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Abstract

Twitter is one of the most popular social networks attract-
ing millions of users, while a considerable proportion of on-
line discourse is captured. It provides a simple usage frame-
work with short messages and an efficient application pro-
gramming interface (API) enabling the research commu-
nity to study and analyze several aspects of this social net-
work. However, the Twitter usage simplicity can lead to ma-
licious handling by various bots. The malicious handling
phenomenon expands in online discourse, especially dur-
ing the electoral periods, where except the legitimate bots
used for dissemination and communication purposes, the goal
is to manipulate the public opinion and the electorate to-
wards a certain direction, specific ideology, or political party.
This paper focuses on the design of a novel system for
identifying Twitter bots based on labeled Twitter data. To
this end, a supervised machine learning (ML) framework is
adopted using an Extreme Gradient Boosting (XGBoost) al-
gorithm, where the hyper-parameters are tuned via cross-
validation. Our study also deploys Shapley Additive Expla-
nations (SHAP) for explaining the ML model predictions
by calculating feature importance, using the game theoretic-
based Shapley values. Experimental evaluation on distinct
Twitter datasets demonstrate the superiority of our approach,
in terms of bot detection accuracy, when compared against a
recent state-of-the-art Twitter bot detection method.

Introduction
Twitter is considered one of the most popular and
widespread online social networks (OSNs) nowadays. It is
used by millions of users and organizations to quickly share
and discover information about a service, product, sports/so-
cial/political event etc. However, Twitter can be used as an
intermediate system for malicious purposes, such as spread-
ing fake news (Bovet and Makse 2019; Sharma et al. 2019)
or manipulating public opinion (Badawy, Ferrara, and Ler-
man 2018).

Specifically, Twitter can be used to circulate propa-
ganda (Neudert, Kollanyi, and Howard 2017; Jones 2019;
Chatfield, Reddick, and Brajawidagda 2015), manipulate the
public opinion (Bolsover and Howard 2019; Seo 2014) and
influence the electorate towards a particular ideology or po-
litical party (Golovchenko et al. 2020; Howard, Kollanyi,
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and Woolley 2016). These tasks can be fully automated
through a special organized group of agents, called botnets,
which are groups of sybil accounts that collectively seek to
influence ordinary users. In particular, a botnet is a group
of bots, i.e., automated programs programmed to run certain
tasks. A sybil account in OSNs is a fake identity, not neces-
sarily representing a real person or created by the real person
it represents (impersonation technique) (Alsaleh et al. 2014).

It has been observed that Twitter bots can also be ex-
ploited to spread fake news, rumors and hate speech (Founta
et al. 2018; Fortuna and Nunes 2018; Burnap and Williams
2015) by instantly republishing low credibility Twitter con-
tent (Shao et al. 2018) via popular users and Twitter men-
tions (Stella, Ferrara, and De Domenico 2018).

In this work, we aim to build a machine learning (ML)
framework over a large collected dataset, to detect bot Twit-
ter accounts. We identify and analyze Twitter bots during
the US 2020 Elections period. The current study provides
answers to the following questions:
• Is it possible to implement and fine-tune a ML-based bot

detection model to efficiently apply it to the US 2020
Elections dataset?

• Which types of features can be extracted from the Twit-
ter application programming interface (API) to promote
high performance?

• Is it possible to examine the ML model’s generalization
capability in terms of bot detection accuracy across sev-
eral well-established datasets?

• Does the proposed ML model act as a black box or could
the ML model’s mechanism be “unlocked” in order to
investigate how it yields its predictions?

Our analysis can help the research community to better un-
derstand the bot detection task and how it can be performed
in different types of datasets, or within diverse domains. The
presented methodology achieves a high bot detection accu-
racy on the US 2020 Elections dataset, while attaining in-
creased generalization performance in terms of bot identifi-
cation when applied on additional, well-established Twitter
datasets. The ML model’s outcome is also explained based
on Shapley Additive Explanations (SHAP) method.

The rest of the paper is organized as follows: Section
background explores related past works. A detailed descrip-
tion of the data collection process and the proposed method-
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ology is given in Section methodology. Section experimental
results evaluates the performance of our method, whilst in
Section conclusions and future work summarizes the main
outcomes and provides directions for future work.

Background
Twitter (social) bots can be used for malicious purposes
spanning from junk news and fake news or rumor spread-
ing (Sharma et al. 2019), to propaganda and astroturfing
(Bovet and Makse 2019; Howard et al. 2017a; Neudert, Kol-
lanyi, and Howard 2017; Howard et al. 2017b). Specifically,
an application is developed in (Hui et al. 2020) to track in-
formation spreading on Twitter and tweets and accounts as-
sociated with suspicious campaigns.

