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Abstract

The environment we are in can affect our mood and behav-
ior. One environmental factor is weather, which is linked
to sentiment as expressed on social media. However, less
is known about how integrating changes in weather, along
with time and location contextual cues, can improve senti-
ment detection and understanding. In this paper, we explore
the effects of three contextual features–weather, location, and
time–on expressed sentiment in social media. Leveraging a
large Snapchat dataset, we provide extensive experimental
evidence that including contextual features in addition to tex-
tual features significantly improves textual sentiment detec-
tion performance by 3% over transformer-based language
models. Our results also generalize cross-domain to Twitter.
Ablation studies indicate the relative importance of weather
compared to location and time. We also conduct correlation
analyses on 8 million Snapchat posts to highlight the link
between past weather and current sentiment, showing that
weather has a lasting impact on mood. Users generally exhibit
more positive sentiment in better weather conditions as well
as in improved weather conditions. Additionally, we show
that temperature’s link with mood holds after controlling for
time or population density, but there exist geographical dif-
ferences in how temperature affects mood. Our work demon-
strates the effectiveness of including external contexts in lin-
guistic tasks and carries design implications for researchers
and designers of social media.

Introduction
How’s the weather where you are now? We as authors
hope it is warm and sunny because weather can have a
significant impact on your mood. Sentiment analysis per-
formance has tremendously advanced following develop-
ments in transformer-based language models (Devlin et al.
2019; Barbieri et al. 2020). However, beyond textual cues,
there are also easily accessible yet underutilized environ-
mental cues that could help improve content understand-
ing. One important factor in our environment is the weather,
which affects our mood (Howarth and Hoffman 1984; Keller
et al. 2005; Denissen et al. 2008) and behavior (Chen, Cho,
and Jang 2015; Guéguen 2013; Yang, Jhang, and Chang

*Work done when author was an intern at Snap Inc.
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Figure 1: A text-only model misclassifies the sentiment as
neutral. The contextual cues of location (Los Angeles), time
(a weekend), and weather (the sun coming out after two
cloudy days) can help inform that the sentiment is positive.

2016). Several works also suggest a link between online ex-
pressed sentiment and weather on social media (Coviello
et al. 2014; Li, Wang, and Hovy 2014; Baylis et al. 2018;
Wang, Obradovich, and Zheng 2020).

However, less is known about how integrating changes
in weather, along with time and location contextual cues,
can improve sentiment detection and understanding. Con-
sider the motivating example depicted in Figure 1. Even
a state-of-the-art text-based model misclassifies the senti-
ment as neutral.1 But a model that is aware of the contextual
cues–the example took place in LA (location) on a weekend
(time) and it has been cloudy for the past two days (histori-
cal weather) before the sun came out (current weather)–may
correctly classify the sentiment as positive.

The contribution of this work is a comprehensive study
of how external contextual factors–weather, location, and
time–impact expressed sentiment on social media. We col-
lect a large-scale dataset of 8 million public Snapchat posts
in the US between March and September 2020. Snapchat
is a popular social media platform known for its ephemeral
multi-media messages. We further collect an extensive
weather dataset including both real-time weather data and
up to eight weeks of historical weather for each post. Ad-
ditionally, we replicate our main findings cross-domain on
a Twitter dataset. We aim to answer the following two re-
search questions:

• RQ1 Modeling: Can including external contextual fea-

1e.g., https://huggingface.co/cardiffnlp/twitter-roberta-base-
sentiment
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tures (weather, location, and time) in language models
improve sentiment detection?

• RQ2 Analysis: How do contextual factors, and partic-
ularly historical and current weather, impact expressed
sentiment?

Though past work showed that weather can predict ex-
pressed sentiment, our work addresses some of their limita-
tions and offers additional insights. First, large-scale online
sentiment has not been studied with the latest language mod-
els (Devlin et al. 2019). Second, to the best of our knowl-
edge, ours is the first work that models historical weather in
addition to current weather and analyzes how past weather
and changes in weather affect sentiment. Third, we include
location and time in our analysis to isolate geographical
and temporal confounding factors in studying weather’s im-
pact on sentiment. Finally, while prior work on social me-
dia only considered urban areas, our data is geographically
more diverse, encompassing substantial data from rural ar-
eas ((35%), which is a factor that may impact community
sentiment (Christenson 1979). Our contributions in this pa-
per are summarized as follows:
• Contextually-aware models significantly outperform

text-only models by 3% on F1 and Pearson metrics.
• Ablation studies show that short-term historical weather

(≈ three days) is the most important weather factor in
predicting sentiment.

• We demonstrate that sentiment is sensitive to current
weather, past weather, and changes in weather.

• The effect of weather remains after controlling for time
(hourly and weekly) or population density, though it does
exhibit geographical differences.

Our work demonstrates the promising use of external con-
textual features of time, location, and in particular weather,
to improve social media language modeling frameworks.
Since such contextual cues are easy to obtain and integrate
into existing frameworks, without imposing on user privacy,
our work carries many design implications for social media
platforms and content understanding frameworks.2

Related Work
Dey and Abowd (1999) conceptualized four primary types
of contexts in context-aware computing: location, identity,
time, and activity. In this work, user identity is anonymized
and the activity is public content-sharing. We focus on lo-
cation and time, and the secondary context they induce:
weather.

