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Abstract

Understanding the users’ patterns of visiting various location
categories can help online platforms improve content person-
alization and user experiences. Current literature on predict-
ing future location categories of users typically employs fea-
tures that can be traced back to the users, such as spatial coor-
dinate histories and demographic identities. Moreover, exist-
ing approaches commonly suffer from cold-start and gener-
alization problems, and often cannot specify when the user
will visit the predicted location category. In a large social
platform, it is desirable for prediction models to avoid us-
ing user-identifiable data, generalize to unseen and new users,
and be able to make predictions for specific times in the fu-
ture. In this work, we construct a neural model, LOCHABITS,
using data from Snapchat. The model omits user-identifiable
inputs, leverages temporal and sequential regularities in the
location category histories of Snapchat users, and predicts the
users’ next-hour location categories. We evaluate our model
on several real-life, large-scale datasets from Snapchat and
FourSquare, and find that the model can outperform baselines
by 14.94% accuracy. We confirm that the model can (1) gen-
eralize to unseen users from different areas and times, and
(2) fall back on collective trends in the cold-start scenario.
We also study the relative contributions of various factors in
making the predictions and find that the users’ visitation pref-
erences and most-recent visitation sequences play more im-
portant roles than time contexts, same-hour sequences, and
social influence features.

Introduction
A key characteristic of online social platforms and content
distributors is their ability to adapt to the user. Unlike tradi-
tional mass media which cater to a broad target audience, on-
line platforms can tailor their contents, interactive features,
and ads in a way that is personalized, valuable, and appro-
priate for the user (Berkovsky, Kuflik, and Ricci 2008). A
prerequisite for successful personalization is to predict user
activities ahead of time: knowing when a user will go shop-
ping, get coffee, exercise, attend a lecture, or visit an amuse-
ment park, for instance, can allow the platform to deliver the
right content and user experience at the right time. Impor-
tantly, people’s activities can be strongly tied to the locations
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Figure 1: Illustration of the task. We wish to predict a user’s
location category on Wednesday between 6 pm-7 pm, using
data up to 6 pm. Based on the user’s historical visitation fre-
quencies at the query hour, ‘Beverages’ can be guessed as
the most likely location category (red box in the left panel).
Again, based on the most recent location category sequence,
‘Residence’ can be predicted instead (center). Given the
ground truth location category (right), an end-to-end model
can be trained that makes the next-hour prediction by fusing
information from such modalities.

they visit, e.g., going to a gym for exercise or to a French
restaurant to eat French food (Yang et al. 2014). Thus, pre-
dicting the location categories people will visit in the future
(henceforth referred to as ‘future location categories’) can
provide a strong marker of people’s activities at that time,
and in turn, provide contextual information for rich person-
alization.

Humans show surprising regularity in their individual
and collective mobility patterns despite enjoying consid-
erable freedom in making their movement and destination
choices (Song et al. 2010). Such regularity can partly be
explained by people’s ‘stable habits’, where they carry out
routine activities under routine situational cues such as the
same time, place, or context (Aarts and Dijksterhuis 2000).
As a result, regularities in people’s past visitation histories
can be used to predict their future location categories. A
growing body of work has focused on predicting people’s
future location categories directly (Liao et al. 2018a; Liu
et al. 2019). Additionally, a tangential direction has sought
to predict people’s precise location coordinates or Points of
Interest (POIs) (Yang et al. 2019), from which the categories
can be inferred. The majority of these works use times-
tamped location coordinates to mine spatiotemporal regu-
larities. Demographic features such as gender/age (Chang
and Sun 2011) and visitations of social ties and non-social
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co-locators (Chen et al. 2022) have also been shown to hold
information about people’s future whereabouts.

Existing challenges and our solutions. Several consider-
ations arise in implementing a prediction framework for the
said purpose in a real-world, global-scale online social plat-
form that have not been adequately addressed in literature:
• Avoiding privacy-intrusive and user-identifiable data:

Demographic features such as age, race, and gender are
not only privacy-intrusive but also static and exclusion-
ary. One of the most informative features, spatial coordi-
nates, is also privacy sensitive, as the data can potentially
be traced back to a user (De Montjoye et al. 2013).
As such, we avoid using data that may identify the users
in this work. We instead leverage temporal regularities in
the location category histories of users and their friends to
make future location category predictions.

• Making predictions at a specific future time: Most of
the current literature focuses on predicting the next lo-
cation or the next location category of a user, ignoring
when it will occur (Chang and Sun 2011). This limita-
tion makes the predictions less actionable, as the visita-
tions can happen at any arbitrary time. Some recent works
have acknowledged and addressed this issue: e.g., Yu et
al. predicted a user’s most likely locations in the next 24
hours (Yu et al. 2020), and Karushima et al. predicted fu-
ture user actions along with the timing (Kurashima, Al-
thoff, and Leskovec 2018). The trade-off consideration
here is, if the predictions are made too late, the platform
will not have enough time to act on the insight; but if it is
made too long in advance, the prediction will likely miss
out on information from the more recent user activities and
thus suffer from inaccuracy.
In this work, we focus on making location category pre-
dictions for the next hour. This specification enables the
platform to proactively personalize contents and features
ahead of time while allowing the model to leverage the
users’ activities up to the latest hour in making predic-
tions. We unearth novel insights on how best to extract
temporal patterns from location category histories to make
next-hour predictions.

• Addressing the generalization and cold start problems:
Many previous approaches require learning user-specific
preferences (Yang et al. 2014; Wu et al. 2022). In plat-
forms with hundreds of millions of users, however, learn-
ing parameters for each user does not scale well. Again,
models that employ one-hot encoded representations of
users (e.g., (Yao et al. 2017)) cannot be readily applied to a
new/unseen user. Instead, a single trained model is desir-
able which generalizes to out-of-sample users, including
users of different areas (cities/states/countries) and times.
In cold start situations (Schein et al. 2002) with little to no
data from a new user, the model should be able to fall back
on collective trends for making predictions.