Usually, a legitimate bots’ usage is adopted, to perform
automated communication or administration during the elec-
toral periods (Howard, Woolley, and Calo 2018). How-
ever, Twitter bots have been extensively used for opin-
ion hijacking during the Russian elections (Krebs 2011;
Shane 2017; Lightfoot and Jacobs 2017; Illing 2018), the
2017 French presidential election (Ferrara 2017), the US
elections (Howard, Woolley, and Calo 2018; Byrnes 2016;
Rizoiu et al. 2018), the Catalan independence referen-
dum (Stella, Ferrara, and De Domenico 2018), as well
as in the Australian (Waugh et al. 2013), the Ukrainian
(Hegelich and Janetzko 2016) and the Brazilian electoral
processes (Arnaudo 2017). In (Luceri et al. 2019), the
authors analyze 245,000 Twitter accounts during the US
2016 presidential election and 2018 midterm elections, and
they detect approximately 31,000 bots. Forty-three mil-
lion elections-based tweets related with the ongoing U.S.
Congress investigation of Russian interference during the
2016 U.S. election campaigns are examined in (Badawy,
Ferrara, and Lerman 2018), where it is estimated that 4.9%
and 6.2% of liberal and conservative users, respectively,
were bots, with reported precision and recall scores above
90%. In (Keller and Klinger 2019), the authors provide an
analysis of the German parties’ posts on Twitter from before
and during the 2017 electoral period, revealing an increased
amount of social bots (7.1% to 9.9%).

Additional Twitter bots analysis works examine a spe-
cific consequential period in Russian politics (February 2014
to December 2015) (Stukal et al. 2017) and apply senti-
ment analysis or attempt to predict the results of the elec-
tions (Ibrahim et al. 2015; Antonakaki et al. 2017).Other
studies focusing on Twitter bots analysis include (Stukal
et al. 2017) studying a specific consequential period in Rus-
sian politics (February 2014 to December 2015) and apply
sentiment analysis or attempt to predict the results of the
elections (Ibrahim et al. 2015; Antonakaki et al. 2017).

The authors in (Garimella and Weber 2017) investigate
the political polarization on Twitter between 2009 and 2016,
with an increased polarization of 10% and 20% being re-
ported. The impact of Twitter bots during the first U.S. pres-
idential debate of 2016 is studied in (Rizoiu et al. 2018),
where a novel algorithm for estimating user influence from
retweet cascades is introduced towards analyzing the role
and user influence of bots versus humans. Moreover, a Twit-
ter data analysis has been conducted in (Fraisier et al. 2018)

related to the 2017 French presidential campaign. The au-
thors built a large and complex dataset of 22,853 active Twit-
ter profiles, during the campaign from November 2016 to
May 2017. The analysis of political discourse on Twitter in
elections dataset has been noted during the US 2016 pres-
idential elections (Yaqub et al. 2017) as well. Opinion hi-
jacking has been observed not only in politics, but also in
anti-vaccination promotion movements (Broniatowski et al.
2018). Thus, it is important to quantify the spread of fake
news on Twitter (Waugh et al. 2013) and the inherent vari-
ability (Vosoughi, Roy, and Aral 2018), in order to distin-
guish bots from human agents and legitimate users (Edwards
et al. 2014).

It is evident that Twitter bot detection is a complex task,
often requiring rigorous and solid treatment. Several ML-
based solutions have been proposed such as the BotOrNot
real-time detection system (Davis et al. 2016) using a to-
tal amount of 1200 different features in combination with
a Random Forest classifier. An updated version of this sys-
tem is described in (Yang et al. 2019) named as Botometer,
which requires Twitter API keys to collect user information
during the real-time computations, thus it is not efficient to
use real-time labeling tools in the case of big datasets. Bot-
Sentinel (Bouzy 2021) on the other hand, is a non-real-time
labeling tool, capable of processing large amounts of user
accounts and storing the results in a database. BotSentinel’s
offline labeling methodology is adopted whenever a user ac-
count is being suspended or removed, whereas real-time la-
beling does not provide any suspended account information.
Moreover, the offline implementation allows an increase in
query rate limits since it does not involve any labeling com-
putational costs.

A fundamental part of the bot detection pipeline corre-
sponds to the computation of features based on Twitter data,
and thus a plethora of different types of features have been
proposed. Various features are based on content (Ahmed
and Abulaish 2013; Gilani, Kochmar, and Crowcroft 2017;
Lee, Caverlee, and Webb 2010; Davis et al. 2016; Varol
et al. 2017), sentiment (Loyola-González et al. 2019; Dick-
erson, Kagan, and Subrahmanian 2014; Ferrara et al. 2016;
Loyola-González et al. 2019), account information (Wald
et al. 2013; Chu et al. 2012; Davis et al. 2016; Lee, Caverlee,
and Webb 2010; Loyola-González et al. 2019), usage (Chu
et al. 2012) and network characteristics (Feng et al. 2020;
Keller et al. 2017; Cresci et al. 2017).

There is a growing number of ML and data (statisti-
cal) analysis-based Twitter bot identification tools. The most
popular can be considered the Stweeler tool (Gilani et al.
2016), the Debot system (Chavoshi, Hamooni, and Mueen
2016)which takes into account synchronous bots spreading
content, the TSD Sybil Detector (Alsaleh et al. 2014) that
adopts a ML approach using 17 Twitter data-based features,
and the Retweet-Buster (RTbust) (Mazza et al. 2019) which
is an unsupervised learning tool combining feature extrac-
tion and clustering techniques.