Weather Affects Mood and Behavior
Extensive literature suggests a link between weather–
sunlight, temperature, humidity, wind, etc.–and mood
(Howarth and Hoffman 1984; Denissen et al. 2008; Kööts,
Realo, and Allik 2011). Time spent outdoors in nice weather
is also associated with a better mood (Keller et al. 2005).
Though the effect sizes of weather’s impacts on mood are

2The code and the Twitter dataset are available at https://github.
com/snap-research/sentiment-weather-impact.

small (Keller et al. 2005; Denissen et al. 2008), they are sig-
nificant and are consistent with the literature on the seasonal
effects of weather on mood (Rosenthal 1984; Harmatz et al.
2000).

Weather also affects behavior. It can predict the stock mar-
ket (Chang et al. 2008; Yang, Jhang, and Chang 2016), the
housing market (Hu and Lee 2020), university admissions
(Simonsohn 2007), daily activity decisions (Doksæter Sivle
and Kolstø 2016), and shopping decisions (Parsons 2001;
Busse et al. 2015). Weather influences social interactions
as well. High temperatures are linked to aggression (Ander-
son et al. 2000; Zhong and Zhou 2012). When the weather
is nice, people are more generous (Cunningham 1979) and
courtship success is higher (Guéguen 2013). While peo-
ple generally prefer summers to winters (Rosenthal 1984;
Harmatz et al. 2000), temperature is not linearly associated
with good behavior. Cunningham (1979) found that people’s
helping rates dropped when temperature deviates from the
optimal temperature of 19°C (65°F).

Observable Effects of Weather on Social Media
Weather effects on sentiment have also been observed on so-
cial media (Hannak et al. 2012; Li, Wang, and Hovy 2014).
In a Twitter study, Li, Wang, and Hovy (2014) showed that
the average temperature difference between two consecutive
days contributed to mood, with people generally appreciat-
ing cooler weather up to a certain point. They also showed
that rain, snow, and hail induced negative sentiments (Li,
Wang, and Hovy 2014). Other studies found that rainfall,
extreme temperatures, precipitation, humidity, and cloudi-
ness were associated with negative sentiment on Facebook
and Twitter (Coviello et al. 2014; Baylis et al. 2018). Wang,
Obradovich, and Zheng (2020) found that extreme weather
worsened expressed sentiment on Weibo posts in China.
However, all of these works examined only urban areas and
did not factor in historical weather.

Location and Time
The where and the when are two of the most fundamental
contextual cues (Dey and Abowd 1999). The impact of lo-
cation on mood and behavior can be characterized by as-
pects of geography, ecology, socioeconomy, and cultural di-
vides (Mitchell et al. 2013; Van de Vliert and Van Lange
2019). Previous research on Snapchat Stories found the de-
cision to share content publicly (via Our Story) or privately
to friends (via My Story) may depend on the location and
the time (e.g., public sharing is less likely when users are at
home) (Habib, Shah, and Vaish 2019). Many works also rec-
ognized the impact of time on mood: from analyzing diurnal
activity patterns, researchers found that people are generally
in a better mood on weekends (Dodds et al. 2011; Golder and
Macy 2011; Li, Wang, and Hovy 2014). Emotions also vary
throughout the day. People’s moods are usually better in the
morning but often deteriorate as the day progresses (Dodds
et al. 2011; Golder and Macy 2011). Hannak et al. (2012)
demonstrated that combining location and time in models
can contextualize weather cues. Following their suggestion,
we incorporate location and time to further understand the
effects of current and historical weather on sentiment.
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Language Models
Pre-trained transformer-based language models (LMs) such
as BERT (Devlin et al. 2019) and RoBERTa (Liu et al. 2019)
have altered the state of natural language applications in-
cluding text classification and natural language inference
(Wang et al. 2018). In the case of standalone and short so-
cial media texts such as ours, RoBERTa is preferred since it
does not use the next sentence prediction objective (Liu et al.
2019; Barbieri et al. 2020). In particular, RoBERTa with ad-
ditional in-domain retraining has brought considerable im-
provement over prior methods in Twitter sentiment classifi-
cation, among other social media NLP initiatives (Barbieri
et al. 2020).

Data
Snapchat
Well-known for its ephemeral chat messages, Snapchat
launched the Our Story feature in 2014. Our Story is a col-
lection of user-submitted public Snaps about specific events,
places, or topics (Anderson 2015; Snapchat 2018). Using
an internal API, we sampled 8M public Our Story Snaps
with textual captions geolocated in the US between March
and September 2020. We utilize the user-generated captions,
timestamps, and locations of the Snap. No user personal in-
formation is used. We also do not include audiovisual sig-
nals, since previous research on Snapchat suggests that in-
corporating visual cues in addition to textual cues did not
significantly improve textual sentiment detection (Chaud-
huri 2019). By linking the city and states to the list of urban
areas from the 2010 census (US Census Bureau 2021), we
found that 35% of our dataset comes from rural areas.

We use two types of features: textual and contextual. Tex-
tual features derive from the user-generated Snap captions.
The contextual features are location, time, and weather. The
location features include the city, state, and altitude (avail-
able for 95% of the data) of the Snap. We also match the
location to the 2010 census database to obtain the popula-
tion density.3 We one-hot encode the US state and the city
and impute missing altitudes with the mean from each state.
For each Snap, we compile a set of localized time features
including the day of the year, weekday, and hour of the day.
We discuss the collection and processing of weather features
below.