Given these considerations, we build a deep neural model,
LOCHABITS, using timestamped location category and so-
cial graph data from Snapchat. The model takes a modu-
lar approach and fuses information from sub-networks cap-
turing the users’ visitation frequencies, their friends’ aggre-

gated visitation frequencies, time contexts, same-hour loca-
tion category sequences, and most-recent location category
sequences to make the next-hour category predictions (Fig-
ure 1). We conduct extensive experiments to evaluate our
model’s performance in several large-scale real-life dataset
versions from Snapchat and FourSquare. We find that the
model outperforms comparison baselines by 14.94% on av-
erage in terms of prediction accuracy, while gracefully gen-
eralizing to new and unseen users from different areas and
times. We study the relative contributions of the different
modules and find the users’ visitation frequencies and the
most recent location category sequences to be the most pre-
dictive features.

Summary. Our contributions can be summarized as:
• We take a privacy-first approach to predict people’s next-

hour location categories in a large-scale industrial setting.
• We unearth novel insights on how best to extract temporal

patterns from people’s past location category histories.
• We build the LOCHABITS prediction model and confirm

the generalization of the model to new and unseen users in
datasets from various geographic areas and time periods.

• We shed light on the relative contributions of various pre-
diction features, and find the users’ visitation frequencies
and the most recent sequences to be the most predictive.

Related Work
Predicting User Activities
The user activity prediction literature typically tackles two
kinds of problems: predicting in-app and offline activities.
For instance, it is known that people’s ephemeral (most re-
cent) and cyclical (e.g., weekday vs weekend habits) in-
app activities can help predict their future in-app activi-
ties (Chowdhury et al. 2021).

Our focus in this paper is to capture offline activities
through location categories. To this end, various models
have been proposed that predict people’s current or future lo-
cation categories. These models typically employ user IDs,
spatial coordinates, timestamps, and location category data
as inputs. For example, Cui et al. predicted the current ac-
tivity of the users as they tweeted, using an LSTM archi-
tecture (Cui, Agrawal, and Ramnath 2020). To et al. used
social, spatial, temporal, and semantic data to predict a trav-
eler’s next activity using a neural model (To, Si, and Chen
2019). Liao et al. captured the interplay between spatial lo-
cations and activities using an RNN-based model, under-
pinned by the sequential dependencies and temporal regu-
larities of spatial-activity topics (Liao et al. 2018a). For rec-
ommending activities to users, approaches like a collabora-
tive tensor-topic factorization model (Liu et al. 2019) and
a personalized time-aware collaborative model (Rahimiagh-
dam, Karagoz, and Mutlu 2016) have been proposed. Zhang
et al. adopted an NLP-based approach (i.e., using n-gram
and PLSA) to capture long-range dependencies and contex-
tual factors to predict future location categories (Zhang et al.
2017). Yang et al. (Yang et al. 2014) noted that the users’
mobility is usually confined to specific geographic regions
(‘Personal Functional Regions’), which they used to model
the spatial preferences of users. The temporal preferences
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were captured collaboratively, and the two modalities were
fused together for predicting future location categories. Lian
et al. clustered users using spatial, temporal, and sequence
features, and collaboratively predicted future location cate-
gories (Lian and Xie 2011). Ye et al. built a mixed hidden
Markov model that leveraged sequential patterns from loca-
tion categories, as well as spatial and temporal contexts, to
predict a user’s next location category (Ye, Zhu, and Cheng
2013). Using a multivariate temporal point processes model,
Kurashima et al. showed that user preferences, time-varying
propensities of actions, short-term dependencies between
actions, and long-term periodic effects hold information for
predicting future actions of users as well as the associated
timing (Kurashima, Althoff, and Leskovec 2018).

Predicting Points of Interest
A growing body of literature has tackled the problem of pre-
dicting Points of Interest (POI). Geo-location coordinates
are among the defining components of a POI, which makes
the prediction space sparser than predicting location cate-
gories. This body of work varies in terms of the (1) model
specifications, (2) problem formulations, and the (3) influ-
encing factors incorporated, as elaborated below:

(1) Model specifications. Earlier attempts used Matrix
Factorization (Rahmani et al. 2020), Bayesian Personal-
ized Ranking (He, Li, and Liao 2017), Collaborative fil-
tering (Qiao et al. 2018), and Markov Chain (Chen, Liu,
and Yu 2014) based models, among other classical ma-
chine learning approaches. Recently, a large variety of deep
learning-based models have been proposed. Notably, Liu et
al. extended RNN with spatiotemporal information in the
Spatial-Temporal RNN (ST-RNN) model (Liu et al. 2016).
The Attentional Recurrent Neural Network (ARNN) (Guo
et al. 2020) captured both sequential and transitional regu-
larities. In general, these deep models leverage CNN (Elmi,
Benouaret, and Tan 2021), RNN (Liao et al. 2018b; Yang
et al. 2020), LSTM (Yu et al. 2020; Yao et al. 2017; Cui
et al. 2021), self-attention (Guo et al. 2020; Wang et al.
2021), graph embedding (Xie et al. 2016; Christoforidis
et al. 2018), and relevant technologies (Islam et al. 2022).

(2) Problem formulations. There are variations in the tasks
these models aim to perform. Some approaches recommend
unvisited POIs to people (Christoforidis et al. 2021), while
others predict people’s most likely POIs based on their pre-
vious visitations (Doan, Yang, and Reddy 2019). Given a
user’s sequence of most recent POIs, many models predict
only the next POI in the sequence (sequence to one) (Wu
et al. 2022) or successive upcoming POIs (sequence to se-
quence) (Yu et al. 2020; Cheng et al. 2013; Chang et al.
2018). For instance, a variational attention-based model was
used to capture the sequence information from spatial and
temporal data for predicting the next POIs (Gao et al. 2019).
While most models predict next/successive POIs ignoring
the time of those event(s), some models explicitly consider
the query time. For example, the Category-Aware Deep
Model (CatDM) (Yu et al. 2020) attempts to predict POIs
likely to be visited in the next 24 hours. In doing so, the au-
thors divide each day into 12 time periods and the days in
the week into weekdays and weekends. Cao et al. used spa-

tial, temporal, and graph data to predict the users’ locations
at any fine-grained future hour (Cao et al. 2018). Burbey ap-
plied a Markov Model to timestamped spatial data to predict
location at a specific future time (Burbey 2011). Yang et al.
proposed LBSN2Vec, which takes a hypergraph embedding
approach to predict future POIs (Yang et al. 2019).