Sentiment analysis has also been incorporated into the bot
detection pipeline (Dickerson, Kagan, and Subrahmanian
2014; Loyola-González et al. 2019). A set of sentiment fea-
tures is exploited by the BotOrNot tool in (Varol et al. 2017).
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Hashtag Tweet Counts
#VOTE 3,064,099
#Trump202 2,403,586
#Vote 2,200,954
#Election2020 1,906,959
#vote 1,838,645
#Biden 1,063,265
#Debate2020 839,717
#BidenHarris2020 781,697
#VoteBlueToSaveAmerica 746,896
#Trump 601,516

Table 1: Most popular HTs in our dataset. Tweets may con-
tain multiple HTs so that the sum of tweets is not equal to
the number of tweets in our collection.

The promising direction of ML-based Twitter bot detection
can be reflected in DARPA competition, where six different
research groups competed in performing bot identification,
using anti-vaccination campaigns Twitter data (Subrahma-
nian et al. 2016).

Methodology
Dataset
In order to capture the US 2020 elections’ Twitter dynamics
shortly before the elections day (November 3rd 2020), we
build a dataset where the most popular hashtags (HTs) re-
lated to the US 2020 elections are initially obtained. Twitter
API is used to retrieve all the tweets containing these HTs,
spanning from September 1st, 2020 to November 3rd, 2020,
resulting in a dataset of 15.6 million tweets and 3.2 million
users. The ten most popular HTs are shown in Table 1.

Twitter Users Labeling
The acquired dataset does not contain explicit knowledge
whether a user is a bot or not. Since the goal of the current
study is to provide a supervised ML-based solution for Twit-
ter bot detection, it is crucial to obtain a bot vs. normal users
labeled dataset. Unfortunately, it is not possible to collect
accurate ground truth labels without using third-party bot la-
beling tools. The typical solution of ground truth generation
corresponds to a manual/crowd-sourcing analysis, which re-
quires a thorough inspection of Twitter accounts by human
experts to identify the label of each account (via a majority
voting rule). The manual labeling process is cumbersome
due to the dataset size, potentially containing millions of
users (in our case the dataset contains 3.2 million users),
and the sophistication level of bot accounts which has risen
during the last years.

As a means of overcoming the inherent restrictions of
manual labeling, we utilize off-the-shelf ML-based tech-
niques allowing us to scale up the labeling procedure. ML
methods achieve higher accuracy in terms of ground truth
labeling as compared with the manual/crowd-sourcing anal-
ysis, since they exploit Twitter data feature representations
not evident to human experts. Here, we use the Botome-
ter (Osome 2020; Varol et al. 2017) and BotSentinel (Bouzy

Dataset

Suspended

Bot 
Sentinel

Botometer 
API

Twitter API

Bot users

Normal users

Bot users

Normal users

Figure 1: The bot vs. normal users labeling pipeline.

2021) online tools to obtain the user labeling information.
To achieve highly confident results, we combine the set of
labels provided as output by the Botometer and the BotSen-
tinel tool, respectively. In particular, we compute the inter-
section of the two label sets. The intersection contains the
labels that are equal in both label sets. The users identified
as bots unanimously by both tools are labeled in our dataset
as bots. The users identified as bots by only one of the two
tools are marked as unlabeled.

Both of the bot detection labeling tools yield an output
score for each requested Twitter account. The Botometer
score lies in the interval [0, 5], while the BotSentinel score
takes integer values in {0, . . . , 100}. The higher the output
score is, the higher the probability the requested account is
a bot. A Twitter user is labeled as bot when the Botomoter
and BotSentinel’s output score is greater than 4.0 and 75,
respectively. When the Botomoter and BotSentinel’s output
score is less than 1.0 and 25, respectively, the Twitter user is
labeled as normal.

As mentioned above, since none of the two tools guaran-
tees 100% bot identification accuracy, we aim at combining
the scores from both tools and take into consideration the
labels that are (mutually) equal. When an account is already
suspended, Botometer cannot query Twitter API, and thus
we perform a Twitter API check to identify whether an ac-
count is suspended or not.

We separate our dataset into two parts to minimize the
time complexity of the labeling process. The first part con-
tains data extracted during September 2020 and is utilized
for user labeling, ML model fine-tuning, training, validation
and testing purposes. The second part incorporates data from
October 1st, 2020 until November 3rd, 2020 and is used to
evaluate the generalization capability of the proposed ML-
based Twitter bot identification system on unseen data.

Step Bot Users Normal users Total
Before labeling 1.3M

BotSentinel 10,324 25,546 35,870
Botometer 2,180 7,267 9,447
Suspended 2,389 0 2,389

Final 4,569 7,267 11,836

Table 2: The number of users during each phase of the label-
ing of our dataset (the symbol M corresponds to million).
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Feature Type Feature Type Calculation
statuses count count screen name len count
entities count count description len count
followers count count screen name likelihood real-valued likelihood of screen name
friends count count name screen sim real-valued name and screen name similarity
favourites count count tweet retweet ratio real-valued statuses count / retweet count score
listed count count name digits real-valued number of digits in user name
name len count screen name digits real-valued number of digits in user screen name
geolocation boolean tweets by age real-valued statuses count / user age
protected boolean followers by age real-valued followers count / user age
location boolean friends by age real-valued friends count / user age
background img boolean favourites by age real-valued favourites count / user age
default profile boolean listed by age real-valued listed count / user age
verified boolean followers friends real-valued followers count / friends count

Table 3: Profile features extracted from Twitter user objects.

