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Abstract

Numerous applications capture in digital form aspects of peo-
ple’s lives. The resulting data, which we call Personal Digi-
tal Traces - PDTs, can be used to help reconstruct people’s
episodic memories and connect to their past personal events.
This may have several applications, from helping the recall
of patients with neurodegenerative diseases to gathering clues
from multiple sources to identify recent contacts and places
visited – a critical new application for the recent health cri-
sis. This paper takes steps towards integrating, connecting
and summarizing the heterogeneous collection of data into
episodic narratives using scripts— prototypical plans for ev-
eryday activities. Specifically, we propose a matching algo-
rithm that groups PDTs from many different sources into
script instances (episodes), and we provide a technique for
ranking the likelihood of candidate episodes. We report on
the results of a study based on the personal data of real
users, which gives evidence that our episode reconstruction
1) integrates well PDTs from different sources into coherent
episodes, and 2) augments users’ memory of their past ac-
tions.

Introduction
Memory plays a fundamental role in life and is critical to
our everyday functioning. We use memories to maintain our
personal identity, to support our relationships, to learn, and
to solve problems. Various new technologies and applica-
tions make it possible to digitally capture a huge amount of
personal data about every aspect of our lives, such as digital
communications we have with friends, events we participate
in, trips we make and every piece of digital data we ever cre-
ate. Our actions result in a multitude of PDTs, kept in vari-
ous locations in the cloud or on local devices: messages and
emails, calendars, location check-ins (e.g. Facebook Places,
GPS tracker), online reservations (e.g. Opentable, Ticket-
master), reviews (e.g. Tripadvisor, Yelp), purchase history
(e.g. credit card statements), photos, etc. Like a “memex”,
as envisioned by Vannevar Bush (Bush 1945), this personal
data collection can help considerably in remembering ev-
eryday events. For example, users could use connections in
their data to quickly retrieve digital artifacts, such as minutes
from a meeting, pictures from a birthday party, the expense
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report from a trip, or to help them recall specific memories,
such as the names or even faces of people they interacted
with, perhaps years ago.

Furthermore, the recent health crisis has highlighted the
need for discovering the whereabouts and interactions of
people to enable contact tracing. Specifically, contact trac-
ing is an investigative, often laborious process, that involves
public health officials interviewing a subject to reconstruct
their activities to identify everyone they have been in contact
with (Eames and Keeling 2003; Kiss, Green, and Kao 2005;
Huerta and Tsimring 2002; Organization et al. 2015)1. How-
ever, traditional contact tracing is a time-consuming pro-
cess, depending solely on users’ memories. There is evi-
dence (Bradburn, Rips, and Shevell 1987) that humans find it
hard to encode and retrieve routine experiences. This makes
recalling information about where and with whom they have
been a challenge. However, this kind of information is being
continually recorded (actively or passively) by their digital
devices, and could be leveraged to help users recall past ac-
tions. For example, a system could help users reconstruct
from PDTs the people they have eaten lunch with, the times
they went to a grocery store, and the transportation they
took.

There has been extensive research in the area of life-
logging, pioneered by (Gemmell, Bell, and Lueder 2006),
where the vision is to enable “total recall” of our lives
through “total capture” of personally relevant information
(Bell and Gemmell 2009; Czerwinski et al. 2006). Such in-
formation includes the PDTs we work with: emails, instant
texts, web sites visited, bank transactions, etc., as well as
other data, such as images, video, and location data. This
vision has its detractors (Sellen and Whittaker 2010), who
argue that rather than storing a complete lifelog, systems
should focus on selecting effective retrieval cues to jog user
memories, with the goal of deriving meaning from the col-
lected data.

This work takes steps towards supporting human memory
through episodic narratives, an idea based on psychology

1Much has been reported recently about “digital contact tracing
systems” (Google 2020; Raskar et al. 2020). These are exposure
alerting systems that notify users if they were potentially in contact
with an infected individual. Exposure alerting and traditional con-
tact tracing go hand in hand in the fight to decrease the spread of
COVID-19.
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and cognitive science. More specifically, the literature on the
psychology of human memory indicates that people have
two different kinds of memory: “semantic” and “episodic”
memory (Tulving 1972; Conway and Rubin 1993). Seman-
tic memory refers to general knowledge of the world (e.g.,
you have to pay when buying something) whereas episodic
memory refers to the capacity to re-experience specific past
episodes (e.g., the occasion you went out to dinner to cele-
brate your 40th birthday).

We combine representation of both semantic and episodic
memory in order to help users recall information of past
events. Our approach aims to organize PDTs into episodes,
while automatically extracting information about the rele-
vant people and context. This organization will allow creat-
ing a personal knowledge base, which users may query to
remember a particular event. In addition, our approach aims
to provide users with a narrative, which can subsequently be
viewed to stimulate memory; this could be particularly use-
ful in a variety of situations, such as for patients with mem-
ory difficulties. We believe that our approach will help users
recollect aspects of past experiences that have been forgot-
ten, and thereby form a powerful retrospective memory aid.