(3) Influencing factors. The proposed models also differ
in the data they use and the features they extract from the
data. As spatial proximity can dictate where people will go
next, most models leverage geographical influence in mak-
ing the predictions (Sun et al. 2020; Chang et al. 2018; Ke-
falas and Manolopoulos 2017; Li et al. 2021). A large body
of works has shown that sequential effects play a large role in
predicting POIs: much like a sentence, where the sequence
of previous words can hold information about the upcom-
ing word (Guo et al. 2020; Wu et al. 2022; Kurashima, Al-
thoff, and Leskovec 2018). Temporal influence has also been
shown to be a prominent predictor (Cao et al. 2018; Doan,
Yang, and Reddy 2019; Li, Shen, and Zhu 2018; Li et al.
2021; Kurashima, Althoff, and Leskovec 2018) since hu-
man activities can be strongly associated with the hour of
the day and the day of the week (Chang and Sun 2011). Fur-
thermore, the locations of one’s social ties and non-social
co-locators have proven to contain important information re-
garding people’s whereabouts (Chen et al. 2022; Chang and
Sun 2011). For instance, long-distance travel is often influ-
enced by a friend living there (Cho, Myers, and Leskovec
2011). Thus, social influence features can be incorporated
to improve POI predictions. User attributes such as demo-
graphic features (age/gender) have additionally been used
to predict where people will go next (Chang and Sun 2011).
The location categories can establish the contexts for mak-
ing POI predictions (Yu et al. 2020; Wu et al. 2022). Fur-
thermore, the historical preferences of the users (i.e., pre-
vious visitation counts) are known to be significant predic-
tors of future POIs (Gao et al. 2019; Kurashima, Althoff,
and Leskovec 2018). Recently, it has been shown that peo-
ple’s destination choices can be impacted by the choice of
the location-based service itself (Ochiai et al. 2020). Several
other works leveraged features of weather (Nawshin et al.
2020) and textual sentiment of reviews (Chang et al. 2018)
to make the predictions.

Notably, the bulk of user activity and POI prediction
literature utilizes spatial geo-location coordinate data. In
contrast, we drop spatial coordinates and user-identifiable
sources and use location categories, timestamps, and social
graph data (detailed in the next section). This makes our
problem scope different than most published works. Using
these data, we curate feature sets as informed by previous
works as well as our own explorations detailed in the sequel.

Constructing the Datasets
Privacy Considerations
For illustrative purposes, contrast the two examples below.

Example 1. A user (female, aged 23) visited the audito-
rium of the University of X (latitude a1, longitude b1) at 8
am on Monday. She then visited Joe’s Coffee Shop (a2, b2)
at 1 pm. Later, she went home (a3, b3) at 5 pm.
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Figure 2: A tag cloud of the location categories.

Example 2. A user visited the location category “Univer-
sity” at 8 am on Monday, followed by “Beverages” at 1 pm,
and finally the “Residence” category at 5 pm.

Given sufficient data, a malicious actor might be able
to trace the user in Example 1 using the gender, age, and
spatiotemporal information (underlined). In fact, only four
spatiotemporal points are enough to uniquely identify 95%
of individuals (De Montjoye et al. 2013), although meth-
ods like differential privacy can offer increased protec-
tion (Pyrgelis, Troncoso, and De Cristofaro 2017). In Ex-
ample 2, only high-level categories are used. This sequence
can belong to a large set of candidate users from around the
globe, making it harder to pinpoint the user. Intuitively, us-
ing non-personally identifiable and high-level data can offer
superior protection of one’s privacy.

Building on these intuitions, we limit our scope to pre-
dicting future location categories only from (1) previous
location categories, (2) timestamps, and (3) aggregated in-
formation on location categories from one’s friends. Using
friends’ information merits caution: for example, if I have
only one friend, and that friend’s visitation history is used to
predict my future location category and in turn personalize
the content delivered to me, it can compromise the friend’s
privacy. It is therefore important to ensure that the users have
at least a large threshold number of friends, that the infor-
mation from those friends is aggregated appropriately, and
that all of the involved users provided consent. We avoid
using (1) spatial coordinates, (2) demographic information
(age, gender, race, etc.), (3) weather (which can help nar-
row down candidate locations), (4) textual reviews (which
can help to look up specific venues), etc. data that are fre-
quently used in the literature. We acknowledge that the ac-
cepted and omitted lists of data sources are not comprehen-
sive, and other sources that are non-personally identifiable
and are sufficiently high-level can be used as well.

Dataset Curation
We conduct our explorations primarily on Snapchat’s loca-
tion visitation data. Snapchat is an online social and instant
messaging platform. With the users’ permission1, Snapchat
senses precise location coordinates using methods that in-
clude GPS, wireless networks, cell towers, Wi-Fi access
points, and other sensors when the app is opened. Using

1https://snap.com/en-US/privacy/privacy-policy

Dataset Time Span Location # Users

Sn-CA-Jun Jun 1-Jun 30, 2021 California 210k
Sn-CA-Aug Jul 29-Aug 28, 2021 California 224k
Sn-NY-Aug Jul 29-Aug 28, 2021 New York 93k
Sn-TX-Aug Jul 29-Aug 28, 2021 Texas 209k

Fs-US-Apr Apr 3-Jul 11, 2012 USA 13278
Fs-JP-Apr Apr 3-Jul 12, 2012 Japan 6802
Fs-BR-Apr Apr 3-Jul 12, 2012 Britain 8878

Table 1: Dataset Summary. We use four dataset versions
from Snapchat (Sn) and three from FourSquare (Fs).

internal methods, the coordinates are mapped to the most
probable venues or business names (e.g., Joe’s Coffee Shop),
and, in turn, to the respective low-level location category
names (e.g., Coffee shop). We use the venue categories from
Foursquare2—where the categories are organized in hierar-
chical chains—to convert the low-level category names to
high-level categories (as available at the time of analysis).
We use the second-highest level from these chains for our
analysis, or the first level if there is only one category in
the hierarchy. For example, in the hierarchical chain “Arts
& Entertainment > Stadium > Baseball Stadium”, we take
“Stadium” as the location category of interest (see Figure 2).