The dataset separation allows us to reduce the label-
ing process (computational) time without significant infor-
mation loss, since the accounts remain active throughout
the whole period of September and October. The first part
has 1.3 million users and more than 5 million tweets and
retweets, while the second part consists of 2.6 million users
and 10.6 million tweets and retweets. A subset of users re-
main active during both periods, therefore it is obvious to
notice the overlap between the two parts.

Figure 1 shows the labeling pipeline. Our dataset has 1.3
million users during the BotSentinel labeling step. Then, the
Botometer tool receives as input 35,870 users, i.e., 10,324
bot users and 25,546 normal users (see Table 2), and out-
puts 9,447 users (2,180 Twitter accounts labeled as bots and
7,267 Twitter accounts marked as normal accounts). As a
parallel step, we query the Twitter API and the response pro-
vides a set of 2,389 users labeled as suspended. Therefore,
the final labeled set has 4,569 bot users and 7,267 normal
users. Note that the overall labeling procedure is initialized
with BotSentinel, since it does not impose any daily query
limitations, in contrast with the Botometer. In the case of a
Botomoter-based initialization step, the labeling outcome of
the pipeline depicted in Figure 1 will be the same, but the
processing time will grow dramatically and will require 650
days to terminate, due to the Botometer request limitations.
In contrast, the computational time of the labeling process is
18 days if BotSentinel is used during the first labeling step.

We already mentioned that none of the existing labeling
tools provide 100% accurate ground truth labels. To quantify
the accuracy of our proposed labeling pipeline, we compare
the labeling results of our pipeline against the Twitter bot
detection algorithm after a period of six months. According
to Twitter, the number of bot accounts is 4,569 (with 51%
and 34% of the bot accounts being suspended and removed,
respectively), while 7,267 Twitter accounts are identified as
normal (with only 1.9% and 6.3% of the normal accounts
being suspended and removed, respectively). Twitter’s label-
ing mechanism incorporates a lag time, and thus it cannot be
efficiently used to compute our ground truth labels. Specifi-
cally, we manually confirm that the lag time corresponds to

approximately two months in the case of the US 2020 Elec-
tions.

Feature Extraction

Twitter API allows the collection of tweets including infor-
mation such as tweet text, tweet post time, as well as meta-
data such as HTs, URLs, and mentions. In this paper, we also
include the user profile information by retrieving user ob-
jects, where all different types of the retrieved Twitter con-
tent are utilized, leading to a total amount of 335 computed
features. The features can be divided into four categories,
namely, user profile, user context, user time, and user inter-
action.

Profile Features Twitter API retrieves user objects con-
taining critical information to achieve accurate bot identi-
fication performance. The importance of user profile fea-
tures is analyzed in various works (Chu et al. 2012; Wald
et al. 2013; Gilani, Kochmar, and Crowcroft 2017; Yang
et al. 2020). Typically, a user profile object includes user
description, username, profile picture, and profile statis-
tics (e.g., number of followers, friends, favourites, and
listed). In this paper, bot vs. normal users distinction is
promoted by enriching the features set through the extrac-
tion of profile features. For this, the user profile description
and the user/screen name digits are taken into considera-
tion. The computed user object-based features correspond
to unedited parameters such as the number of followers,
friends, favourites, lists, and description length. Flag type
elements like location usage, account description, protected
flag, geolocation usage, and background image usage are
also estimated. Additional parameters such as the Jaccard
similarity of the user and the account screen name are pre-
computed and included in the overall features set. Table 3
shows the list of the extracted feature set, where the feature
names written in italics correspond to the statistical features
described in (Yang et al. 2020) and the feature names writ-
ten in bold correspond to our proposed features leading to a
26-dimensional profile feature space.
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Feature Description
N tweet mentioned tfidf TF-IDF score of the 3 most popular user mentions contained in tweets
N tweet mentioned word The 3 most popular mentions in user tweets as word features
N tweet hashtags tfidf TF-IDF score of the 3 most popular user HTs contained in tweets
N tweet hashtags word The 3 most popular HTs in user tweets as word features
N retweet mentioned tfidf TF-IDF score of the 3 most popular user mentions contained in RTs
N retweet mentioned word The 3 most popular mentions in user RTs as word features
N retweet hashtags tfidf TF-IDF score of the 3 most popular user HTs contained in RTs
N retweet hashtags word The 3 most popular HTs in user RTs as word features
N tweet word The 3 most popular words used by user in tweets as word features
N retweet word The 3 most popular words used by user in RTs as word feature
tweet number of urls Number of URLs in tweets, computed as average and standard deviation
retweet number of urls Number of URLs in RTs, computed as average and standard deviation
tweet number of hashtags Number of HTs in tweets, computed as average and standard deviation
retweet number of hashtags Number of HTs in RTs, computed as average and standard deviation
tweet number of mentions Number of mentions in tweets, computed as average and standard deviation
retweet number of mentions Number of mentions in RTs, computed as average and standard deviation

Table 4: Context features based on user tweets and RTs crawled by Twitter API.