In this paper, we propose an approach to integrate PDTs
from various sources into coherent episodic narratives in or-
der to support human memory. Our approach is centered
on the use of so-called scripts, first introduced by (Abel-
son and Schank 1977). Script definitions model dynamic
aspects of semantic memory. The paper reviews our con-
ceptual model for describing entities (including PDTs) and
scripts, and presents a matching algorithm that groups het-
erogeneous PDTs into candidate script instances (episodes).
The PDT types include emails, posts on social media, bank
transactions, photos, calendar and location data, etc. Such
information can be found in files or extracted through ser-
vice APIs.2 The prototypical and non-prescriptive nature of
scripts and the sparseness of evidence for each episode lead
us to a new, bottom up merging algorithm for episode recog-
nition. This also utilizes a scoring scheme to account for the
varied strength of evidence provided by PDTs (e.g., email
text vs payment) or script steps. Finally, we report on the
results of our approach to episode reconstruction for the
EatingOut script based on personal data of real users and
we show that our approach can successfully integrate PDTs
into script instances, and augments users’ memory of their
past actions, even if these happened less than a month ago.

Personal Data Integration
One of the main challenges in integrating PDTs lies in the
fact that data is scattered over many disparate sources, with
different data models. To overcome this fragmentation and
heterogeneity, one needs a formal conceptual model to rep-
resent personal data.

2We immediately acknowledge the sensitive nature of this in-
formation, and the very important privacy issues that they raise. In
our current work, all information obtained resides on an individ-
ual’s own mobile phone. Users just give Yes/No answers in exper-
iments, without disclosing personal information.

Figure 1: Simplified Facebook post analyzed according to
the w5h model

According to the Cognitive Science and Psychology lit-
erature, a natural way to remember past events is by any
pertinent contextual information, which includes answers to
the “what, who, where, when, why, how” (w5h ) questions
(Schacter 2002). For example, if you try to remember the
name of a restaurant you visited, questions like “When did
I go to that restaurant?” and “Who was with me?” will be
helpful (Jones 2007).

Our prior work (Vianna et al. 2014) on modeling per-
sonal data defined the w5h model, which interpreted the
six contextual dimensions as follows: What (content), Who
(with/from/to whom,...), Where (physical or logical), When
(time and date, but also what was happening concurrently),
Why (goals, and sequences of events that are assumed to
be causally connected), How (application, author, environ-
ment).

Figure 1 presents a PDT from a Facebook post, with each
piece of information assigned to one of the six proposed di-
mensions. Information from an e-mail, say, would also be
represented using w5h (e.g., from, to, cc, would be part
of the Who for the email). In both cases, this information
can be represented in an ontology-language like OWL using
entities and properties both organized in subsumption hierar-
chies. For example, from and with tags would be sub-
properties of who for Facebook posts. The mapping from
each source to sub-properties of w5h is performed by code
requiring an understanding of that service’s API.

In addition, since our work focuses on enhancing users’
memory of their activities, it is also necessary to have a con-
ceptual model for events, both atomic and complex. For this
purpose, we adopted the model we proposed in (Kalokyri
et al. 2017b). Recall that our goal for using scripts is to or-
ganize PDTs, abstract out relevant information, and help hu-
mans remember their events. An example of a script would
be “Going out to eat at a restaurant”. This script would de-
scribe possible “event flows” as shown in Figure 2. The
kinds of steps (atomic actions or sub-scripts) comprising a
script, and their partial order, are common-sense knowledge
we humans learn throughout our lives; e.g., the fact that eat-
ing out requires, among others, organizing the outing, pos-
sibly making a reservation, getting to the restaurant, pay-
ing for the meal, etc. These actions often leave PDTs, which
provide evidence for that particular event. For example, or-
ganizing the outing (e.g., via emails/text messages), possibly
making a reservation (e.g., via OpenTable, which confirms
by email), getting to the restaurant (e.g., using Uber, which
leaves both a payment trace and an email confirmation), pay-
ing for the meal (e.g., with a credit card), etc. However, not
every step occurs every time one goes out to eat (e.g., some
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Figure 2: EatingOut script with possible event flows

Figure 3: Definition of EatingOut and GroceryShopping
scripts

restaurants do not require or even accept reservations), the
order of some steps is not fixed (pay before or after eating),
and even more importantly we may find no digital evidence
of some steps (e.g., when paying by cash). Since many/most
steps of an episode do not leave PDTs, and since scripts
only describe prototypical ordering and occurrence of its
parts, we do not follow top-down or grammatical approaches
to plan recognition, (e.g. as in (Geib and Goldman 2009)),
but instead propose a bottom up approach, where we create
partially instantiated scripts using individual PDTs as evi-
dence, and then merge compatible instances, accumulating
information about it and strengthening evidence for it. This
applies to any type of script that the system is told about:
“Shopping at the supermarket”, “Visiting a doctor”, “Going
on a trip”, etc.

Scripts have properties describing: (i) their goal (for pur-
poses of human explanation); (ii) summary information of
the participants in the plan, as well as other descriptive prop-
erties, especially w5h aspects; (iii) component sub-scripts
and atomic actions; (iv) information about (dis)allowed se-
quencing and timing of sub-scripts/atomic actions. Items
(iii) and (iv) describe how the script achieves its goal, and
make scripts resemble prototypical workflows.

In the next section, we describe the algorithm for creat-
ing episodes (instances of scripts) that a user may have been
involved in, based on the PDTs in the user’s database.