Weather features. We use OpenWeatherMap4 to collect
weather data. Weather is queried using an hourly timestamp
and location (city and state). For each query, OpenWeath-
erMap returns the exact hourly temperature, “feels like”, at-
mospheric pressure, humidity, windspeed, cloudiness (%),
rain volume, and snow volume. It also returns a single string
description of the weather type, such as clear or cloudy. We
one-hot encode the four major weather types: clear (32%),
cloudy (53%), rainy (13%), and foggy (2%).

We collect the exact hourly weather at the time of the Snap
as well as the aggregated daily (24-hour period of the day)
and historically averaged weather during the three days, one

3https://simplemaps.com/data/us-cities
4https://openweathermap.org/

Dataset IRA Fleiss’ κ G&K’s γ
Snapchat 0.69 0.49 0.88
Twitter 0.47 0.25 0.75

Table 1: Both the Snapchat and Twitter datasets have average
inter-rater Gammas over 0.70, indicating good reliability of
the annotations.

week, two weeks, four weeks, and eight weeks periods prior
to the day of the Snap. To aggregate, we compute the mean,
maximum, and minimum of the hourly temperature, “feels
like”, pressure, humidity, windspeed, and cloudiness. The
rain and snow volumes are summed up. We also calculate
the proportions of the four major weather types over the ag-
gregation period.

Twitter (and Instagram)
As an additional dataset for experimental validation, we col-
lect 2 million geo-tagged original Tweets from October 2015
to February 2017 using the Twitter API. Upon examining the
source of the Tweets, we find that more than 90% of our data
were also concurrently posted to Instagram. We matched the
data collection with an hourly weather dataset of 30 major
US and Canadian cities (Beniaguaev 2017). Due to the spar-
sity of the collected weather data, there is insufficient histor-
ical weather data, so we use only hourly weather features.

Sentiment Annotations
A random subset of 4,000 Snap captions and 5,000 Tweets
were annotated for sentiment. The Snap captions were an-
notated by four in-house expert annotators on a three-
point scale of negative, neutral, and positive sentiment. The
Tweets were annotated through Amazon Mechanical Turk5

on a five-point scale of very negative, somewhat negative,
neutral, very positive, and somewhat positive. The exten-
sion to a five-point scale is to improve the reliability of
non-expert ratings (Preston and Colman 2000). Following
Snow et al. (2008), we employ five (non-expert) workers per
Tweet to approximate the performance of experts. After re-
moving unqualified instances (e.g., spam, non-English) and
instances with insufficient annotations, we obtain a dataset
of 2,885 Snaps and a dataset of 4,469 Tweets. Details of the
annotation process can be found in the Appendix.

Agreement and reliability. We evaluated the reliability
of annotations using the inter-rater agreement (IRA) score,
Fleiss’ Kappa (Fleiss 1971), and Goodman and Kruskal’s
Gamma (Goodman and Kruskal 1979) in Table 1. IRA is
the average agreement (i.e., equivalent annotations) between
every pair of annotators, and Fleiss’ Kappa (Fleiss 1971) is
traditionally used for multi-rater, ordinal categories of anno-
tation tasks. We primarily use the Goodman and Kruskal’s
Gamma (Goodman and Kruskal 1979) correlation coeffi-
cient to assess annotation reliability following recommenda-
tions by Amidei, Piwek, and Willis (2019), who suggested
that correlation in agreement is preferred over an exact

5https://www.mturk.com/
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Figure 2: Illustration of our proposed model architecture.
FF: blocks of feed-forward layers.

agreement in the strictest sense as human variations in lan-
guage interpretations make it difficult to obtain exact agree-
ment. Both datasets have an average inter-rater Gamma over
0.70, indicating good reliability of the annotations (Rosen-
thal 1996; Amidei, Piwek, and Willis 2019).

Annotation aggregation. To capture nuances and ambi-
guities that naturally arise when subjectively annotating sen-
timent, we do not dismiss any instances with low agreement
(Poesio and Artstein 2005; Pavlick and Kwiatkowski 2019;
Fornaciari et al. 2021). We instead take a two-pronged ap-
proach to aggregate annotations by using both hard and soft
labels. Our approach is inspired by Fornaciari et al. (2021),
which proposed predicting soft labels (a probability distri-
bution over the hard labels) in addition to the hard labels for
various NLP tasks.

The hard labels are the annotators’ majority votes. Since
we have four annotators and three possible classes for the
Snapchat dataset, at least one class will receive two votes
(the pigeonhole principle). If the votes are split half-half be-
tween two classes, we assign the neutral label. Instances in
which two voted for positive and two voted for negative are
extremely rare (< 1%). For the Twitter dataset, we combine
very/somewhat positive as positive and very/somewhat neg-
ative as negative and select the majority vote out of the three
remaining categories. Instances for which there is no major-
ity vote are already discarded (see Appendix).

The soft labels are aggregated by averaging all of the an-
notators’ votes. The labels are converted to numeric values
with 0.00 = (very) negative, 0.25 = somewhat negative, 0.50
= neutral, 0.75 = (somewhat) positive, and 1.00 = (very) pos-
itive.