Context Features The user profile feature set described in
the previous Section reflects the statistics of the user’s Twit-
ter account from the first day of the subscription. However,
the profile features lack semantic information regarding the
actual content sent by the user. Thus, it is essential to incor-
porate contextual information such as user posts’ content,
most important user tweeted/re-tweeted topics, popular user
HTs, and number of URLs usage per tweet. Table 4 summa-
rizes the list of the estimated context features.

Tweet’s context characteristics provide a diverse range of
uniqueness because each user operates in a different form
of expression. To estimate the most frequent words and en-
tities, we compute a subset of the context features such as
the three most popular words, mentions, and HTs per user
(punctuation marks and stop words are removed since they
do not provide important information). For each user, we
discover the most frequent sentences (user mentions, hash-
tags, upper, and lower words). User mentions and hashtags
may provide unique information that highlights the char-
acteristics of a particular user, thus we compute the term
frequency-inverse document frequency (TF-IDF) (Rajara-
man and Ullman 2011) on the collected dataset. This allows
us to identify the importance level of the user’s hashtags and
mentions. In particular, we compute the TF-IDF of the over-
all user mentions and hashtags, and we identify the three
most frequent mentions/hashtags for each specific user. The
final step is to compute the TF-IDF based on the overall fre-
quency.

The next step includes the use of the word2vec algo-
rithm (Church 2017) to learn the word embeddings from the
obtained Twitter dataset, allowing us to transform text-based
features into a 10-dimensional space. The most frequent
words, mentions, and HTs are transformed with the trained
word2vec model. Note that the text-based features might dif-
fer between the user’s original tweets and RTs, since they are
usually written by a different user. Thus, text-based features
are computed separately for each user’s tweets and RTs.

Feature Description
daily rt RTs % each week day
daily tw tweets % each week day
daily rt tw tweets/RTs % each week day
daily retweet avg average daily number of RTs
daily tweet avg average daily number of

tweets
hourly rt RTs % of daily hours
hourly tw tweets % of daily hours
hourly rt tw tweets/RTs % of daily hours
retweet time time difference between

original tweet and user RT,
computed as min/max/avg/std

Table 5: Time-based features computed on user’s tweets/RT
objects. Min, max, avg, and std correspond to minimum,
maximum, average, and standard deviation, respectively.

Time-Based Features The automated bot accounts follow
a non-uniform time distribution activity (Zhang and Paxson
2011) due to either Twitter API time constraints regarding
tweet posts within short time intervals or as a result of the
job schedulers that invoke tasks at specific time intervals.
In addition, the automated bots follow a non-uniform activ-
ity pattern whenever scripts are scheduled to start or stop
running at the same timestamps. Thus, the automated bots
behaviour can be detected by recognizing extremely non-
uniform or highly uniform time patterns of tweet posts. On
the other hand, normal users’ tweets typically follow a diur-
nal pattern, which can be predictable for specific users. As
mentioned in (Chu et al. 2010), the human activity follows a
special pattern on Twitter since humans perform tweet posts
at specific daily time intervals, while the activity appears to
be lower during the weekends. Nevertheless, bots’ activity
pattern is more unpredictable because it does not follow the
same activity level per day. The automated behaviour of bot
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Figure 2: ML model selection pipeline.

accounts is constantly evolving, almost mimicking human
users activity, making it a challenging task to detect bot ac-
counts based solely on time-oriented features. However, due
to the fact that not all automated behaviours are similar, we
aim to compute and use time-based patterns as additional in-
put to the proposed ML pipeline in order to enhance the bot
vs. normal users detection accuracy.

In this paper, we extract multiple time-based features such
as the RT time, as well as the hourly and daily activity. Re-
garding the RT times, we compute the difference between
the original tweet and the RT time provided in the tweet
object. We also measure the RT time distribution per user,
where the minimum, maximum, average, and standard devi-
ation values of the RT time are included in the feature set.
As an account activity metric, the daily percentage of tweets
and RTs is computed (i.e., we can identify during which days
the users appear to be more active). Similar metrics are es-
timated during the active days and hours, and thus we can
identify the exact hourly intervals of the day in which the
user is vigorously posting tweets or RTs. Table 5 presents
the set of time-based features.

Interaction Features The final set of extracted features is
based on the RT network graph which models user inter-
actions. The RT graph is estimated based on the collected
dataset, with the nodes representing users and the directed
edges defining a RT action from user i to user j. The edge
weight indicates the number of RTs between the two users.
The resulted graph represents the network of the RT con-
nections in our dataset. Finally, we use Gephi (Bastian, Hey-
mann, and Jacomy 2009) to compute the node statistics such
as in-degree and out-degree of each node.