We collect 4 anonymized dataset versions from Snapchat
(Table 1). All of these versions are from the United States.
The first version is from users in California, USA, spanning
the month of June 2021. We collect three more versions
in August 2021, from users in California, New York, and
Texas—three states geographically located at different ends
(west, east, and south) of the USA. This allows us to test
our model’s performance on users of the same and different
states, at different times.

We only have glimpses of the users’ true visitation his-
tories, based on whether they opened Snapchat during their
visits. To mitigate potential errors from unobserved data, we
analyze only the most active users, as recommended in pre-
vious literature (Song et al. 2010). To that end, we select
users who logged at least 30 location entries in the month.
We also collect friendship graphs from each dataset version,
where each user has at least a threshold number of friends.

To further validate the generalizability of our findings, we
use FourSquare check-in data from the USA, Japan, and
Britain to get three geographically separated dataset ver-
sions, as constructed from the publicly available global-scale
dataset in (Yang et al. 2019) (Table 1). The FourSquare
dataset versions come with pre-processed low-level location
category names, which we convert to the higher-level loca-
tion categories using the same procedure as the Snapchat
datasets. The friendship graphs among the users in these
dataset versions are crawled from Twitter by the authors.
We restrict our analysis to the data from the first 100 days
in these dataset versions since the per-day data volume be-
comes relatively sparse afterward.

People’s location visitation data is known to be heavy-

2https://developer.foursquare.com/docs/build-with-
foursquare/categories/
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tailed (Gao, Tang, and Liu 2012), which we confirm in all
of the dataset versions. From 141 location categories in the
Snapchat datasets, we limit our analyses to the 50 most fre-
quent categories, to avoid spending computational resources
on predicting categories that the users rarely ever visit and/or
log. These 50 categories comprise nearly all of the Snapchat
data (99.29%). We limit our analyses to the 50 most frequent
location categories in the FourSquare datasets as well, which
comprise 98.53% of all its data.

Task Description
Predicting Next-hour Location Categories
Some applications may require predicting a user’s location-
s/categories in the near future (e.g., route planning for taxi
drivers to maximize potential passenger pickups (Yang et al.
2017)). Again, some applications (e.g, traffic/infrastructure
planning) may need to predict locations long in advance by
leveraging long-term periodicity (Kurashima, Althoff, and
Leskovec 2018). Unfortunately, most frameworks predict
the next location without specifying when it will occur. For
our use-case of content personalization in online social plat-
forms, at any given hour in the day, we wish to predict the
location categories of the users in the upcoming hour. This
choice leaves enough time margin for the platform to curate
the right user experiences while making use of the users’
recent visitation information from up to the previous hour.

Problem definition. More formally, let us consider a set
of users U . Each user u ∈ U visits locations described
by (i) location categories c ∈ C, and (ii) timestamps in
terms of the day of the week d and hour in the day h
(discrete 1-hour bins). Thus, we have a set of user visita-
tion sequences S = {s1, s2, ..., s|U |}, where each sequence
su = v1, v2, ..., vmu

consists of mu chronologically ordered
visitation records from user u. Each record is a tuple in
the form of v = (c, d, h). The undirected friendship ties
e ∈ E among the users are captured in graph G(U,E). Let,
G(u) = {v : euv ∈ E} denote the set of direct friends of
user u. Our task can then be expressed as,

PROBLEM 1: PREDICTING THE USER’S LOCATION CAT-
EGORY IN THE NEXT HOUR. Learn a model from S and G,
that predicts the probability of each location category c ∈ C
to be visited by u ∈ U at the query day and hour (d, h), us-
ing the su and sv∈G(u) data up to the previous hour of the
query. In other words, predict

Pr(cu|d, h, su, sv∈G(u)). (1)

The output is a ranked list of k location categories with the
highest predicted probabilities.

Evaluation Strategy
Each of the Snapchat datasets has one month of data. We
take the first three weeks as the observation period to build
visitation histories of the users, and the fourth week as the
prediction period. For example, if a user has 30 entries in the
observation period and 8 entries in the prediction period, we
construct 8 data points from the user with the prediction pe-
riod entries as ground truth target labels. For the FourSquare

datasets, we have 100 days of data, which we split into 70
days of observation period and 30 days of prediction period.
The data points are randomly divided into 60:10:30 splits
as the training, validation, and test sets while ensuring that
data from the same user remains in the same split to avoid
information leakage.

Since we discretize time into 1-hour bins, there can be
multiple correct categories for a query at (d, h) if a user vis-
its multiple categories within the hour. We take the set of cor-
rect categories as the ‘relevant’ items. We return a sorted list
of k categories as the ‘recommended’ items. From the ‘rel-
evant’ and ‘recommended’ lists, we compute ranking per-
formance using popular metrics: (1) Normalized Discounted
Cumulative Gain (NDCG@k), (2) Recall@k, (3) Reciprocal
Rank (RR@k), (4) Coverage Error (CE), and (5) Macro-F1.

Exploratory Analysis
In this section, we explore the datasets’ predictive capabil-
ities using entropy-based and heuristic approaches. The ob-
jective is to gather insights on informative features that can
later be used in the more robust neural model.

Entropy Analysis
Entropy is arguably the most fundamental quantity that cap-
tures predictability in time-series data (Navet and Chen
2008). To quantify the interplay between regular (thus
predictable) and random (thus unforeseeable) trends at
individual-level time-series data, here we contrast three en-
tropy measures (Song et al. 2010):
• Random entropy: If user u visits nu unique location cat-

egories, then a naive algorithm can randomly pick any of
the nu categories with equal probability as the user’s pre-
dicted next-hour venue. The uncertainty in the prediction
can then be quantified as Srand

u = log2nu.
• Shannon entropy: If we know the frequency distribution

of user u’s visits to each of the nu categories, we can
leverage the heterogeneity of visitation patterns in mak-
ing the prediction. The entropy is then given by Sunc

u =
−
∑nu

z=1 pu(z)log2pu(z), where pu(z) is the historical
probability of user u visiting category z.

• Lempel-Ziv data compression: If we know the fre-
quency distribution as well as the sequence of the visited
categories of the user u, we can quantify the ‘true’ uncer-
tainty as, Slz

u = (Lulog2Lu)/
∑L

l=1 Λl, where Lu is the
total length of user u’s historical time series, and Λl is the
shortest subsequence in the time-series that starts at po-
sition l and doesn’t previously appear from position 1 to
l − 1 (Song et al. 2010).