Algorithm for Episode Recognition
Our algorithm (see Algorithm 1) starts with the script S we
are interested in recognizing, and a large set P of PDTs. Our
goal is to create candidate episodes (instances of S) that the

Figure 4: Definitions of the AttendEatingOut sub-script and
the parametric MakeAPayment<T>, GoToPlace<T> sub-
scripts.

user may have been involved in, and relate them to the PDTs.
Script Syntax: A script specification consists of a top-

level (outer) script (e.g. EatingOut script), which we want
to instantiate, several sub-scripts and atomic actions, as well
as sequencing relationship among them. In addition, every
script should contain its w5h properties. Figure 3 shows
examples of the EatingOut and the GroceryShopping script
definitions. Both have local w5h properties, and a body
of sub-scripts (in colored font) and atomic actions. Fig-
ure 4 shows some sub-script definitions: AttendEatingOut,
MakeAPayment<T>, and GoToPlace<T>. All (sub)scripts
and atomic actions have their own w5h properties declared
in their definition. For instance, the EatingOut script has
w5h properties like whoAttended, whereEatingOccured,
and whenEatingOccured.

Note that some sub-scripts, such as MakePayment and
GoToPlace, are parametric/generic, and are used in multiple
places. The argument replacing the formal parameter can be
used as in procedures, searching text for a string for exam-
ple, or the script is written as a case-statement, based on the
parameter value; this offers a way to organize and reuse the
code for scenario recognition for different scripts.

Now, consider a script that a person has been engaged in,
e.g. EatingOut. This script has many events (e.g. invite peo-
ple, discuss the specifics, make a reservation, go to the place,
pay the bill, post photos, etc... ). Some of these events pro-
vide strong evidence that the person was actually engaged in
this script episode. For example, a payment to a restaurant
is a strong evidence that the person actually went to it. In
contrast, an email mentioning “dinner” or “lunch” is much
weaker evidence for planning to go out to eat, and in turn this
activity is weaker evidence for having gone out, since the
plan may not have been completed, or the event cancelled.
Our algorithm uses this idea of strong and weak evidence to
rank candidate instances of scripts.

We collect information about strength of evidence the
same way we collect commonsense knowledge about the
events in a given scenario. We do not see a chance for “ob-
jective” ways to score an evidence, as by definition, scripts
are imprecise pieces of commonsense knowledge describing
some stereotypical human activity, and shared between the
members of the same culture.
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Algorithm 1: Algorithm for constructing instances of script S
Input: := script definition S; set P of all PDTs
Output: := set Candidates of script instances

1: D := PDTs with evidence of being a potential instance of script S; [†]
2: OneStepEpisodes = {};Candidates = {};
3: for each d ∈ D do [††]
4: cd := new instance of script S, based on d;
5: cd.score := assign score based on strength of evidence;
6: cd.w5h := extract w5h information from d and add it to cd;
7: OneStepEpisodes.add(cd)

8: for all c ∈ OneStepEpisodes do [†††]
9: for all e ∈ Candidates do

10: if c can merge with e then
11: e := combine c with e, including score and w5h;
12: if c not merged then
13: Candidates.add(c)

14: Use details of script S to look for additional PDTs d that could be relevant to instances in Candidates and repeat [†††] ;

Figure 5: Declarative evidence for the EatingOut script.

The declarative description of evidence strength is il-
lustrated in Figure 5. Strong evidence usually includes
occurrence of the goal event (AttendEatingOut in this
case), which may in turn have its own strong evidence
(MakePayment<restaurant>). An example of weak evi-
dence event in this case is InitiateGoingOut<restaurant>.

[†] Retrieving document set D indicating script in-
stantiation: After parsing a script, the next step is to find
the set D of documents that provide evidence that an in-
stance of it has taken place. We gather PDTs from vari-
ous sources using the extraction tool proposed in (Kalokyri,
Borgida, and Marian 2018), and use them as “(noisy) sen-
sors” indicating the possible occurrence of corresponding
(sub)scripts/atomic actions for which there is strong evi-
dence of having occurred.

For retrieving documents that correspond to an occur-
rence of some evidence, we must then identify the clues to
search for in the documents. These clues are either verbs to
search for (e.g., “eat”, in an email, for identifying Initiat-
eGoingOut <restaurant>) or specific attributes, and meta-
data that a document may have (e.g., the category in a
bank statement should be “Restaurant” vs “Supermarket”
for finding evidence for the makePayment<restaurant> vs
makePayment<supermarket>). In order to make this easily

replicable for various scripts, we consider the w5h partic-
ipants of this script/atomic action, or more specifically its
FrameNet frames (Fillmore, Johnson, and Petruck 2003).
Then, we use standard sources of synonyms and hyponyms
like WordNet and ConceptNet5 (Miller 1995; Liu and Singh
2004) in order to find additional words to search for. The
words/phrases in the above generated lists are stored in a
text file and are used to retrieve all potentially relevant doc-
uments (KEYWORDS FILE).

Figure 6: Declarative Definition of the Clues for the make-
Payment and initiateGoingOut scripts.
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The result is a list of terms to search for. For EatingOut,
the list includes terms like “breakfast”, “lunch”, “dinner”,
and “restaurant”, plus hyponyms. Figure 6 shows two ex-
amples for the clues to search for in the documents, for the
MakePayment and the InitiateGoingOut sub-scripts for the
restaurant script. In the former, the values to search for are
based on the metadata of the document, whereas in the latter
script, the KEYWORDS FILE corresponds to the list of terms
produced with the process described above.