Experimental Results
In this Section, we examine the performance of our proposed
system, with respect to the resulting bot vs. normal users
detection accuracy.

ML Framework
As a main step towards building a robust and accurate ML-
based bot identification system, we perform a model se-
lection procedure by examining the bot vs. normal users
classification accuracy of several state-of-the-art ML al-
gorithms. In particular, we evaluate the performance of
Random Forest (Breiman 2001), Support Vector Machine
(SVM) (Cortes and Vapnik 1995) and Extreme Gradient

Model F1 PR-AUC ROC-AUC
XGBoost 0.919 0.967 0.979

Random Forest 0.908 0.955 0.973
SVM 0.889 0.941 0.964

Table 6: Testing accuracy during the model selection phase.

Boosting (XGBoost) (Chen and Guestrin 2016) algorithm.
Each ML method involves a different number of hyper-
parameters, and thus it is of paramount importance to fol-
low a hyper-parameter tuning procedure to identify the best
(trained) version of each ML model and promote a fair mod-
els’ comparison. Figure 2 illustrates the ML model selection
pipeline based on a combination of 80/20 train/test split (us-
ing random shuffle) and a 5-fold cross-validation scheme,
i.e., the dataset is randomly shuffled, where 80% of the
dataset is used for training/validation and the rest 20% (hold-
out part) of the dataset is exploited for testing purposes.
Each train/test split is performed in a stratified manner in
order to have the same ratio of classes in both training and
testing data. During the 5-fold cross-validation process, the
synthetic minority oversampling technique (SMOTE) using
Tomek links (Batista, Prati, and Monard 2004) is applied on
the training folds to balance the two (bot vs. normal) dis-
tributions by oversampling the minority (bot) class distribu-
tion.

Additionally, we employ feature selection based on three
different methods, namely, Lasso (Tibshirani 1994), Ran-
dom Forest feature selection and model feature importance.
Among the three feature selection methods, the model fea-
ture importance provided the features having the highest pre-
dictive accuracy (ScikitLearn 2022).

It is important to mention that some of the context features
are vectors provided by the pre-trained word2vec model.
The word2vec model provides a 10-dimensional space rep-
resentation of the text, but only a few out of the ten di-
mensions are informative for the model. For this, we keep
only the informative dimensions through the feature selec-
tion process. An example is presented in Figure 5, where
the feature “N1 retweet hashtag word 7” represents the first
most popular hashtag seen in the user retweets. According to
the feature name, the seventh element of this particular word
(embedding) vector corresponds to the most informative di-
mension.

Table 6 reports the F1 score and the two areas under
the curve (AUC) scores, i.e., the precision-recall (PR) AUC
value and the receiver operating characteristic (ROC) AUC
value, averaged over ten repetitions. It can be seen that the
XGBoost model achieves slightly better results on the test-
ing data than SVM and Random Forest. Thus, we select XG-
Boost as the basic ML model applied in the next experimen-
tal evaluation phase.

General Model Comparison
We evaluate the generalization capability of the XGBoost
model, which is already fine-tuned on the US 2020 Elections
dataset (see in Subsection ML framework), against a general
model (Yang et al. 2020) applied to detect bots on various
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Dataset # bots # normal
cavarlee 15,483 14,833
varol-icwsm 733 1,495
cesci-17 7,049 2,764
pronbots 17,882 0
celebrity 0 5,918
vendor-purchased 1,087 0
botometer-feedback 139 380
political-bots 62 0
Gilani-17 1,090 1,413
Cresci-rtbust 353 340
cresci-stock 7,102 6,174
Midterm-18 42,446 8,092
Botwiki 698 0
verified 0 1,987

Total 94,124 43,396

Table 7: Publicly available labeled datasets used for bot de-
tection performance evaluation in (Yang et al. 2020).

datasets. To perform this comparison, we collect the pub-
lic datasets provided by (Yang et al. 2020) and we perform
an experimental evaluation with similar specifications as de-
scribed in ML framework Subsection. The authors in (Yang
et al. 2020) utilize only the statistical features computed on
the user objects without exploiting any further knowledge
related with user interactions, RT times, or contextual infor-
mation of user tweets. As a result, we extract and use the
same feature set in both XGBoost and general model imple-
mentation to promote a fair comparison.

We follow the experimental strategy described in (Yang
et al. 2020). Our proposed XGBoost model is trained over all
possible combinations of publicly available Twitter datasets
mentioned in Table 7. The dataset combinations that cor-
respond to the best testing performance of each model are
presented in Table 8. The first six rows of Table 8 indi-
cate the different dataset combinations (check mark sym-
bols) used as training data by the M196, M195, U1 and U2
models. The next four rows correspond to the identification
accuracy of each model using as testing (unseen) data the
Botwiki & verified, Midterm-18, Gilani-17 and Cresci-rtbust
datasets, respectively. Note that the ROC-AUC scores over
the four datasets correspond to the M196 and M195 dataset
combinations used in (Yang et al. 2020) and to the U1, U2
dataset combinations trained by our model. The inherent in-
formation of the various combined datasets reflect the dif-
ferences between bot vs. normal users. This information can
be learned via the XGBoost model, achieving robust gener-
alization capabilities.