Heuristic Approaches for Prediction
• Overall collective preferences (Doan, Yang, and Reddy

2019; Ye, Zhu, and Cheng 2013): We sort the location
categories based on the collective visitation frequencies
(i.e., sort by collective popularity). This sorted list is re-
turned in response to every query.

• Collective preferences at hour h: We return a sorted list
of categories based on collective-level frequencies at the
query hour h.
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Dataset Entropy Collective preferences User preferences

Srand Sunc S lz Overall At hour h Overall Day/night splits Composite Qc O-z MM

Sn-CA-Jun 3.04±0.5 2.19±0.5 2.09±0.4 24.88% 27.60% 48.06% 48.79% 49.26% 38.15%
Sn-CA-Aug 3.02±0.5 2.17±0.5 2.07±0.4 22.45% 27.89% 46.94% 51.34% 52.19% 40.00%
Sn-NY-Aug 2.97±0.5 2.11±0.6 2.03±0.4 24.31% 25.02% 46.95% 48.93% 49.38% 44.17%
Sn-TX-Aug 3.02±0.5 2.15±0.5 2.04±0.4 29.36% 33.95% 47.13% 52.47% 53.34% 42.12%
Fs-US-Apr 3.53±0.5 2.77±0.5 2.11±0.6 25.09% 28.43% 32.35% 35.04% 36.50% 25.59%
Fs-JP-Apr 3.23±0.5 2.27±0.5 1.74±0.6 32.28% 38.06% 50.88% 51.61% 53.07% 44.00%
Fs-BR-Apr 3.49±0.5 2.74±0.5 1.86±0.6 18.58% 26.72% 31.67% 35.31% 37.51% 24.92%

Table 2: Results of the exploratory analyses. The entropy values (mean±SD) are given in bits. The collective preference and user
preference-based predictions are given in NDCG@1 percentages. The dataset-wise best predictions are highlighted in bold.

• Overall user preferences (Noulas et al. 2012; Ye, Zhu,
and Cheng 2013): We sort location categories based on
a user’s overall visitation counts. This list is returned in
response to every query from that user.

• User preferences under day-time/night-time splits:
We split the data into ‘day-time’ and ‘night-time’ seg-
ments, to capture trends strictly associated with those
splits. Our extensive explorations show that if the night-
time range is too narrow, it results in too few data points
in the night split and thus leads to poor prediction per-
formances. We find that taking 10 am to midnight as the
‘day’-time and the rest of the hours as ‘night’-time gives
the best performances. We thus create two sorted lists for
each user based on their visitation frequencies in those
two time-splits. The appropriate list is returned for the
query hour.

• User preferences using a composite score: Here we
combine information from a user’s overall, day-based,
and hour-based visitation counts into one score. Namely,
we first split the user’s data into daytime and nighttime-
based data frames as described above. From these
splits, we collect the user’s total (counttot), day-based
(countd), and hour-based (counth) visitation counts for
each location category. We sum these counts to compute
a composite score for each category c at a given time
(d, h) as, Qc(d, h) = counttot + countd + counth. We
sort the categories based on their composite scores and
return the sorted list as the query response.

• Order-z Markov Model (Doan, Yang, and Reddy 2019;
Yang et al. 2014; Ye, Zhu, and Cheng 2013): We use
order-z Markov models with z = {1, ..., 5} to generate
sequence-based prediction baselines. For example, in an
order-4 Markov model, we use a sequence of 4 previous
location categories to predict the next category with the
maximum likelihood. Our explorations indicate that the
best results are obtained for z = 3, which we report here.

Analysis Results
We compute the three entropy measures from each user’s
time-series data and report the mean and SD of the collective
distributions. Table 2 shows the results. In all of the datasets,
we have Slz < Sunc < Srand, where the differences are sta-
tistically significant in Mann-Whitney U-test (p < 10−4 in
each case). This gives us multiple insights:

1. While there are 50 location categories in our datasets, at
an individual level, a user only visits a small number of
those categories. This is reflected in Srand ≈ 3.19 bits,
suggesting that a user who randomly chooses their next
category can be found on average in any of 23.19 = 9.1
location categories out of 50.

2. If one’s heterogeneity in visitation patterns is incorpo-
rated (i.e., in Sunc), the uncertainty drops, and a typi-
cal user can be found in one of 22.34 ≈ 5.1 categories.
This suggests that user-level visitation frequencies con-
tain substantial information for making predictions.

3. Finally, the further reduced Slz values suggest that the
user-level visitation sequences contain additional infor-
mation in making the predictions, as, in this case, the user
can be found in any of 21.99 ≈ 4 location categories.

Table 2 also lists the prediction performances of the
heuristic approaches in terms of NDCG@1 (i.e., the ac-
curacy of the best guess being correct). Given the skewed
distribution of the category frequencies, a naive baseline is
given by choosing the majority category every time (i.e., by
the k = 1 output from the overall collective preferences
heuristic), which results in ≈ 25.3% accuracy. Collective
preferences at hour h lead to better predictions than time-
agnostic overall collective preferences. The user-preference-
based predictions comfortably outperform the collective-
preference-based ones, which is expected based on the in-
sights from the entropy analysis above. Furthermore, binary-
splitting the data frames based on day-time and night-time
consistently gives better results than using overall visitation
frequencies. Using the composite scores gives the best re-
sults among these heuristic approaches. This suggests that
combining information from overall, day-based, and hour-
based splits of the data is promising for making superior pre-
dictions. The order-3 Markov model outperforms the overall
collective preferences baseline, showing promise for the use
of sequential modeling of location category data and corrob-
orating the entropy analysis results. We use these insights to
build the deep neural network in the next section.