We point out the ease of extending the system to recog-
nize new scripts. For example, for makePayment<hotel>,
one would just change the value “Hotel” for the key “cate-
gory” of a bank transaction; for initiateGoingOut<theater>,
one would specify a KEYWORDS FILE starting from “the-
ater” and having terms extracted from WordNet, Concept-
Net, etc. The rest of the algorithm remains the same, since
the queries for retrieving relevant documents are based on
this declarative definition of the clues.

Finally, the set of documents D is pre-processed by: (i) ex-
plicating information (e.g., terms like “tomorrow”, “on Fri-
day”, are made absolute dates using the Natty date parser
(Stelmach 2016)); (ii) performing entity resolution for peo-
ple and places (who and where dimension) using Stanford’s
Entity Resolution Framework (Benjelloun et al. 2009); (iii)
grouping certain kinds of documents (e.g., related email
threads, or related sequences of tweets) into a single indi-
viduals d in D; (iv) finding the places/venues that the user
has visited from the geo-location coordinate history (gps)
(Li et al. 2008).

[††] Creating initial script instances cd: Each document
d in D instantiates the corresponding atomic action/sub-
script, which leads to the creation of a candidate instance
of the outer script S in a bottom-up fashion. In addition, ev-
ery w5h property is propagated from the document into the
atomic actions and then into the script hierarchy above.

[†††] Merging script instances: A distinctive feature
of our system is the presence of multiple sources of evi-
dence for the same script instance. In order to merge them
and find what they correspond to in the real episode, ev-
ery script needs to have ”keys”, a rating of how well w5h
(sub)properties identify instances. For EatingOut, keys are
whereEatingOccurred, whenEatingOccurred, and, to a lesser
extent, who. The what and how properties of this script are
not important because they would often lead to incorrect
merging (e.g., two instances of eating sushi (what) need not
be merged). However, for other types of scripts, e.g. Go-
ingToDoctor script, ”what” is more important than when
and where (i.e. we would want to merge all the times we
went to a doctor for a specific issue/disease (what)). Since
every script can have different keys, this has to be explic-
itly mentioned in the algorithm. This information can be ac-
quired by commonsense acquisition knowledge techniques.
When two instances share the same/similar “keys” (some
keys, such as time and place can be assessed for similar-
ity using distance) they become candidates for merging.
For merged pairs, the w5h property fillers are unioned,
and the score for the merged instance is computed, using
Hooper’s rule (Shafer 1986) for combining probabilistic ev-
idence: score(e) = 1−(

∏
e∈Candidates 1−score(e)) where

score(e) is the score for the merged instance e.
Note that the above cannot be done in a single step: having

established that a script instance is occurring with a certain
degree of certainty, additional PDTs can be gathered as part
of the instance when examining the script definition. For ex-
ample, an Uber receipt might be added to the script instanti-
ation as a result of the “GoToPlace<restaurant>” sub-script
once an instance of EatingOut has been created. Note that
this sub-script could not initiate on its own an episode of
EatingOut, since Uber receipts can be part of many different
kinds of episodes if we don’t know the precise destination.
As part of future work we plan to dynamically learn the scor-
ing function based on user’s data and relevance feedback.

Complexity Analysis
The complexity of the first part (†), is essentially
the complexity of optimized database search for clues
to every (sub)script step, whose “data complexity” is
O(log size(P )). If n = size(D), then part (††) is O(n).
In the worst case, (†††) fails to merge anything at each
iteration, so all pairs of original OneStepEpisodes from
(††) are compared, resulting in O(n2) work. Note that n is
much smaller than size(S) (e.g., from our previous study
(Kalokyri et al. 2017a), size(P ) = 5, 282, whereas n =
109).

Script Acquisition
Scripts are a form of commonsense knowledge, which is
seen to be at the frontier of AI/NLP (Sap 2020). There has
been extended literature in the field, such as acquiring com-
monsense knowledge from the general public (Singh et al.
2002), the use of games for that purpose (Von Ahn and
Dabbish 2008), and the use of crowdsourcing (e.g. (Wan-
zare et al. 2016) gathers data for 13 scripts and attempts to
align each set semiautomatically). Each of us is capable of
providing a first pass at partially-ordered steps required to
visit a doctor, say, but it is more work to find PDT evidence
(strength) for the steps, and much harder to be comprehen-
sive. We have experimented with Mechanical Turk crowd-
sourcing for this, but script acquisition is the focus of sep-
arate work (see (Wanzare 2020) and references therein for
earlier work in the field) and is beyond the scope of this pa-
per.

Generalizability
In addition to acquiring new scripts, we are also work-
ing on developing families of related scripts by incremen-
tally modifying more general scripts through inheritance:
e.g., from GoingOut4Entertainment to GoingOutRestau-
rant, GoingOutSportsEvent, GoingOutTheater, etc. (e.g.,
(Borgida, Kalokyri, and Marian 2019)). A contribution of
this paper is a software architecture which supports sys-
tematic and declarative construction/extension. Topics men-
tioned include: (i) scripts being parametric/generic: The
parameter can be used as in procedures, searching text
for a string for example, or writing the script as a case-
statement, based on the parameter value. (ii) suggested stan-
dard sources of synonyms and hyponyms (e.g., WordNet,
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ConceptNet5) for signaling words; (iii) proposed use of
FrameNet to determine w5h participants of events and to
find additional search words; (iv) declarative representation
of evidence to look for in an episode (Fig. 5) and (v) declar-
ative definition of the clues to search in PDTs (Fig. 6).

