(p)}
AUROCn : {(a, n) s.t. label(a) ̸= label(n)}
AUROCf : {(a, p, n) s.t. label(a) = label(p)

∧ label(a) ̸= label(n)}

As we observe in Figure 3, although the sources covered
by some indicators heavily overlap, the contributed triplets
are quite unique. Indicatively, the stance indicator covers
27.5% of the sources, totally overlapping with the copy indi-
cator. However, the contributed triplets of the stance indica-
tor are different from the contributed triplets of all the other
indicators and also more accurate. Indeed, we see that there
is a trade-off between the source coverage of the indicators
and the AUROC. Hence, the more specific the indicator is
(e.g., the stance indicator), the better AUROC it has.

Finally, we observe that the overall AUROC for positive
and negative pairs (AUROCp and AUROCn, respectively)
are above the 50% baseline of a random positive (or nega-
tive) pair selection is truly positive (or negative).

It should be noted that the AUROC for complete triplets
(AUROCf ) is lower than 50%. This happens because the
choice of the final triplets involves two independent deci-
sions: the choice of the positive sample, and the choice of the
negative sample. As noted above, each choice has a chance
of success of 50% if chosen at random. Thus, for a triplet to
be correctly selected, the random baseline is that a correct
positive pair is chosen and a correct negative pair is chosen,
which results in a 0.5×0.5 = 0.25, or 25% baseline chance.
As we see in the following experiments, the model for train-
ing source embedding is robust to noisy triplets as it yields
highly accurate results in all the downstream tasks we use it.

Offline Source Classification
In this experiment, we evaluate the computed embeddings
on a downstream classification task. We assume that, for all
sources in our corpus, we have (offline) access to a signifi-
cant fraction of their history of published articles.

Baselines. For this task, we implement baselines using
Stylistic Text Features, Contextualized Embeddings, and Co-
citation Embeddings, as well as combinations of the above.

Stylistic Text Features. We utilize stylistic text features
from Horne et al. (Horne and Adali 2017) aggregated at
the source level as representations. These features include,
among others, the number of: part of speech tags, punctua-
tion symbols, and capitalized words, which are the features
that are typically used in news classifiers.

Contextualized Embeddings. We compute BERT (Devlin
et al. 2019) embeddings for a total of 32 tokens from the title
and the opening paragraph of the article, and average them
for each source. Similarly, we compute SciBERT (Beltagy,
Lo, and Cohan 2019) instead of BERT embeddings, which
have been shown to lead to better performance in tasks in-
volving scientific text. The configuration parameters of both

copy shift jargon stance

co
py

sh
ift

ja
rg
on

st
an
ce

100.00% 72.46% 39.13% 27.54%

80.91% 100.00% 41.42% 28.16%

98.54% 93.43% 100.00% 64.23%

100.00% 91.58% 92.63% 100.00%

copy shift jargon stance
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100.00% 0.16% 0.13% 0.26%

0.11% 100.00% 0.02% 0.03%

0.79% 0.17% 100.00% 7.03%

1.38% 0.25% 6.23% 100.00%

Indicator AUROCp AUROCn AUROCf #sources
copy 72.7% 51.0% 36.3% 257
shift 61.9% 60.8% 41.8% 308
stance 89.7% 73.3% 68.3% 87
jargon 81.9% 51.0% 42.9% 126

overall 77.0% 69.7% 57.5% 316

Figure 3: Overlap of indicators in terms of source coverage
(top left) and triplet coverage (top right); AUROC of the pos-
itive part, negative part, and full triplets (bottom). Although
the sources covered by most indicators heavily overlap, their
triplets are quite unique. Also, there is a trade-off between
the source coverage of the indicators and their AUROC.

BERT and SciBERT are those suggested in a widely used
release of this model (Wolf et al. 2019).

Co-Citation Embeddings. We compute a co-citation graph
of sources based on their scientific references. We weight
this graph either uniformly for each common reference,
or by emphasizing the uniquely used references, using
their TF-IDF score. In the overall graph, we run node2vec
(Grover and Leskovec 2016) to extract source embeddings.

Joint Embeddings. The Contextualized Embeddings and
the Co-Citation Embeddings capture two different modal-
ities of news sources; their content and citation behavior.
Thus, we create a joint representation by concatenating the
two embeddings. Since the dimensionality of the joint em-
beddings is high, we apply Principal Component Analysis to
reduce it and compare it with other baseline representations.