The best ROC-AUC scores are achieved by our XGBoost
model when using as training data the dataset combina-
tions U1 (varol-icwsm, pronbots, botometer-feedback) and
U2 (varol-icwsm, pronbots, botometer-feedback, political-
bots). Table 8 also reports the best ROC-AUC scores
achieved by the Random Forest model in (Yang et al.
2020) utilizing as training data the dataset combina-
tions M196 (varol-icwsm, cesci-17, celebrity botometer-

Dataset M196 M195 U1 U2
varol-icwsm • • • •

cesci-17 • •
pronbots • •
celebrity • •

botometer-feedback • • • •
political-bots • •

Botwiki & verified 0.99 0.99 0.978 0.978
Midterm-18 0.99 0.99 0.954 0.951

Gilani-17 0.68 0.69 0.75 0.745
Cresci-rtbust 0.60 0.59 0.63 0.614

Average ROC-AUC 0.815 0.815 0.828 0.822

Table 8: Training dataset combinations and performance re-
sults between our XGBoost model and the method described
in (Yang et al. 2020).

feedback, political-bots) and M195 (varol-icwsm, cesci-17,
celebrity botometer-feedback).

The results clearly indicate that our fine-tuned models (U1
and U2) achieve better results when compared with the gen-
eral models (M195 and M196) in (Yang et al. 2020), as re-
flected on the average ROC-AUC scores. According to the
best performance (U1 model) across the different datasets,
the ROC-AUC values range from 0.97 to 0.63. In order to
identify how the U1 and U2 trained models will perform on
the US 2020 Elections dataset, we measure the ROC-AUC
score for these two models. The models U1 and U2 achieved
0.609 and 0.618 ROC-AUC, respectively. For this purpose,
we provide the performance of the model trained directly on
the US 2020 Elections data.

Statistical vs. Context Features
We compare the proposed XGBoost model with the model
introduced in (Yang et al. 2020) in light of the statistical fea-
tures set. The authors in (Yang et al. 2020) exploit only the
statistical features set. To promote a fair models’ comparison
we use the statistical features alone, including the number of
followers, listed, favorites, and friends, as well as the com-

Feature set Number of features
Statistical 6

Statistical General only 20
Context 204

Time 99
Graph 6
Total 335

Our model 228

Table 9: Number of features extracted by each feature cat-
egory from the US 2020 Elections dataset. The statistical
general set is a subcategory of the statistical features. For
this reason, the statistical category above contains 6 unique
and 20 features from the statistical general only feature cat-
egory.
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Figure 3: Mean PR curves: multiple types of features com-
pared against our selected features.

putation of the growth rate based on the user account age,
the number of digits in the screen name, and the account
screen name likelihood. The extracted set of features do not
contain semantic information related with the posts content.
The rest of the feature types described in Section feature ex-
traction are utilized separately in our model during the train-
ing and validation steps. Each feature category presented in
Table 9 is used separately and compared to each category’s
performance against PR and ROC curves with the features
described in (Yang et al. 2020), as well as the best features
that are selected by our model. Figure 3 presents the preci-
sion vs. recall performance of those features, with separate
information of F1-score of the hold-out dataset portion. Fig-
ure 4 illustrates the ROC-AUC curve and the corresponding
AUC score for each feature set. According to the ROC-AUC
performance model, utilizing a mixture of multiple features
with proper feature selection results in a better ROC-AUC
performance model, since each feature set contains critical
information for the model.

Generalization Performance: US 2020 Elections
Dataset
The combination of multiple features provide the best bot
identification accuracy as it is experimentally evaluated in
Subsection statistical vs. context features, where the number
of multiple combined features is 228. We use this set of fea-
tures to investigate the generalization capability of our XG-
Boost model on the US 2020 Elections dataset. In particular,
we divide the US 2020 Elections dataset into two parts as
mentioned in Subsection twitter users labeling, i.e., the first
part corresponds to the time interval between September 1st
and September 30th, while the second part corresponds to
the interval between October 1st and November 3rd. The
experimental specification is the same as that adopted in

Figure 4: Mean ROC curves: multiple types of features com-
pared against our selected features.

Subsection ML framework. The only difference is that the
train/test split now is 70/30, where 70% of the September
dataset is used for train/validation of the XGBoost model,
while the rest 30% is used for testing with the F1 score equal
to 0.916 and the ROC-AUC score is 0.98. The difference be-
tween these results and the ones depicted in Figure 3 is due
to the random data shuffling. The second dataset (October
1st to November 3rd) is also used as testing data in order
to evaluate the bot identification performance of the already
trained (on the 70% data of September) XGBoost model on
unseen data that correspond to an extended time horizon.
The XGBoost model achieves an average of 0.896 F1 score
and 0.977 ROC-AUC. The aforementioned results clearly
indicate that our proposed ML model achieves impressive
generalization capabilities by identifying bot accounts on fu-
ture data based on past training samples.