Experiment Design
To evaluate the efficacy of our approach we ran experiments
on real users’ data, where our goal was to find instances of
them going out to eat at restaurants. We used this script ex-
ample because it generates a variety of PDTs, and is similar
to many other entertainment scripts such as going to a the-
ater, going to a concert etc. It is important to mention that
performing experiments on Personal Data is difficult due to
the sensitive nature of the data, the difficulty of getting per-
sonal datasets as well as having a baseline for comparisons.

For this reason we developed a mobile app [publicly avail-
able3] which users are able install on their devices and which
can also be used for future research purposes. Note that we
did not have access to the users’ data. The users just reply
Yes/No answers without disclosing any personal informa-
tion. The tool is made for Android 7.0 version or later and
the PDTs collected are from the following services:

• Messaging: Messenger, Phone text messages
• Social Media: Facebook, Instagram
• Email: Gmail
• Calendar: Google Calendar
• Financial Data: Plaid API, directly downloaded .csv files

from bank institutions
• Location Data: Google Maps location history, GPS data
• Photos: Google Photos

Procedure
We recruited participants using flyers and email lists at Rut-
gers University. We required the participants to be at least 17
years old, to be active Android users, and to communicate in
English. The participants were compensated with cash for
completing the whole study. The study was approved by the
Rutgers University IRB committee.

Prospective participants interested for our study had to
sign up and take a survey in order to assess their familiarity
and usage with the services supported by our application, as
well as if they were active users (as concerning going out to
eat at restaurants). They were asked to reply through a Likert
scale (1-5) and full text answer about:

• how much they think they use each of the services that
the app supports

• how often they go out to eat at restaurants per month
• what services/apps they use to make plans to go out

to eat, make reservations, get reminded of outings, pay
and checking in at restaurants (i.e. the sub-scripts of the
EatingOut script)

• which services they are willing to give access to the app.

3https://github.com/yourdigitalself

We received 42 responses in total. Figure 7 shows the dif-
ferent sources reported by users for the five main sub-scripts
of EatingOut. A first observation is that users clearly behave
differently. Most use either plain text messages or phone
calls to arrange to go out to eat. Other users use Messenger,
Instagram messages or emails in order to communicate with
their friends concerning this matter, and a smaller percent-
age uses Snapchat, Whatsapp and Groupme. On the other
hand, users seem to agree in the way they make reservations
(by phone) and pay at restaurants (with credit card or cash).
In addition, users seem to not write down their restaurant
outings in a digital form. Finally, they seem to use many dif-
ferent sources for letting their friends know that they are at
or went to a restaurant. The majority claims they use Insta-
gram first and then Facebook, whereas 31% claims that they
do not use any online service.

These results show that looking at several sources of
PDTs to identify script instances for a given user is critical,
and that any approach to retrieve user memories must con-
sider multiple sources of PDTs to adapt to the wide variety
of user behaviors.

Experimental Setup
Out of the 42 recorded responses, we selected 16 partici-
pants for an in-depth study. Participants were selected based
on their interest, willingness to use the app, use of services
included in the app, and frequency of restaurant outings (at
least 5 per month). Out of the 16 participants, 9 were male
and 7 female, between ages 19 and 49, and the study was car-
ried out with one month’s data. The steps that we followed
were the following:

1. Before the experiment, we asked participants to try to re-
member the occasions of them going out to eat at restau-
rants and then carefully go over their past month’s digi-
tal information, and add any missing outings, including
name of the restaurant – where, date they went – when,
with whom they went – who. We used this information
as a proxy for recall.

2. We introduced the participants to the experiment, and we
installed the app on their phone.

3. Participants were asked to give permission to the app to
download one month’s PDTs of services they wanted.

4. Participants were shown all candidate script instances of
them going out to eat at restaurants, and had to indicate
Yes/No for each of the instances, with further Yes/No
questions as follows:

• Yes: evaluating the w5h information deduced
1. Who: All the identified people are correct, but
there are some people missing.
2. Who: Some of the identified people are incorrect.
3. Who: All the identified people are incorrect.
4. When: The date identified is wrong.
5. Where: The place name is wrong.
6. Other. Please specify.

• No: choose a reason why not.
1. This is not a restaurant.
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Figure 7: Sources used by users for the EatingOut script. Top-Left:Make plans to go out eat, Top-Right: Let friends know that
they are at a restaurant, Bottom-Left: Make reservations at restaurants, Bottom-Middle: Get reminded of restaurant outings,
Bottom-Right: Pay at restaurants

2. Take out order at that restaurant.
3. Someone else went to that restaurant.
4. It is a restaurant but I didn’t go there to eat.
5. Other. Please specify.

5. We uninstalled the app from the users’ phones and de-
stroyed the associated data.

6. We asked participants’ opinions and comments at the end
of the experiment.

Experimental Evaluation
We now detail the results of our evaluation, looking at the
quality of the script instance recognition.

We evaluate our matching algorithm and scoring function,
by reporting two kinds of results: (1) how well our approach
recognized script instances, and (2), how well it recognizes
and abstracts When, Where and Who information from sub-
scripts and atomic actions into the (outer) script instance.
For both cases, we report two different kinds of relevance:
1. Binary Relevance

• A proposed script instance is judged relevant if the
user did go out to eat at a restaurant, even if the w5h
information was only partly correct. Cases like take-
out were counted as false positives in this experiment.