Method
We adopt a modular deep learning framework, as shown
in Figure 2. There are four input modules—text, location,
weather, and time. Each module individually undergoes sev-
eral feed-forward (FF) layers before being combined and
undergoing several more FF layers. The textual feature in-
put is the output of an LM (e.g., BERT (Devlin et al. 2019)).
In essence, we freeze the LM and train additional layers on
top. We do not finetune the LMs because freezing and fine-
tuning lead to comparable performance (Peters, Ruder, and
Smith 2019; Pfeiffer et al. 2020), yet freezing is substan-
tially cheaper and computationally more stable (Devlin et al.

2019). Importantly, since we aim to find if adding contex-
tual features improve prediction performance, choosing the
absolute best LM base model is peripheral to our goal.

We make two important architectural choices through ex-
perimentation. First, we experiment with two ways to incor-
porate weather features. One is simply to include weather
features from all timeframes as one long, flattened array,
denoted W(one). The other is to add each timeframe of
weather feature as a separate module, denoted W(sep). Sec-
ond, we explore several concatenation strategies, including
linear concatenation, many-to-one attention (Luong, Pham,
and Manning 2015), and a transformer block (Vaswani et al.
2017).

Since we aggregated two types of annotation labels—hard
and soft—we employ a multi-task learning strategy, opti-
mizing both for classification and regression using categori-
cal cross-entropy and mean squared error, respectively. Both
losses contribute equally to the final loss function.

Results
Experimental Results (RQ1)
To answer RQ1, we conduct extensive experimental stud-
ies on both the annotated Snapchat and Twitter datasets. We
fix the train/val/test sets to be randomly stratified splits of
80%/10%/10%. The classification (hard) labels are evalu-
ated with F1 score.6 Following Mohammad et al. (2018),
the regression (soft) labels are evaluated with the Pear-
son correlation coefficient. The final score for evaluation is
1
2 (F1 + Pearson). We select the best hyperparameters us-
ing the validation set (see the Appendix for hyperparameter
search space). We test each model configuration ten times
with ten different random seeds, which we use to determine
the statistical significance between any two models with a
two-sample t-test.

Including contextual cues. We compare text-only mod-
els with text and context models on the Snapchat dataset.
The contextual features used are weather, location, and time.
Weather features include all current (hourly and daily) and
historical (three days to eight weeks) timeframes. We use the
following LMs as text-only baselines:
• RoBERTa-base and RoBERTa-large (Liu et al. 2019)

from HuggingFace (Wolf et al. 2020).
• Snap-RoBERta (base), a RoBERTa model fine-tuned on

40M Snap captions.
Table 2 presents our main results on the Snapchat dataset.

For text-only models, Snap-RoBERTa achieves the best per-
formance compared to off-the-shelf LMs, possibly due to in-
domain finetuning. Using Snap-RoBERTa, we compare the
effects of adding contextual features with various concate-
nation and weather input strategies. All of our text and con-
text models show significant improvement over the text-only
model. Furthermore, we find that using transformer blocks
outperforms attention layers, which in turn outperforms sim-
ple concatenation. Between using weather timeframe as sep-
arate modules W(sep) and as one module W(one), W(one)

6Macro- and micro-F1 scores are equivalent on stratified
datasets.
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Model %↑ F1 & Pearson Pearson F1 Neg. F1 Pos. F1

Text-only
RoBERTa-large - 69.88 72.46 67.30 63.26 78.81
ROBERTa - 65.07 65.43 64.72 55.32 76.93
Snap-RoBERTa - 74.23 79.18 69.29 66.81 80.21

Text + context

Snap-RoBERTa+W(one)+L+T: Concat 2.0%* 75.74 81.29 70.19 67.25 82.42
Snap-RoBERTa+W(one)+L+T: Attention 2.5%* 76.08 79.17 72.99 70.76 82.44
Snap-RoBERTa+W(sep)+L+T: Transformer 2.7%* 76.22 81.75 70.69 69.14 81.06
Snap-RoBERTa+W(one)+L+T: Transformer 3.2%* 76.64 81.36 71.93 70.66 82.39

W(one): weather as one module; W(sep): weather as separate modules by timeframes; L: location; T: time

Table 2: Experimental results comparing text-only models with text + context models show that adding contextual features
bolsters performance for the Snapchat dataset. The best F1 & Pearson score is bolded for each category and the best score
overall is underlined. We compute the % improvement over the Snap-RoBERTa’s score. * indicates statistically significant
(p < 0.05) improvements.

Model F1 & Pearson F1 Pearson
Random 15.62 32.57 -1.33
Majority 16.29 32.57 0.00
W(one)+L+T 19.73 31.16 8.29

Table 3: The context-only model outperforms a naive ran-
dom or majority model. Pearson Correlation coefficient is
set to 0 when one variable is constant.

Context Only Without
Weather 76.46 (3.0%) 75.90 (2.2%)
Location 75.85 (2.2%) 76.82 (3.5%)
Time 75.77 (2.1%) 76.60 (3.2%)

Table 4: Ablation studies show that weather is the most
important contextual feature. Using only weather features
achieves the highest score (Only) and not using weather
achieves the lowest score (Without). Scores are F1 & Pear-
son (% improvement over Snap-RoBERTa).

performs better. This added improvement could be attributed
to the model associating current with historical weather and
responding to long-term trends in weather. The best text and
context model is markedly better (3.2%) than the text-only
model, and the improvement is statistically significant.

Using only contextual cues. We also compare a model
using only context features with a pseudo-random (based
on the distribution of the labels) model and a model that
only predicts the majority label in Table 3. The context-only
model achieves a score of 19.73 and is over 20% (also sig-
nificantly) better than a pseudo-random or majority model.
This striking improvement shows that even when the model
is not given text data, it can still extract clues from the con-
textual features to predict the textual sentiment.