Evaluation. We test the usefulness of the learned repre-
sentations in the problem of source veracity classification.
We use the embeddings computed by i) SciLander trained
on all indicators, ii) SciLander trained only on content indi-
cators (shift or copy), and iii) the aforementioned baseline
models, to train a Nearest Neighbors classifier in a 10-fold
cross-validation setting. Figure 4 shows the F1 score of each
model for increasing values of k.

Relying uniquely on textual features limits classifiers to a
restricted set of signals. Our framework combines stylistic,
semantic, and behavioral indicators to produce a represen-
tation that improves the separation of reliable and unreli-
able sources. Thus, compared to traditional baselines such
as stylistic features or features extracted by BERT, our em-
beddings show significant performance improvement. Our
method obtains the best F1 score (87%) for k = 37.
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Figure 4: F1 scores using k-nearest neighbors classifiers
over the source embeddings representations computed by
SciLander and the various baselines described in §. SciLan-
der obtains the best F1 score (87%) for k=37.

Online Source Classification
In this experiment, we assume that we have two types of
sources: i) offline (known) sources, for which we have ac-
cess to a significant fraction of their publication history, and
ii) online (newcomer) sources, for which we have access to
a limited fraction of their publication history. As assessing
articles from newcomer sources might be a time-consuming
task, we inspect the lowest fraction of articles that is needed
to accurately classify these sources.

The procedure that we employ is the following: i) we
train embeddings for the offline sources (as we explain in
§); ii) we freeze these embeddings for the offline sources;
iii) we train embeddings for online sources, in the already
shaped by the offline sources embeddings space.

We conduct the experiment on a 10-fold cross-validation
setting. In Figure 5, we report the learning curve (F1 score)
for increasing fractions of articles from newcomer sources in
the same classification task described in §. We note that the
temporal axis is not in chronological order but sampled ran-
domly from the entire corpus (e.g., we sample articles rep-
resenting a 3-month publishing activity of an online source
from the entire publishing activity of that source). In that
way, each temporal interval is independent of external events
(e.g., the development of the vaccines), which affects the ac-
tivity of most sources. As we observe in Figure 5, SciLander
is able to reliably (F1>85%) classify sources, using only
three months of their publishing activity.

Source Clustering Analysis
We conduct an unsupervised clustering experiment to inves-
tigate potential trends revealed by the features learned by
SciLander. Using the same embeddings from the previous
experiments (50 dimensions, M = 1), we apply DBSCAN
clustering to the source vectors with the cosine distance as
distance metric, minimum distance parameter ϵ = 0.1 and
minimum cluster size n = 1. The resulting clusters are
shown in Figure 6; each of the 7 clusters is shown in dif-
ferent color shades and labeled from A to G.

We characterize the clusters quantitatively with respect to
the density of unreliable sources, political leaning, and the
level of partisanship bias aggregated across the news sources

Figure 5: Learning curve (F1 score) for increasing fractions
of articles from newcomer sources. SciLander is able to reli-
ably (F1>85%) classify sources using only 3 months of their
publishing activity.

within them. For each cluster, we compute the proportion of
unreliable sources to the total number of sources in the clus-
ter. Figure 7a shows the density of unreliable sources within
each cluster. This result suggests that the source embeddings
carry information about source credibility when grouping
them, even though credibility labels or related features were
unknown to the model during training.

Clusters C and E contain no unreliable sources and hold
mostly mainstream news sources such as The Washington
Post, Vox, National Public Radio (NPR), and the Chicago
Tribune. The clusters containing the largest proportions of
unreliable sources are the clusters A, B, and G, and most
sources in these clusters are websites that propagate con-
spiracy theories and promote pseudoscience. Details on the
discovered clusters are shown in Table 5.

These results show that the SciLander embeddings are
able to group sources based on similar reliability. Multi-
ple clusters of relatively high purity with respect to reliabil-
ity are created, some reliable (75%-100% reliable sources),
some unreliable (0%-30% reliable sources).

We compute the overall political leaning of a cluster by
averaging the political leaning scores of the sources within
that cluster. Partisanship bias is obtained by the absolute
value of leaning, scaled to a value in [0, 1], with 0 indicating
that there is no partisanship bias in the cluster, and 1 in-
dicating the maximum partisanship bias, where all sources
in the cluster exhibit a strong political leaning. The parti-
sanship bias describes the agreement between the political
leanings of sources within the cluster, and the magnitude of
such leanings. The distribution of political leanings and par-
tisanship bias are shown in Figures 7b and 7c. There is a
noticeable disparity between the partisanship bias found in
the two biggest unreliable clusters A and B. Sources in clus-
ter A exhibit a strong bias, which is nearly absent in cluster
B. We explore the particularities of these clusters next.