• Each w5h information is judged relevant if it is ex-
actly correct (subset or superset does not count). For
example, if in the Who dimension only a subset of
people that attended is recognized, then this would be
irrelevant.

2. Graded Relevance
A proposed script instance is:

• Exactly relevant: when the user actually went out to
eat at that restaurant.

• Relevant but too broad: when a restaurant outing is
identified, but the user didn’t go there to eat (e.g. went
for dancing, just hanging out with a friend etc).

• Relevant but too narrow: when a restaurant outing is
identified, but the user didn’t stay at the place to eat
(e.g. it was a takeout order).

• Partially relevant: when a planned outing was cor-
rectly identified, but the user didn’t end up going in
the end.

• Not relevant: when the identified instance is not about
a restaurant.

We assume that a piece of (when, where, who) w5h in-
formation is:

• Exactly relevant: when the all identified w5h informa-
tion is correct.

• Relevant but too broad: when the w5h information
contains relevant information but also includes other
irrelevant information.

• Relevant but too narrow: when the w5h information
contains relevant information but is lacking some in-
formation.

• Not relevant: no relevant information.
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#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 #15 #16
Our approach 13 15 10 5 14 24 13 6 19 17 19 7 11 5 17 15
User memory 7 8 8 5 8 10 5 5 9 9 13 5 6 3 8 9
User data 13 14 11 5 7 14 11 6 20 14 15 5 11 5 16 14
Recall 1 1 0.91 1 1 1 1 1 0.95 1 1 1 1 1 1 1

Table 1: Number of identified EatingOut actions by users vs number of correct events our approach retrieved per user as a proxy
for Recall

Metrics
Based on both the binary and graded relevance, we report on
the following metrics:
• Percentage of instances retrieved: the percentage of

all EatingOut events identified by users which were re-
trieved by our scripts; a proxy for Recall. 4

• Mean Average Precision @ k (MAP@k): MAP as a bi-
nary relevance assessment for the percentage of the top-k
identified script instances that correspond to actual Eatin-
gOut events. We assumed the result counted as true posi-
tive only if the users annotate a search result as “Exactly
Relevant”. The same holds for the w5h information.

• Normalized discounted cumulative gain (nDCG):
nDCG for assessing the ranked results when taking into
consideration graded relevance, as described above. For
our experiments, we translate the five grades of relevance
as follows: Exactly relevant has a score of 5, Relevant but
too broad and Relevant but too narrow have a score of 4
and 3 respectively, Partially relevant has a score of 2, and
Not relevant has a score of 1.

Experimental Results
Our results allow us to make several observations.

Routine experiences are hard to retrieve. Table 1 shows
the number of correct EatingOut instances retrieved by our
approach compared with the number identified by users
from memory, and by searching their PDTs (proxy for Re-
call). A first observation is that the results clearly indicate
how hard is for users to recall their outings in the previ-
ous month, either from memory, or even when asked to go
through their digital information. Our tool identified more
correct instances than the users were able to recall and find
in all cases but two (user 3 and 9), where the recall was 0.91
and 0.95 respectively. We anticipated this for two reasons.
First, there is evidence (Bradburn, Rips, and Shevell 1987)
that routine experiences, like going out to eat, are less likely
to be encoded and harder to be retrieved, whereas unique ex-
periences are particularly likely to be encoded and recalled.
Second, users had a hard time reviewing their digital infor-
mation since they had to look in so many different services.

4Ideally the ground truth could be constructed by asking users
to journal their lives over a period of time. However it is unclear
whether the mere act of journaling would have an impact on the
type of data found in the users’ personal data - would the user
record more information as a side effect of journaling? - and lead
to a case of observation bias.

Our tool identified more instances than the users were able
to identify by searching their PDTs in most of the cases.
Users found it hard to search through their data when using
only messages to arrange an outing, paid by cash, or without
having their GPS activated, since most of the applications
have keyword-based search. Users 5 and 6, who were able
to retrieve only half of their outings, clearly show this issue.

This finding supports how helpful our system can be not
only for supporting human memory but also for contact trac-
ing for epidemiological purposes. It can help users remem-
ber when they went out to eat, where and with whom. Sim-
ilarly, using the grocery shopping script, the system could
reveal if a user took the train/bus to go shopping (if this was
instantiated from the “GoingToPlace” sub-script), the times
they went, and to which grocery stores.

Quality of information given by different sources vary.
Table 2 shows the overall precision of the identified script
instances along with the sources each user incorporated in
the application. Our approach achieves a total of 78% for all
the users. User #2 achieved the highest precision of all, since
the sources they chose to include in the study contained bank
transactions, google maps location history, instagram and
facebook, sources that tend to be of high quality, whereas
User #8 achieves the lowest precision of all, since they in-
cluded their private phone text messages without any high
quality source, such as location or bank data. The reason
why text documents tend to be of lower quality is because
they depend on keyword matching for relevance.

The results above show that our scripts achieve good pre-
cision. However, retrieval systems typically return results in
a ranked order, and users are expecting the first few results
to be the most relevant. We now look at the quality of the
returned answers by evaluating the Precision@k metric.

Quality of the returned answers. Figure 8 shows the
Mean Average Precision@k for all the identified script in-
stances for all the users. As shown, our approach achieves a
really good precision even for low values of k. The reason
for that, is that our approach does include many different
kinds of sources and is able to account for all the different
kinds of user behavior. In addition, the users seem to use
different services for carrying out different actions of a par-
ticular script instance, as noted in Figure 7.