The LOCHABITS Neural Model
Below, we describe LOCHABITS, a neural model for pre-
dicting the users’ next-hour location categories.
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Feature Vectors and Target Labels
Our target output is a RD vector that captures the predicted
probability of each location category, where D = |C| is the
number of categories. We take a modular approach in build-
ing the network, where 5 feature vectors are processed in
5 different modules or sub-networks before being fused to-
gether via an attention mechanism. We construct separate
feature vectors for the modules {T, I, F,M,L}, where T=
time context, I = user’s visitation frequencies, F = friends’
aggregated visitation frequencies, M = most-recent location
category sequence, and L = same-hour location category se-
quence. This modular approach allows us to (1) process each
feature branch suitably to extract the information therein
(e.g., using LSTMs for sequences), (2) fuse the modules to-
gether to capture their interactions, and (3) gain insights into
the relative contributions of the modules through attention
weights. Below we describe the feature vectors in detail:

Time context. The day of the week and the hour in the
day are known to be highly informative context features of
people’s whereabouts (Chang and Sun 2011). Capturing the
joint dynamics of the time contexts and the associated loca-
tion categories can help prioritize relevant categories based
on the query day and hour. When trained over data from
thousands of users, this module helps capture the collective
preferences associated with the respective time contexts. It
is common in the literature to discretize time in the day into
12 (Yu et al. 2020) or 24 bins (Li, Shen, and Zhu 2018;
Wu et al. 2022); and the day in the week into 2 (weekday
and weekends) or 7 bins (Li, Shen, and Zhu 2018; Yu et al.
2020). We take one-hot encoded vectors to represent the day
of the week, Zd

T ∈ RDd , and hour of the day, Zh
T ∈ RDh ,

where Dd = 7 and Dh = 24. The two vectors are concate-
nated to give the time context feature vector, ZT = Zd

T⊕Zh
T ,

where ⊕ represents concatenation, and ZT ∈ RDd+Dh .

User’s visitation frequencies. Our exploratory analysis
showed promise in employing user-level visitation frequen-
cies as a predictor. To capture user preferences, we compute
three ‘count’ vectors based on the visitation data of each
user. We first split the data frames into day-time and night-
time segments, using the same time-split boundaries as in-
formed by our exploratory analysis. Ztot

I ∈ RD holds the
user’s max-min normalized overall visitation counts at the
D categories, from the day-time or the night-time split cor-
responding to the query hour. From the same day-time/night-
time splits, we also collect Zd

I ∈ RD and Zh
I ∈ RD,

which respectively hold the max-min normalized visitation
counts from the same day of the week d and hour in the
day h as the query. We concatenate these three count vec-
tors to get a user-level visitation frequency feature vector,
ZI = Zdn

I ⊕ Zd
I ⊕ Zh

I , where ZI ∈ R3D.

Friends’ aggregated visitation frequencies. It is known
in the literature that the friends’ visitation preferences are
significant predictors of one’s own visitations (Chang and
Sun 2011; Yang et al. 2013; Gao, Tang, and Liu 2012). To
incorporate information from this modality, we first take
the same three count vectors (non-normalized) from all of
the friends of a user. For each location category, we run
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Figure 3: The LOCHABITS model architecture.

max-pooling to pick the highest visitation count among
all friends. We also experimented with mean-pooling, but
max-pooling gave better results. We do max-min normal-
ization on each of the max-pooled vectors separately, to
give us three aggregated visitation vectors from the friends,
Ztot
F , Zd

F , Z
h
F ∈ RD, analogous to the user’s own visi-

tation frequency features. Concatenating the vectors gives
us the friends’ aggregated visitation feature vector, ZF =
Ztot
F ⊕ Zd

F ⊕ Zh
F , where ZF ∈ R3D.

Most-recent category sequence. We take a sequence of
nseq,M most-recent, time-stamped location categories. Each
entry in the sequence is represented by concatenating three
one-hot vectors denoting the location category (RD), day of
the week (RDd ), and hour in the day (RDh ) respectively.
This gives us the most-recent sequence feature representa-
tion, ZM ∈ Rnseq,M×(D+Dd+Dh).

Same-hour category sequence. We also use same-hour
category sequences to capture cyclical or long-term period-
icity in the data (Chowdhury et al. 2021). We take a sequence
of the user’s nseq,L same-hour categories in the days before
the query. We use zero-padding if a data point has fewer
same-hour locations in previous days than nseq,L. The lo-
cations are represented the same way as the most-recent lo-
cation sequence, giving us the same-hour sequence feature
representation, ZL ∈ Rnseq,L×(D+Dd+Dt).

Model Architecture
The model architecture is shown in Figure 3. The five feature
vectors go through their individual processing modules and
get fed to an attention layer, A. All of the modeling choices
were made through experimentation.

Time context module. The time-context feature ZT is
passed through a fully-connected network combined with a
non-linear component. This helps create non-linear projec-
tions of the time context feature to capture the interactions
between the day of the week and hour in the day features.
This results in ZA

T = FT (ZT ), where F(·) denotes a fully-
connected network with dropout and activation, ZA

T ∈ RDA ,
and DA is the hidden dimension of the attention layer.

Visitation feature modules of users and their friends.
The visitation frequency feature vector of the user and
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Dataset Model NDCG@1 NDCG@5 Recall@5 RR@5 Coverage Error Macro-F1

Sn-CA-Jun
MCI-DNN 46.86% 68.74% 87.43% 62.49% 2.99 0.28
SERM 46.47% 68.64% 87.50% 62.33% 2.99 0.28
LOCHABITS 50.68% 70.31% 87.05% 64.72% 3.17 0.34

Sn-CA-Aug
MCI-DNN 48.34% 69.84% 88.00% 63.75% 2.93 0.30
SERM 48.39% 69.96% 88.15% 63.86% 2.91 0.31
LOCHABITS 54.86% 72.67% 87.62% 67.66% 3.06 0.37

Sn-NY-Aug
MCI-DNN 50.10% 70.06% 87.02% 64.39% 3.05 0.30
SERM 49.46% 69.88% 87.20% 64.08% 3.06 0.30
LOCHABITS 51.89% 70.62% 86.46% 65.32% 3.34 0.33

Sn-TX-Aug
MCI-DNN 49.74% 70.68% 87.95% 64.87% 2.93 0.26
SERM 49.91% 70.82% 88.03% 65.03% 2.92 0.27
LOCHABITS 56.63% 73.69% 87.79% 68.95% 2.99 0.31