Context ablation. Table 4 reports the ablation study re-
sults of the relative importance of each type of context. We
use the Transformer concatenation strategy and the Snap-
RoBERTa model for text. We experiment with including
only one type of context (‘Only’), in which a higher score

indicates higher relative importance for that context, as well
as with removing one context (‘Without’), in which a lower
score indicates higher importance. In both experiments, we
observe that weather features stand out as the most impor-
tant feature. Only adding weather leads to the highest perfor-
mance gain and removing it leads to the lowest performance
gain.

Weather ablation. We additionally conduct an in-depth
investigation of weather features. The questions we want
to answer are: (i) how much (historical) weather informa-
tion do we need to achieve good performance? (ii) which
weather timeframe is the most predictive for sentiment anal-
ysis? To this end, we experiment with incrementally adding
more historical weather data and only using one timeframe
of weather data in Figure 3. The left subfigure indicates
that adding historical weather ranging from three days to
two weeks is beneficial. Adding too much historical weather
(e.g., eight weeks) can actually hurt performance, possibly
because historical weather that goes too far back is not as in-
formative. The right subfigure shows that adding three days
of historical weather in isolation leads to the best perfor-
mance. Both experiments agree that using three days of his-
torical weather is the most beneficial to improving model
performance.

However, we do note that no timeframe of historical
weather data is substantially better than the rest. In fact, us-
ing historical weather that goes back as far as eight weeks is
just as useful in enhancing the model prediction as current
weather, underscoring the importance of historical weather.
From the ablation study of incrementally adding histori-
cal weather, we observe that using (short-term) historical
weather in addition to current weather leads to the largest
performance boost.

Generalizability of findings. To demonstrate the general-
ity of our findings across domains, we replicate our experi-
ments on the Twitter dataset. In Table 5, we present results
for text-only and text and context models using the follow-
ing LMs:

• Twitter-RoBERTa-base-sentiment (Barbieri et al. 2020),
pretrained on 58M Tweets and fine-tuned for sentiment
analysis
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Figure 3: Weather data ablation studies suggest that short-
term (≈ three days) historical weather is the most important.
Left: incrementally adding more (historical) weather data.
Right: only using one timeframe of weather data.

Model Context ↑% Score

Twitter-RoBERTa- 75.85
base-sentiment +WLT 1.34%* 77.19

Snap-RoBERTa 63.87
+WLT 8.82%* 72.69

BERTweet-base 60.35
+WLT 7.74%* 68.09

WLT: weather, location, and time

Table 5: On Twitter, models consistently perform better with
contextual features. Models are scored with F1 & Pearson.
*indicates significant improvement (p < 0.05).

• BERTweet-base (Nguyen, Vu, and Nguyen 2020), pre-
trained on 850M Tweets

• Snap-RoBERTa, described above
There are consistent, significant improvements when

adding context features, regardless of the LM used, indicat-
ing that our findings hold across domains.

Summary: Empirical experiments on both Snapchat and
Twitter demonstrate that contextual features, particularly
weather, improve textual sentiment detection. Recent histor-
ical weather (≈ three days) is the most important historical
weather feature.

Impact of Contextual Factors on Sentiment (RQ2)
Next, we analyze the impact of contextual factors on sen-
timent. We apply the best text-only model, Snap-RoBERTa
trained on our annotated subset, to the full 8 million dataset
to obtain predicted sentiment labels. We choose the text-only
model to avoid circular dependencies in our analysis. For
ease of interpretability, we use the predicted hard classifica-
tion labels, with 0.0 being negative, 0.5 being neutral, and
1.0 being positive.

Manual validation. To ensure the predicted sentiment la-
bels are of good quality, an expert annotator (see Appendix
for qualifications) annotated a held-out subset of random in-
stances. We held out 200 instances to allow for a larger sam-
ple size. Our predictions achieve 73.0 point macro-F1, com-
parable to the test scores in Table 2.

Figure 4: Weather and changes in weather are Pearson corre-
lated with sentiment (a) The correlation coefficient of abso-
lute weather values and sentiment (b) The correlation coef-
ficient of changes in weather values (daily minus historical)
and sentiment. All coefficients are significant (p < 0.05) ex-
cept for those marked “x”.

Current and historical weather correlate with sentiment.
In Figure 4(a), we visualize the Pearson correlation between
the recorded weather features (temperature, rain volume,
etc.) and the predicted sentiment across different timeframes
(hourly, daily averaged, and historically averaged). Consis-
tent with previous literature, the correlation magnitude is
small (Keller et al. 2005; Denissen et al. 2008) but statis-
tical significant, indicating the presence of weak sentiment
signals from weather. Of all of the weather features, tem-
perature, “feels like”, and proportion of clear weather are
positively correlated with sentiment, whereas Pressure, hu-
midity, cloudiness, and proportion of rain weather are nega-
tively correlated with sentiment.7

Our findings additionally suggest that past weather cor-
relates with sentiment just as much with current weather.
Comparing correlation values for each row (i.e., each
weather variable), we find that the colors of the squares do
not change significantly. Each row is either largely red (pos-
itively correlated) or blue (negatively correlated) and this
correlation changes minimally across timeframes. In other
words, current and historical weather data correlate with cur-
rent sentiment almost equally. Some weather variables have
varying degrees of correlations depending on the timeframe.
For example, historical pressure values are more negatively
correlated with current sentiment than current pressure val-
ues. Such a result would imply that changes in weather could
have an effect on sentiment, which motivates the following
analysis.