Figure 9 shows the normalized discounted cumulative
gain (nDCG) for the ranked results when taking into con-
sideration the graded relevance. The nDCG was computed
by normalizing the DCG@k with the ideal DCG value or
IDCG@k. Hence, we computed the IDCG at each level k
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Sources Precision
User #1 Social Media, Calendar, Financial Data, Location Data, Google Photos 0.87
User #2 Social Media, Location Data, Financial Data 0.94
User #3 Email/Messaging, Social Media, Calendar, Financial Data 0.66
User #4 Email/Messaging, Social Media, Calendar, Financial Data, Location Data, Google Photos 0.66
User #5 Email/Messaging, Social Media, Calendar, Financial Data, Location Data 0.74
User #6 Social Media, Calendar, Financial Data, Location Data, Google Photos 0.89
User #7 Email/Messaging, Social Media, Calendar, Financial Data, Location Data, Google Photos 0.76
User #8 Email/Messaging, Social Media, Calendar 0.6
User #9 Email/Messaging, Social Media, Calendar, Financial Data, Google Photos 0.74
User #10 Email/Messaging, Social Media, Calendar, Financial Data, Location Data 0.81
User #11 Email/Messaging, Social Media, Calendar, Financial Data, Location Data, Google Photos 0.76
User #12 Social Media, Calendar, Financial Data, Location Data, Google Photos 0.86
User #13 Email/Messaging, Social Media, Calendar, Financial Data, Google Photos 0.73
User #14 Email/Messaging, Social Media, Calendar, Financial Data, Location Data, Google Photos 0.83
User #15 Email/Messaging, Social Media, Calendar, Financial Data, Google Photos 0.77
User #16 Email/Messaging, Social Media, Calendar, Financial Data, Location Data, Google Photos 0.79
Total 0.78

Table 2: Overall precision for each user

when where who
MAP 0.85 0.81 0.21

Table 3: MAP for when, where, who dimensions for all users

and then computed the average nDCG across the 16 results.
It is clear that our ranking quality is high, and our approach
is able to recognize and distinguish highly relevant PDTs in
favor of irrelevant PDTs.

We then report the same metrics (MAP, MAP@k and
nDCG@k) on the when, where and who dimensions.

The who dimension is harder to be retrieved. Table 3
shows the MAP for the three dimensions for all users. A
first observation is that the when and where dimensions are
easier to extract than the who dimension due to the meta-
data that the PDTs have and due to the fact that if there is
a payment or a gps location for an outing these two dimen-
sions are easier to get extracted. On the other hand, the who
dimension is more difficult to get extracted for the follow-
ing reasons. Most of the participants’ restaurant outings as
shown in Figure 7, were arranged either by phone or by text
messages. Our system does not capture voice data, so it was
anticipated that we will miss some information about the
phone arranged outings5. In addition, the participants men-
tioned that many of their outings were organized on the fly,
by talking to each other in person, while in work, or while
being with friends. Our evaluation also penalizes correct but

5As part of future work, we plan to retrieve phone numbers
from google maps, (in case it is already recognized the name of
the venue, i.e. ”where”), and associate them with calls that the user
might have made on these numbers, thus providing corroborating
evidence. In addition, we plan to incorporate conversations from
personal assistants like Google Now and Alexa which record users’
commands and replies.

incomplete who dimensions by counting them as false posi-
tives.

Figure 10 shows the MAP@k for the three dimensions for
all the users. As shown, our approach achieves a good pre-
cision for the when and where dimension for all the values
of k. On the other hand, the precision for the who dimension
drops as k increases. This happens due to the fact that for low
values of k, the score of the instances is low, which means
there are not many PDTs to account for these instances. In
that case, as previously mentioned, the who dimension is the
hardest dimension to be retrieved, because either there is no
information recorded or our approach either lacks or rec-
ognizes more people in an outing. This is actually demon-
strated in Figure 11, which shows the nDCG for the ranked
results when taking into consideration the graded relevance.
We can now observe how much better the accuracy is for the
who dimension getting a gain of 0.7 as the highest and 0.5 as
the lowest value. This means that our approach is able to rec-
ognize some people in the outing, but it’s hard to recognize
them all correctly. In addition, we observe that the when di-
mension is getting extracted with a better accuracy than the
where dimension. This is mainly because the when dimen-
sion can be extracted by all the PDTs, whereas the where
dimension can be missing from messages, emails or photos.

Our system was rated positively by the participants. In
general, users were satisfied with the efficiency of use of the
application and the functionality it offers. The majority was
excited about using the app. They mentioned how ”cool” it
is to be able to see their data organized, and how easy it is to
navigate to their data, since it is linking to the original piece
of information. In addition, some were surprised when they
found out some outings that they had totally forgotten. They
pointed out that this happens to them frequently, and that
although they do remember having some pieces of informa-
tion somewhere in some service, they don’t know where to
search, or what to search. Finally, some mentioned that they
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Figure 9: nDCG@k for the recognized instances
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Figure 10: MAP@k for when, where, who dimensions
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Figure 11: nDCG@k for when, where, who dimensions

would prefer to be able to search through our app, rather
than browsing, as well as they wished that some other ser-
vices were supported by the app (i.e. Snapchat, WhatsApp).