Fsq-US-Apr
MCI-DNN 30.06% 53.46% 74.40% 46.50% 5.22 0.10
SERM 31.56% 54.86% 75.58% 47.97% 4.99 0.11
LOCHABITS 37.41% 58.65% 77.33% 52.43% 4.68 0.16

Fsq-JP-Apr
MCI-DNN 45.51% 66.29% 83.87% 60.40% 4.19 0.10
SERM 47.54% 68.17% 85.28% 62.42% 3.92 0.11
LOCHABITS 54.49% 70.64% 88.27% 64.77% 3.14 0.15

Fsq-BR-Apr
MCI-DNN 29.38% 52.67% 73.77% 45.67% 5.37 0.10
SERM 31.45% 54.65% 75.40% 47.76% 5.06 0.11
LOCHABITS 41.08% 61.42% 79.31% 55.47% 4.19 0.18

Table 3: Test-set performances of various models across datasets. The best performances in each dataset are highlighted in bold.

the aggregated visitation feature vector of their friends go
through two separate modules. Each module consists of a
fully connected network with dropout and activation lay-
ers, to capture the non-linear interactions among the over-
all, day-based, and hour-based features. This gives us ZA

I =
FI(ZI) and ZA

F = FF (ZF ), where ZA
I , ZA

F ∈ RDA .

Sequence modules. The most recent and same-hour se-
quences go through two similar recurrent modules. In each
module, the inputs are passed through embedding (Emb)
and dropout (Drp) layers, to give Z ′

M = Drp(Emb(ZM ))
and Z ′

L = Drp(Emb(ZL)) respectively for the most-recent
and same-hour sequences. Here, Z ′

M , Z ′
L ∈ Rnseq,M×De ,

where De denotes the embedding dimension. The embed-
ding layer helps to deal with sparse features through lin-
ear transformations. The embedded representations are then
passed through LSTM blocks to get ZA

M = LSTM out(Z
′
M )

and ZA
L = LSTM out(Z

′
L), where LSTM out denotes the fi-

nal hidden state output, and ZA
M , ZA

L ∈ RDA . These outputs
capture summary representations of the sequences.

Attention layer. The outputs of the five modules, ZA
T , ZA

I ,
ZA
F , ZA

M , and ZA
L , are fed to an attention layer. A naive op-

tion is to concatenate the five outputs together, which gives
every module equal importance. Instead, we use the atten-
tion mechanism, which attenuates or prioritizes each mod-
ule’s outputs adaptively for each prediction data point and
helps improve performance. This also allows for a richer
understanding of each module’s impact on the prediction.
The attention layer generates a soft-attended attention vec-
tor for each branch z ∈ {ZA

T , ZA
I , ZA

F , ZA
M , ZA

L } calculated
as αz = exp(ϕ(z))/

∑
z exp(ϕ(z)), where ϕ(·) is a map-

ping function implemented as a fully connected layer. Then,
a fused embedding vector is computed as ZA =

∑
z αzz.

Final prediction. We pass the fused embedding vec-
tor through another fully-connected network, before ap-
plying softmax to obtain a final prediction, output =
softmax (Fout(ZA)).

Results and Discussion
We train and test the LOCHABITS model using the data of
70k selected users (and their friends) from the Sn-CA-Jun
dataset. This trained model is additionally tested on 21k se-
lected users from each of the other Snapchat dataset ver-
sions. For the FourSquare datasets, we use the data from all
of the users in the Fs-US-Apr dataset for training and test-
ing a model. This trained model is additionally tested on the
Fs-JP-Apr and Fs-BR-Apr datasets.

Comparison Baselines
Alongside the approaches mentioned in the Exploratory
analysis section, we consider two high-performing neural
models, MCI-DNN (Liao et al. 2018b) and SERM (Yao et al.
2017) as baselines. These models originally focused on pre-
dicting POIs rather than location categories, so we adapt the
models to suit our problem scope. This gives us the follow-
ing baselines:
• Order-z Markov Model: Exploratory analysis; Table 2.
• Adapted MCI-DNN (Liao et al. 2018b): The MCI-

DNN model uses a ⟨location ID, context, timestamp⟩
POI tuple, and predicts the next location ID. To adapt the
model to our scope, we denote each entry as a ⟨category
ID, timestamp⟩ tuple, and predict the next category ID.
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Model NDCG@1 NDCG@5

LOCHABITS 50.68% 70.31%
- User’s visitation frequencies 49.00% 69.22%
- Most recent sequence 49.91% 69.47%
- Time context 50.47% 70.16%
- Friends’ visitation frequencies 50.57% 70.23%
- Same-hour sequence 50.59% 70.25%

Table 4: Impacts of different modules. Here ‘-’ denotes the
removal of the corresponding module.

Features used NDCG@1 NDCG@5

Time context+User’s visitation freq.
+ Friends’ visitation freq. 49.83% 69.44%
+ Same-hour sequence 49.91% 69.47%
+ Most recent sequence 50.68% 70.31%

Table 5: Incremental benefits of adding sequential data.

• Adapted SERM (Yao et al. 2017): Instead of describ-
ing location entries as a ⟨timestamp, location ID, activ-
ity description⟩ tuple, we denote them as ⟨category ID,
timestamp⟩. We predict the next category ID instead of
the next location ID. Furthermore, the SERM model rep-
resents users using one-hot encoding, which prohibits the
model from readily generalizing to unseen users. To en-
sure generalizability and fair comparison, we represent
each user by their overall visitation frequency vector.

Prediction Performance
The test-set performances are presented in Table 3. The
LOCHABITS model outperforms the baseline results in all
but two metrics (Recall@5 and CE) in the Snapchat dataset
versions, and in all of the metrics in the FourSquare dataset
versions. In particular, the LOCHABITS model outperforms
the baselines by 14.94% on average in terms of getting the
best guesses correct (NDCG@1)—which matters greatly in
the content personalization setting. The model’s ranking or-
dering is also better than the comparisons in the NDCG@5
and RR@5 metrics in all datasets. Notably, the baseline
models predict the next venues without explicitly priori-
tizing the next-hour ones and do not incorporate features
from social graph data and long-term patterns (i.e., same-
hour sequence). These can potentially explain their lack of
NDCG@1 performance compared to LOCHABITS.