7The apparent contradiction between the percentage of clouds
and proportion of cloudy weather is likely because the weather is
only labeled cloudy if the majority of the sky is covered in clouds
(Donegan 2016). Therefore, using cloudiness more accurately de-
picts the relationship between cloudy weather and sentiment.
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Figure 5: Short-term differences in temperature exhibit con-
cave relationships with sentiment: sentiment declines when
the temperature becomes too high or too low. Each family of
weather differences is binned into deciles.

Changes in weather correlate with sentiment. In Figure
4(b), we calculate the difference between the weather on the
day of the Snap and historical weather and we show how
they correlate with sentiment. We find that sentiment gen-
erally changes correspondingly to improvements or declines
in the weather. For instance, people experience more posi-
tive sentiment when the weather is clearer, but more nega-
tive sentiment in humid, cloudy, or rainy weather.

For most of these variables, the magnitude of the correla-
tion with weather declines with a longer duration of histor-
ical time frames (row-wise in Figure 4(b)), suggesting that
recent weather has a larger impact on sentiment than earlier
weather. A notable distinction is the top two rows, which
show that recent changes in temperature/“feels like” are not
linearly correlated with the weather.

Because our data spans the summer season, a significantly
hotter temperature compared to long-term historical temper-
ature (four to eight weeks prior) is negatively correlated with
sentiment possibly because of the presence of heat waves,
which could decrease sentiment. As such, we next consider
short-term temperature changes to monitor mood changes
due to weather changes.

Sentiment declines with extreme temperature changes.
To explore the dynamics between short-term temperature
changes and sentiment, we plot the relationship between the
change in temperature and the average sentiment in Figure 5.
A large temperature difference means that the present tem-
perature is warmer than before. For each set of computed
differences, we bin the values into 10 equally-sized deciles.
We see that short-term changes in the temperature exhibit
concave relationships with the sentiment: sentiment drops
both when the weather becomes too hot or too cold, sug-
gesting that users’ expressed sentiment may be sensitive to
extreme weather changes, similar to findings in prior works
(Baylis et al. 2018; Wang, Obradovich, and Zheng 2020).

Sentiment varies with time. Time is an important fac-
tor of consideration when modeling sentiment. The top row
of Figure 6 displays the average sentiment for each hour
of the day and day of the week. We exclude hours after 7

Figure 6: Weather effects on mood exist after controlling for
time. Top: sentiment as a function of various time granu-
larities. Bottom: same plots, but disaggregated by the distri-
bution of temperature in deciles (lower bound temperature).
Darker lines mean warmer temperatures.

p.m. and before 7 a.m. to focus on the 12-hours with the
most Snapchat usage traffic. From the hour of the day plot
(top left), we see that sentiment rises over the course of
the morning, dips in the afternoon (“afternoon slump”), and
rises back up as the day progresses into the night. The week-
day plot (top right) demonstrates that sentiment consistently
increases over the week, with Monday having the lowest
and the weekends having the highest sentiment. These find-
ings agree with past work showing that people are generally
happier during weekends or after work (Dodds et al. 2011;
Golder and Macy 2011; Li, Wang, and Hovy 2014).

Sentiment varies with weather when controlling for time.
Since we observe such a clear trend in sentiment with re-
gards to time, we want to isolate the impact of time from the
weather. Temperature can change dramatically from night
to day and from season to season, therefore any relation-
ships we observe with respect to hourly weather may be
confounded by time. In the bottom row of Figure 6, we dis-
play how sentiment changes with respect to time, disaggre-
gated by the temperature values binned into 10 equally-sized
deciles. We observe that when the temperature is warmer
(darker lines), the sentiment is consistently higher than if it
was cooler (lighter lines), at every time point. This indicates
that the link between weather (temperature) and sentiment
exists even when controlling for time.

Geographical differences in mood sensitivity to weather.
Lastly, we explore whether people in different locations re-
act differently to weather conditions. Figure 7(a) shows the
Pearson correlation coefficient of temperature and sentiment
for each US state. We notice a distinct geographical trend,
with people in the Southeast (i.e., Florida, possibly due to
the tropical climate) least affected by changes in tempera-
ture and people on both coasts relatively more affected.
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Figure 7: Geographical location plays a role in mood sensitivity to temperature but not population density. (a) Choropleth of the
Pearson correlation coefficient of sentiment and temperature for every state. Only significant coefficients (p < 0.05) are shown.
(b)-(c): Sentiment for each temperature decile ( lower bound as displayed) (b) for the top 5 states by data size and (c) for urban
and rural areas (according to the 2010 census list of urban areas).

We also conduct a detailed analysis of the top five states
for which we have the most data points in Figure 7(b). We
observe that the relationship between temperature and sen-
timent is mostly linear. Compared with other states, New
Yorkers experience lower sentiment than all other states re-
gardless of weather. Florida has the flattest line, meaning
that Floridians’ sentiment is least affected by temperature
compared to other states (also confirmed by the low correla-
tion between temperature and sentiment for Florida in Fig-
ure 7(a)). One notable exception is California, where peo-
ple have overwhelmingly higher expressed sentiment than
the rest of the country even when the temperature is only
slightly above average. However, Californians also experi-
ence the steepest decline in sentiment when the temperature
falls below average. Indeed, we find that cities in California
are most impacted by adverse changes in the temperature
and by rainfall (see the Appendix).