Limitations of the study. The number of participants was
small, and they were from an academic environment, thus
possibly not representative. Also, we presented results for
one script scenario. As future work we plan to conduct more
experiments with a variety of scripts, larger population and
participants from different backgrounds.

Related Work
We review the many areas of related work, some of which
have already been mentioned briefly in the previous sections.

Activities of Daily Living, Pervasive Computing,
LifeLogging and Memory Tools. The use of aids to help
people with memory deficits is thought to be one of the most
effective ways to aid rehabilitation (see (Kapur, Glisky, and
Wilson 2004) for a review). Most external memory aids fo-
cus on improving prospective memory; they help people to
remember to keep appointments, take medication, etc. Avail-
able devices include calendars, alarms, Post-it notes, as well
as more sophisticated systems, like Amazon Alexa, Siri, and
Google Now (Hoy 2018; Thakur 2016). However, these sys-
tems’ purpose is to remind users of events based on their
personal data, often with some commercial goal, and are
limited to using information that is in the vendors’ propri-
etary systems. In addition, these systems focus on prospec-
tive tasks: remembering to carry out tasks either based on

a time or event trigger; while our current application sce-
narios are centered around retrospective tasks: organizing
past memories. In contrast, there are few memory aids de-
signed to improve the ability to remember past experiences.
Perhaps the two most obvious examples are cameras and
diaries. Sensecam (Hodges et al. 2006), and Kalnikaite’s
browser (Kalnikaite et al. 2010) which adds GPS, are tools
closely related to ours used for the recall of everyday events
by passively recording images combined with GPS and re-
lating them to everyday activity in order to trigger autobi-
ographical memory in people with memory issues. Other
tools include the MemoClip , the Cyberminder, and Mem-
ory Glasses (Beigl 2000; DeVaul, Pentland, and Corey 2003;
Dey and Abowd 2000). Our work is distinguished from most
of the above efforts by the fact that we use the vast amount
of existing digital traces already being produced, rather than
capturing new data. Our data integration approach could
however be used in conjunction with prospective approaches
to personalize activities recognition.
In addition, the area of life-logging is quite similar, and
is surveyed in (Gurrin et al. 2014; Van Den Hoven, Sas,
and Whittaker 2012). Bell has pioneered this field with
MyLifeBits (Gemmell, Bell, and Lueder 2006) for which he
digitally captured all aspects of his life. (Naeem, Bigham,
and Wang 2007) uses the plan description language Asbru
(designed to describe medical protocols as skeletal plans) to
recognize activities of daily living from kitchen sensors. A
particularly relevant paper is (Meditskos et al. 2018) which
used the technique of multi-sensory data analysis along with
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egocentric video recording from a bracelet to aid the demen-
tia patients recognize their daily living activities. Our ap-
proach is distinguished from the above efforts by the facts
that: (i) there is massive concurrent execution of different
scripts; (ii) many PDTs are not part of any script execution;
(iii) the execution of some script steps is not manifested in
PDTs; (iv) script instances are often exceptional variants of
the prototype.

PIM. The general research area of Personal Information
Management (PIM) began in the ’80s to help users better
store, integrate and query large collections of varied digital
data. Researchers have suggested PIM interfaces for web ac-
tivities (Dumais et al. 2003; Kaptelinin 2003; Murakami and
Mitsuhashi 2012), email (Ayodele, Akmayeva, and Shonire-
gun 2012; Whittaker, Bellotti, and Gwizdka 2006), and local
files (Barreau and Nardi 1995; Barreau 1995). The central
focus of such systems is the identification of relevant objects
in the user’s information space, and establishing their inter-
relationships. Often this is based on a domain or personal
ontology. In contrast with this static view of information,
we focus on a dynamic approach to the integration of PDTs,
by providing a narrative to make connections between them.

Processes and Plans. Since scripts are plans, and we rec-
ognize plan instances from PDTs, the extensive literature on
plan recognition, such as (Geib and Goldman 2009; Geib,
Maraist, and Goldman 2008) is obviously relevant. One im-
portant difference is that these approaches start from a de-
scription of a domain in terms of planning operators, while
scripts are pre-compiled stereotypical plans. Also, closely
related is the area of activity recognition, which often con-
siders the problem of recognizing lower-level actions, of
which plans are composed, especially when these are sig-
naled by sensors. Our needs include the ability to recog-
nize multiple, concurrent, and interleaved script instances
and components. Most importantly, our situation is distin-
guished by the fact that most of the PDTs we encounter do
not signal any script, and a large fraction of steps in any
particular instantiation of a script leaves no trace (“missing
actions”).

Conclusion
We have presented a novel script-based approach to inte-
grate and connect heterogeneous collections of PDTs into
coherent episodes of user activities, which extract relevant
summary information, as well as a software architecture
that supports systematic and declarative specification of ev-
idence. Our approach can help users explore their events in
an integrated way by creating a personal knowledge base
they can access and search in the future. Experiments on
real users’ personal data for the script of going out to eat
showed that our approach augments people’s memory for
past actions, which can subsequently help them to stimulate
their memory. Simple variants of EatingOut, such as Going-
ToTheater and other forms of entertainment, would cover
many more cases. This can be particularly useful in a variety
of situations such as people with memory deficits, as well as
contact and location tracing. In addition to its applications
to personal data management and memory augmentation,
our work provides opportunities for behavioral researchers

to study user behavior patterns. For example, the combina-
tion of PDTs, AI, and self-reported surveys can yield new
insights into mental health assessment.
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