Different Types of Conspiracy Theories
We observe two clusters with high density of unreliable
sources (clusters A and B). Both clusters include many un-
reliable news sources, and there exist qualitative differences
between them, which we describe in this section.

To uncover qualitative differences between sources in
clusters A and B, we measure the shift in context between
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Figure 6: Kernel Density Estimation of the clusters

Cl. (U) (P) Core Sources
A .70 .25 NewsWars, Vets. Today, The D.C. Clothesline
B .84 .03 Mercola, Healthy Hol. Living, Vaccine React.
C .00 .11 The Washington Post, Vox, NPR
D .25 .00 The American Cons., Roll Call
E .00 .20 Chicago Tribune
F .12 .03 Wash. Monthly, FiveThirtyEight, Atlantic
G .80 .00 Ice Age Now

Table 5: (U)nreliability score (proportion of unreliable
sources), average (P)artisanship bias score, and core sources
(nearest neighbors to the centroid) of the identified clusters.

these clusters and the mainstream cluster C. Specifically, we
computed the semantic shift across clusters of sources by
training Word2Vec models EA, EB , and EC using articles
from the core sources of each cluster and using the same
hyper-parameters as in the previous experiments. Then, we
extract the words with the highest cosine distance between
pairs (EC , EA) and (EC , EB) to find the terms that most
contribute to the deviation in the news from sources in C to
each of the unreliable clusters A and B.

Let SA and SB be the lists of the 100 words most shifted
to C, from A and B, respectively. We find that there is only
one word in common between the SA and SB : “natural”.
To characterize the words in both lists, we identify words
that refer to people, entities and places, political issues, and
health and nutrition. Examples of these words are given be-
low and listed on Table 6.

The largest group of words shifted in cluster A are re-
lated to individuals, entities, places (25%), and political top-
ics (12%). Almost all individuals found are political figures
(with a few exceptions). There are only 1.5% of terms re-
lated to health and nutrition. Many of these news outlets are
conspiracy theory websites such as NewsWars, Veterans To-
day, and InfoWars. According to a Media Bias/Fact Check
analysis4, these sites often publish hate-speech-filled content
in addition to misleading or false information.

In contrast, the largest group of shifted words was de-
tected in cluster B (21.5%), with only 2% people and 1%
related to political topics. According to MBFC journalists5,
these sources promote alternative health notions, sell ques-
tionable products and supplements, and promote antivacci-
nation positions with pseudoscience-based arguments.

4https://mediabiasfactcheck.com/veterans-today
5https://mediabiasfactcheck.com/mercola

People and Places Political Terms Health
Kamala Harris BLM (Black Lives Matter) Coronavirus
Bernie Sanders Patriot Food
Nancy Pelosi Voting Vaccines
Mike Pence Abortion Doctors
Alex Jones Partisan Mask

Table 6: List of words from clusters A and B that are most
shifted from the mainstream cluster C. People and Places,
and Political Terms appear as the most shifted words in clus-
ter A, suggesting that its sources push politically-oriented
misinformation, while sources in cluster B focus more on
alternative health solutions.

Based on this, we conclude that while cluster A is a clus-
ter of mostly politically-unreliable news sources covering
COVID-19 stories mixed with other political topics, cluster
B is much more focused on covering alternative medicine-
based misinformation with slight political leaning, presum-
ably to appeal to individuals with different political opin-
ions. On these sites, health-based information is often mixed
with promotion and affiliate links to sites selling alternative
medicine products and supplements. Our method is able to
properly distinguish these different types of COVID-19 mis-
information, without explicitly training on related features.

Discussion
SciLander is a method for embedding news sources. The
results of the experiments (§) show that the representations
learned from SciLander outperform other state-of-the-art
feature models. Despite the final representation being a set
of autoencoded features (i.e., embeddings learned from a
neural network), it is directly explained by the product of
a combination of the aforementioned indicators.

The applications of these learned features are not re-
stricted to classification tasks. They can be used in any sce-
nario where similarities between news sources are needed,
such as in clustering analysis (details in §) and recommen-
dation systems.