Urban vs. rural. Figure 7(c) explores the relationship be-
tween temperature and sentiment in urban vs. rural areas.
We find that Snaps from rural areas consistently score lower
than urban areas in sentiment. However, mood detected in
Snaps from both urban and rural areas seems similarly af-
fected by changes in temperature.

Summary. We find that sentiment is correlated with cur-
rent, historical, and changes in weather, implying that past
weather has a lasting effect on mood. We also find that links
between weather and sentiment exist even when controlling
for time and population density, but there are geographical
differences in the sensitivity of mood to temperature

Discussion
RQ1. Can including external contextual features (weather,
location, and time) in language models improve sentiment
detection? Through experiments, we demonstrate that in-
cluding contexts in addition to text significantly improves
sentiment detection performance. Weather is the most im-
portant context feature. In particular, we highlight the impor-
tance of historical weather, with three-day historical weather
being the most important historical timeframe of weather.
We also replicate these findings on a Twitter dataset.

RQ2. How do contextual factors, and particularly histori-
cal and current weather, impact expressed sentiment? Echo-
ing previous psychological literature (Howarth and Hoffman
1984; Keller et al. 2005; Denissen et al. 2008) as well as em-
pirical studies on social media (Li, Wang, and Hovy 2014;
Coviello et al. 2014; Baylis et al. 2018; Wang, Obradovich,
and Zheng 2020), we find evidence that weather is linked
to mood. The correlations we found between weather and
sentiment, while small, are statistically significant. We fur-
ther underscore the importance of historical weather data on
current mood, emphasizing the lasting impact of weather.
Finally, we connect weather features with time and location
features to show that weather effects are observable regard-
less of time or location. There are geographical patterns in
mood sensitivity to weather, possibly due to climate varia-
tions or other factors.

Even though we show that weather is associated with
the expressed sentiment, we find that the texts themselves
mostly do not pertain to weather. During our annotation pro-
cess, we find that weather was seldom explicitly stated in
the text (< 1%). This implies that weather might be im-
pacting users’ emotional states implicitly rather than explic-
itly. There is evidence to suggest that weather may have an
impact on individual happiness and subjective well-being
beyond momentary affective states (Tsutsui 2013; Schwarz
and Clore 1983). We leave further research on this topic for
future work.

Limitations. We discuss several limitations of our work.
Our work considers expressions of sentiment on social me-
dia, which we use as a proxy for actual user mood. In study-
ing historical weather, we also assume that users are rela-
tively immobile. The timeframe of our study coincides with
the COVID-19 pandemic, during which Snapchat users ex-
hibited limited movement (Yang et al. 2021). Furthermore,
we believe our dataset is large enough to compensate for a
small subset of users traveling at any time. While the pan-
demic may also have affected users’ emotional states, the
Twitter dataset was from an earlier period and validates our
work. Another limitation is the possibility of seasonal bias in
our Snapchat dataset. To alleviate this concern, we replicated
our findings on the Twitter dataset, which was collected over
a longer period over an entire year. Finally, we recognize that
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our methodology is not causal. Since weather is extremely
unlikely to be causally affected or confounded by other fac-
tors, any correlations we observe between weather and sen-
timent are very likely caused by the weather’s influence on
expressed sentiment.

Ethics statement. Any research studies that deal with user
information are at risk of distributing sensitive user informa-
tion and thus must be conducted with care. We took steps to
ensure that the research is carried out ethically and that the
data is handled securely. The examples used in this paper
are fictional and not based on users’ personal information. In
accordance with Snap’s commitment to protecting user data
privacy, all analyses for this paper are restricted to public
social media posts. Additionally, all modeling and analyses
were done through Snap’s secure internal data storage and
no data was stored on local computers or systems outside of
Snap at any point. The Twitter data will only be identified
by Tweet IDs, which complies with Twitter’s data sharing
policy (Twitter 2020).

Broader impact. For the broader ICWSM community,
our work highlights the promising direction of migrating
content understanding models from using user-specific to
user-agnostic features. We demonstrate the potential of in-
cluding external contextual features, rather than user-level
features, to improve content understanding. Weather, loca-
tion, and time are contextual signals that can be readily avail-
able but have remained relatively underutilized in content
understanding. As protecting user privacy is an important
goal in AI-driven research, we believe our work is of value
for researchers in this field.

Our findings also suggest that online social platforms
can moderate their content based on contextual signals such
as weather conditions. One application of this is utilizing
weather signals to improve or enhance user mood. For in-
stance, in less than ideal weather conditions, social me-
dia platforms can display more positive content to help
lift users’ moods. Alternatively, when the weather is good,
platforms can also encourage users to go outside to enjoy
the weather: Keller et al. (2005) showed that the benefi-
cial effects of warm weather are, perhaps not surprisingly,
only observed when the participants are spending time out-
doors. Finally, weather-related cues can also be integrated
into social media as interactive features to make the weather
experience—positive or negative—more enjoyable.

Another direction of application surrounds recent efforts
to design technology for situational visual impairments (Tig-
well, Menzies, and Flatla 2018), which refers to environ-
mental conditions that negatively affect one’s ability to com-
plete tasks. We hope our work motivates developers to con-
sider supporting interfaces that are appropriate for rare and
extreme weather conditions.