The models trained on the Sn-CA-Jun dataset sus-
tain their performances in the test sets of datasets from
different areas (Sn-NY-Aug, and Sn-TX-Aug) even at
a later time (2 months later; Sn-CA-Aug, Sn-NY-Aug,
and Sn-TX-Aug), without requiring re-training. The same
trend is seen for the FourSquare datasets. This shows that the
models are generalizable to out-of-sample users from other
places and times.

Impact of Different Modules
Ablation study. To study the role of different features, we
remove one module at a time and retrain the reduced mod-
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Figure 4: Attention weights of various feature modules.

els. In Table 4, we report the reduced model performances on
the test set of the Sn-CA-Jun dataset. The first row in Ta-
ble 4 shows the performance of the full model. From there,
removing each of the modules reduces the performance, im-
plying that each of those makes a notable contribution to the
final performance. The highest reductions in performance
are observed when the user’s visitation frequencies and the
most recent location sequences are removed, respectively
marking the top two most informative feature modules.

Although we scoped our task and built the LOCHABITS
model around predicting the next-hour category, it is pos-
sible to extend the scope and framework to predict cate-
gories at any arbitrary future hour. In particular, the modules
of time context, user’s visitation frequencies, and friends’
aggregated visitation frequencies are suited to make predic-
tions at arbitrary query times using the temporal regularities
they capture. In the scope of our task, these three modules
lead to a prediction performance of NDCG@1 = 49.83% for
the Sn-CA-Jun dataset (first row in Table 5). The same-
hour sequence module (many-to-one LSTM) can be used to
influence the predictions for as far as 24 hours into the fu-
ture. In our task, adding this module (row 2 in Table 5) leads
to improved performance of 49.91%. Finally, the most re-
cent sequence module (also a many-to-one LSTM) is limited
to influencing the results only for the next hour. In our task,
adding this module (i.e., full model) gives a performance of
50.68% (row 3 in Table 5). If the same-hour sequence and
most recent sequence modules are to make predictions at any
arbitrary future hour—which may compromise performance
due to looking too far ahead in time—these two modules
will need to be replaced by suitable many-to-many/multiple
many-to-one recurrent blocks.

Attention weights. As described earlier, the attention
layer attenuates or prioritizes each feature for each predic-
tion data point adaptively. Thus, on the test set, we can ob-
serve which features are getting more attention, informing
us of their relative importance. The attention weights for the
five sets of features are shown in Figure 4, as collected from
the test set of the Sn-CA-Jun dataset. As can be seen, the
users’ visitation frequencies and the most recent location se-
quences are once again the most informative features, cor-
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Figure 5: Users’ visitation heatmaps shown for three example location categories from the Sn-NY-Aug dataset. The entries are
z-normalized, and brighter colors denote higher visitation counts. The users typically visit the ‘College & University’ category
in the early mornings of weekdays, and ‘Movie theaters’ on the evenings of Friday to Sunday. The visitations to the ‘Beverages
(non-alcoholic)’ category are spread out during the daytime throughout the week.

roborating the insights from the ablation study. All of the
feature sets contribute with weights significantly above 0%.

Cold start scenario. The model does not learn any user-
specific parameters and can be readily used in cold-start sce-
narios where there is no user data available to construct the
historical feature vectors. In that case, using only the time-
context module achieves NDCG@1=26.97%, capturing the
collective trends associated with the time-context features.
The performance is on par with the collective preference-
based results shown in the exploratory analyses.

Qualitative Explorations
• Contrasting local and global patterns. Visiting the ‘Col-

lege & University’ category on weekdays is a predictable
behavior for users across various states. Whereas, visiting
‘Harbor & Marina’ is a behavior mostly found in places
that have better access to water lines. Going to the cof-
fee shop appears to be a visitation behavior that can look
different across users. These properties of data distribu-
tion are reflected in the neural model’s prediction per-
formances: the more regularity there is in the data, the
more predictable a category is. For example, the ‘College
& University’ category comes with a decent predictabil-
ity (per-class F1 score ∼ 55%), while the ‘Beverages
(non-alcoholic)’ category, which includes coffee shops,
has much lower predictability (∼ 11%) (see Figure 5).

• Capturing temporal effects. In June, there are fewer data
points for ‘College & University’, due to it being summer-
time in the US when classes are off. In August, we notice
substantially increased entries in this category. This is re-
flected in the category’s prediction performance, which is
substantially higher in August (per-class F1 score ∼ 65%)
than in June (∼ 55%). Analyzing the temporal changes
in the per-class F1 scores can thus function as a potential
marker for regularity in people’s category visitations.

Limitations and Future Work
We used graph features from a single hop of neighbors and
gave each friend an equal weight. It is worth experiment-
ing with multiple hops of message propagation in the social
graph. The social influence on people’s future location cate-
gories can vary based on friendship strength. In future work,
we will incorporate weighted graphs to selectively focus on

the most informative/influential friends. Taking only the top
50 most frequent categories helped save computational re-
sources while catering to the vast majority (99.29%) of the
users’ entries. However, this choice limited the model’s abil-
ity to predict when people might visit extremely rare cat-
egories. We used one-hot encoded vectors for representing
location categories in our work. In future work, we will ex-
periment with embeddings that capture richer semantic char-
acteristics of the categories.

Conclusion
We predicted people’s location categories in the next hour
with a privacy-first approach. In contrast to most ap-
proaches, we avoided spatial coordinates along with other
user-identifiable sources and only used location categories,
timestamps, and social graph data. We then curated feature
sets informed by previous works and our own explorations.
We crafted a neural model that is generalizable and works
well in cold-start situations. We found the user’s visitation
frequencies and most recent sequences to be the most pre-
dictive features. Our work can enable rich personalization
of content delivery on online social platforms.

Ethics Statement
Any experiment dealing with data as sensitive as ours (e.g.,
location) needs to operate ethically and securely. Our ap-
proach actively aims to minimize risks of misuse and in-
trusion by avoiding user-identifiable data, such as demo-
graphic identities and spatial coordinates. Thus, our model
may be preferable in highly sensitive settings. The datasets
were anonymized before analysis. All experiments were
conducted in Snapchat’s internal secure storage systems, and
no data was stored outside Snapchat’s ecosystem. Thus, we
do not foresee strong ethical concerns induced by our work.
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