SciLander, like most other AI/ML methods, is heavily
data-driven. It uses signals found in the text of news arti-
cles to infer the relationships between sources. The above
can cause SciLander to make biased decisions, especially if
the input data is biased towards/against societal groups, such
as underrepresented minorities and other vulnerable groups.
We argue that SciLander, when deciding what content to
recommend or promote, can provide assistance in human
decision-making but not replace human judgment.
The indicators used by SciLander complement each
other. The experiments shown in § demonstrate that the
embeddings performed better in classification tasks when
all four indicators are combined (copy, shift, jargon, and
stance). The latter suggests that the indicators worked in a
complementary manner, where a mistake made by one in-
dicator is corrected by the other indicators. Furthermore, as
seen in Figure 3, some indicators were better suited to de-
tect negative pairs. For example, the indicator copy had a
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Figure 7: Density analysis of the clusters computed by SciLander. Components PC1 and PC2, obtained from Principal Compo-
nent Analysis (PCA) on the source embeddings, are the components with the highest explained variance ratio.

AUROC score of 72.7% for positive samples and 51% for
negative samples. This result can be explained by the fact
that while the presence of copy behavior between sources
x and y is an indicator of similarity between x and y, its
absence does not necessarily imply that x and y are very
distinct. In short, source x not copying from y does not im-
ply that x is distant from y. Conversely, the stance indicator
had a higher negative pair score (73.3%), suggesting that this
indicator would perform better in finding negative samples.

SciLander has the potential to be extended to general do-
mains. We based SciLander on features that work as indica-
tors of source similarity or dissimilarity, motivated by pre-
vious research on language and misinformation (Chambers
and Schilling 2018; Horne, Nørregaard, and Adalı 2019;
Smeros, Castillo, and Aberer 2019). The shift and copy in-
dicators are agnostic to the news domain since they only re-
quire the presence of text. However, the stance and jargon
indicators are closely tied to scientific news.

To extend the application of SciLander to other, including
non-scientific, domains, a topic of choice must be specified
prior to the application of the method. The chosen topic must
include a set of entities referred to by news sources, such as
political figures in the political news domain. In this case,
the stance towards scientific references would be replaced
by the stance towards such political figures, and the scien-
tific jargon would be replaced by political jargon. Topics can
be manually defined via a set of keywords and entities, or au-
tomatically defined, such as by applying topic modeling to
extract the relevant keywords from the news documents.

Limitations. Our methodology was only applied and eval-
uated on an English dataset; extending to other languages
would only require translation/adaptation of the domain-
specific lexicon used to compute the jargon indicator or sim-
ply skipping this indicator and training using the other three.
All the other indicators as well as the introduced embed-
ding model, are based either on language-agnostic or already
multilingual models.

Furthermore, our methodology supports only explicit ci-
tations, i.e., direct outgoing links to scientific papers, and not
implicit mentions of science-related entities (e.g., universi-
ties) because the latter design choice introduces ambiguity
and noisy source triplets.

Finally, we implicitly filter the scientific references re-

lated to COVID-19 as we filter the news corpus citing
these references. Explicit filtering would require download-
ing and parsing the references from different formats, e.g.,
pdf, which is a demanding task not in the scope of this work.

Conclusions
We have introduced SciLander, a method for learning a rep-
resentation of news sources reporting science-related con-
tent. Our method uses a combination of signals to estimate
the similarity between news sources. We have shown that
these signals complement each other, capturing relationships
between distinct sets of sources from a dataset of news arti-
cles related to COVID-19. Furthermore, the features learned
by our model demonstrated superior performance to base-
lines for the task of source credibility detection, both in
an offline and an online setting, requiring as little as three
months of publication activity to accurately classify news
sources. Lastly, we have shown that the learned source rep-
resentations encode information of credibility and political
leaning, forming clusters of sources that show similar reli-
ability and political bias. In particular, we discovered two
large clusters of unreliable sources to which different types
of conspiracy news sources flock. One of them concentrates
on alternative health misinformation, and the other promotes
hyper-partisan political conspiracies.
Reproducibility. All the data, code, and models used for this
paper are publicly available for research purposes in the fol-
lowing repository: https://github.com/mgruppi/SciLander.

Ethics Statement
Our work aims at finding representations that capture the
similarities and differences between news sources in their
coverage of the COVID-19 pandemic. Our proposed method
bases this representation on the language usage, content
copy/sharing behavior, and their stance towards scientific
references. We show that the representations learned from
these signals are useful for several downstream tasks, in-
cluding understanding the reliability of a source. This is ac-
complished by using proxies to trust scientific references,
language, and content. One must be careful when applying
this method to untested dimensions, such as the presence of
language usage by minority groups. These groups may be
underrepresented in the training data, which may cause the
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model to make biased predictions about them. We propose
that this method aids the decision-making process as a com-
plement to human judgment rather than a replacement.
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