Model Explainability
One of the ultimate goals of the current paper is to “unlock”
the proposed ML model mechanism in order to better under-
stand how the model yields its predictions. We use SHapley
Additive exPlanations (SHAP) values proposed in (Lund-
berg and Lee 2017) since they present several advantageous
characteristics. First and most importantly, SHAP values are
model-agnostic, i.e., they are not bound to any particular
type of ML model. Secondly, SHAP values present proper-
ties of local accuracy, consistency, and missingness, which
are not found simultaneously in other methods. Lastly,
SHAP implementation is actively supported by an open-
source community1, it is well documented and straightfor-
ward to use.

Before proceeding to the SHAP values explanation, let us
first, provide a description of the concept of Shapley value.

1https://shap.readthedocs.io/
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More specifically, Shapley introduced a game-theoretic ap-
proach for assigning fair payouts to players depending on
their contribution to the total gain (Shapley 1953). Within
a predictive modeling task, this translates to assigning an
importance numerical value to features that depend on their
contribution to a prediction. Thus, in the predictive ML con-
text, a Shapley value can be defined as the average marginal
contribution of a feature value across all possible feature
coalitions. Based on this definition, a Shapley value for a
given feature can be interpreted as the difference between
the mean prediction for the whole dataset and the actual pre-
diction.

The Shapley values are represented as a linear model of
feature coalitions by the SHAP method (Lundberg and Lee
2017). SHAP values exploit the game theory’s Shapley in-
teraction index, which allows allocating payouts, i.e., impor-
tance, not just to individual players, i.e., features, but also
among all pairs of them. As a result, SHAP values can ex-
plain the modeling of local interaction effects, and allow the
possibility of providing new insights into the ML model’s
features.

Figure 5 shows the summary plot for SHAP values re-
lated with the features extracted from the US 2020 Elections
dataset. The top twenty features with the highest impact at
the XGBoost model’s output are depicted. For each feature,
one point corresponds to a single Twitter user. A point’s po-
sition along the x-axis (i.e., the actual SHAP value) repre-
sents the impact that a feature had on the model’s output for
that specific Twitter user. Mathematically, this corresponds
to the malicious behaviour risk relative across Twitter users
(i.e., a Twitter user with a higher SHAP value has a higher
risk being malicious relative to a Twitter user with a lower
SHAP value). Features are arranged along the y-axis based
on their importance, which is given by the mean of their ab-
solute Shapley values. The higher the feature is positioned
in the plot, the more important it is for the XGBoost model.

Figure 5: US 2020 Elections dataset: summary plot for
SHAP values. The top twenty features with the highest im-
pact at the XGBoost model’s output are depicted.

A further analysis of the results in Figure 5 indicates that
the top twenty features with the highest impact on the XG-
Boost model’s output correspond to statistical, time, and
graph-based features. In particular, features such as Twit-
ter lists and average number of mentions in user tweets ap-
pear to have a high impact in XGBoost model’s output. We
expect that a combination of features with the highest out-
put impact could provide the best possible bot identification
performance. This statement can be confirmed by the re-
sults mentioned in Subsection generalization performance:
US 2020 Elections dataset.

Based on the SHAP values summary plot depicted in Fig-
ure 5, it is obvious that “listed count” corresponds to the
feature with the highest impact at XGBoost model’s bot vs.
normal user detection. As shown in Figure 5 bot users tend
to not belong to Twitter lists, whereas normal users could be
members of more than one list. We can also deduce that bot
users have lower values of “favourites by age” (also known
as likes), which means that bot users tend to ignore the like
button of other users’ posts. This could be explained by the
complexity of bot account implementation. Finally, we no-
tice that bot users have high values of “friends by age” fea-
ture, which means that they tend to connect to more accounts
within a short period of time. This activity is obvious since
bot accounts try to gain high visibility and expand to larger
parts of the Twitter network. Presented explanations confirm
our initial intuitive explanations regarding the difference be-
tween normal and bot accounts activity.

Conclusions and Future Work
This paper introduces a novel methodology based on a su-
pervised machine learning (ML) framework for identifying
bot vs. normal Twitter users by extracting a wide range of
features. Specifically, the proposed system incorporates the
extraction and labeling of multiple features, with the ground
truth labels estimated through the combination of two online
bot detection tools’ output. Following a thorough ML anal-
ysis involving train/validation/test split, feature selection,
oversampling, and hyper-parameters tuning, we establish the
Extreme Gradient Boosting (XGBoost) algorithm as the best
ML model along with a specific set of features. The selected
XGBoost model when trained on a wide range of combined
features spanning from profile and context features to time-
based and interaction features achieves the highest bot de-
tection accuracy.

The generalization capability of the proposed ML system
is extensively examined through an experimental evaluation
process, and compared with a recently introduced general
model (Yang et al. 2020). Finally, the obtained explanations
revealed meaningful insights from a Twitter data analysis
point of view about the reasoning process behind the XG-
Boost model’s decisions. Future work concerns the exten-
sion of the proposed methodology by performing text anal-
ysis on the tweet corpus posted by the bot users in order to
identify the shared type of content during the US 2020 Elec-
tions period.

The code and the employed datasets are available in a
GitHub repository (USBotDetection 2022).
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