Conclusion
Our work explores how current weather and historical
weather, combined with other external features of location
and time, impact users’ expressed sentiment through a large-
scale empirical study of 8 million Snapchat Our Story posts

in the US. We highlight the added value (3% improvement)
of including contextual features, especially short-term his-
torical weather, in predicting user sentiment. Our results also
generalize cross-domain to Twitter. Furthermore, we find
that historical weather has a lasting impact on sentiment.
The effects of weather on sentiment exist even after control-
ling for time and location, though there are geographical dif-
ferences in mood sensitivity to weather. Our work shows the
impact weather has on our emotions and on how we express
ourselves online, which could be better utilized in content
understanding models.

Appendix
Annotation Details
Snapchat annotations. The expert annotators were
screened for annotation quality in English and are highly
experienced in annotating textual and visual social media
data. They were asked to label each Snap caption as neg-
ative, neutral, positive, or n/a. N/a is used for captions that
they deemed non-English, clearly spam, or whose sentiment
is unclear. Captions labeled n/a by any annotator were dis-
carded.

Twitter annotations. Twitter annotations were done
through Mturk in HITs (batches) of 40 Tweets. Each HIT
is annotated by five unique workers because previous work
showed that five non-experts can approximate expert qual-
ity in sentiment (valence) detection (Snow et al. 2008). To
qualify, workers must be located in the US, have more than
100 approved HITs, and have a HIT approval rate > 95%.
Workers are given instructions and a few examples. To im-
prove the reliability of the non-expert ratings, we extend
the three-point scale to an easier five-point scale (Preston
and Colman 2000): very negative, somewhat negative, neu-
tral, somewhat positive, and very positive. N/A can be as-
signed to any Tweets that are spam, non-English, and unde-
termined. Workers are compensated $0.60 for each HIT of
40 Tweets.

We prune any annotations that did not pass our reliabil-
ity checks. Following Amidei, Piwek, and Willis (2019),
we compute the Goodman and Kruskal’s Gamma (Goodman
and Kruskal 1979), a correlation coefficient designed for or-
dinal annotations, for every pair of annotators. We first re-
move annotators whose average Gamma is below 0.5 (large
correlation (Rosenthal 1996)) and then remove HITs/batches
whose average inter-rater gamma is below 0.5. We also re-
move Tweets that are labeled n/a by any annotators. Finally,
we remove Tweets for which there is no majority sentiment
consensus on positive (including very and somewhat pos-
itive), neutral, and negative (including very and somewhat
negative).

Sentiment distribution. Consistent with prior work on
Snap Our Story data (Alghamdi et al. 2020), the sentiment
distribution is imbalanced, with the majority of Snaps be-
ing positive (52% positive, 33% neutral, and 15% negative).
We found the same imbalance in the Twitter/Instagram data
(64% positive, 29% neutral, and 7% negative).
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Temperature ↑ Pressure ↓ Humidity ↓ Rain ↓ Clouds ↓
1 Los Angeles, CA Fort Lauderdale, FL Las Vegas, NV San Diego, CA San Diego, CA
2 Seattle, WA Miami, FL Austin, TX Los Angeles, CA Las Vegas, NV
3 Cleveland, OH Newark, NJ Memphis, TN Houston, TX Los Angeles, CA
4 Memphis, TN Tampa, FL San Antonio, TX San Francisco, CA San Antonio, TX
5 Philadelphia, PA Los Angeles, CA Detroit, MI Anaheim, CA Cleveland, OH

Table A1: The top five cities where the sentiment is most positively ↑ or negatively ↓ correlated with changes in weather.

Experimental Details
The hyperparameters we searched are L2 regulariza-
tion: {0.01, 0.001, 0.00001}, dropout (Srivastava et al.
2014): {0.0, 0.2}, hidden dimensions (of all layers):
{16, 32, 64, 128, 256}, number of layers (after combina-
tion): {2, 4, 8}, number of layers (before combination):
{4, 8, 16, 32}, and whether to apply layer normalization af-
ter every dense layer. We fix the activation function to be
ReLU. The optimizer is Adam (Kingma and Ba 2015) with
a learning rate of 0.001. The learning rate 0.001 is chosen
from {0.01, 0.001, 0.0005, 0.0001} from a initial smaller
subset of hyperparameters. All models are trained until no
improvement on the validation set after 20 epochs.

City-level Analysis
To conduct city-level analysis, we take the top 50 cities
with the most number of data points, which covers 41%
of all data. The five cities with the most positive average
cities are in Southern California and Texas—Anaheim, CA,
San Diego, CA, Burbank, CA, Arlington, TX, Dallas TX—
whereas the five cities with the most negative average sen-
timent are in Ohio and the East Coast—Cincinnati, OH,
Newark, NJ, Brooklyn NY, Cleveland, OH, and Boston MA.
To examine which cities are most impacted by changes in the
weather, we rank the cities by their Pearson Correlation co-
efficient between their sentiment and weather features. Table
A1 shows that cities in California (Los Angeles, San Diego,
Anaheim, and San Francisco) are most positively impacted
by warmer temperatures and most negatively impacted by
rain and clouds. Florida is most negatively impacted by high
atmospheric pressure, and Texas is negatively impacted by
humidity.
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